RuQAR : Reasoning with OWL 2 RL
Using Forward Chaining Engines

Jaroslaw Bak

Institute of Control and Information Engineering,
Poznan University of Technology,
Piotrowo 3a, 60-965 Poznan, Poland
jaroslaw.bak@put.poznan.pl

Abstract. We present the Rule-based Query Answering and Reason-
ing framework (RuQAR). The tool supports ABox reasoning and query
answering with OWL 2 RL ontologies executed by the forward chaining
rule reasoners Jess and Drools. We describe RuQAR’s main features, its
architecture as well as implementation details.

1 Introduction

Ontologies, as a way of expressing knowledge, are becoming more and more
popular in various fields, such as web technologies, database integration, medi-
cal systems etc. Ontologies can be expressed in the Web Ontology Language 2
(OWL 2). The language provides a set of profiles! which offer important advan-
tages in different application scenarios. Among them, the OWL 2 RL profile is
the most interesting one from our point of view. It enables an implementation
of polynomial time reasoning algorithms in a standard rule engine. Nonetheless,
a naive implementation of an OWL 2 RL reasoner is known to perform poorly
with large ABoxes [3]. Additionally, description logic-based reasoners handle the
TBox entailments better than the ABox ones. However, ABox reasoning can be
performed more efficiently by a rule engine [7]. Nevertheless, the official list?
of OWL 2 reasoners supporting OWL 2 RL is limited. Moreover, combining
an OWL 2 RL reasoner with a currently used forward reasoning engine can be
a tricky task, because existing reasoners usually provide their own format and
reasoning algorithms. Furthermore, there is a lack of native and efficient rule
sets that support OWL 2 RL reasoning in many popular rule engines, especially
considering ABox reasoning. This motivated us to provide a tool which supports
the application of an OWL 2 RL-based knowledge base in a forward chaining
rule engine. Nevertheless, we do not limit ourselves to one particular engine or
implementation. Instead, we aim at providing an easy-to-use framework for per-
forming ABox reasoning with OWL 2 RL ontologies in any forward chaining rule
engine such that it can be used in many rule-based applications.

! http://www.w3.org/TR/owl2-profiles/
2 nttp://wuw.w3.org/2001/sw/wiki/OWL/Implementations

2 Jaroslaw Bak

In this paper we provide a detailed description of the Rule-based Query
Answering and Reasoning framework (RuQAR) which overcomes the aforemen-
tioned issues. The main goal of the tool is to support ABox reasoning as well
as query answering within the OWL 2 RL profile. The remainder of this paper
is organized as follows. Firstly, we describe main features of RuQAR. Then, we
present its architecture as well as implementation details. Finally, we provide
conclusions along with future development plans.

2 RuQAR Framework

2.1 Features

The RuQAR framework is aimed at providing easy-to-use functions that will sup-
port reasoning and query answering with ontologies within OWL 2 RL. These
tasks should be performed by a forward reasoning rule engine. For this, an on-
tology needs to be transformed into rules that are readable by a chosen engine.
According to this we have developed the following features for RuQAR:

1. The Abstract Syntax of Rules and Facts (ASRF) which is used to rise an
abstraction level providing more universal representation of rules and facts.
As a result the syntax enables easy translation into the language of any rule
engine. An implementation of mappings between ASRF and the language of
a chosen rule engine is required.

2. Transformation schema of an OWL 2 ontology into a set of rules and a set
of facts expressed in ASRF. The transformation schema is presented in Fig-
ure 1. Firstly, an OWL 2 ontology is loaded into the HermiT? engine. Then,
TBox reasoning is executed. We perform the following reasoning tasks: satis-
fiability checking, concept classification and subsumption as well as checking
equivalence and disjointness between concepts. Finally, the resulting ontol-
ogy is transformed into two sets: one of rules and one of facts. These sets
reflect TBox and ABox separately. Both are expressed in the ASRF nota-
tion. By loading a translated and inferred ontology, produced by HermiT,
into a rule engine we can derive more consequences during ABox reasoning
than those supported by OWL 2 RL. However, it depends on an applied
ontology (whether or not it uses constructs that are beyond OWL 2 RL).
Nevertheless, RuQAR supports only rules that are presented in Table 1.
Moreover, since we use the OWL-API [4] tool, HermiT can be exchanged
through an another compatible reasoner (e.g. Pellet?).

3. Translation of the ASRF sets into Drools® and Jess® languages (we imple-
mented appropriate mappings). As a result these sets can be used to perform
ABox reasoning with the corresponding engines.

3 http://www.hermit-reasoner.com/

4 https://github.com/complexible/pellet
5 http://www.drools.org/

S http://jessrules.com/

RuQAR : Reasoning with OWL 2 RL Using Forward Chaining Engines 3

HermiT Inferred Ontology OWL 2 Ontology
OWL 2 5 .
Ontology é OWL 2 é Written in
TBox Reasoning Ontology Transformation ASRF

Fig.1. OWL 2 ontology transformation schema

4. Support for the Semantic Web Rule Language (SWRL) [5] with its built-ins.
Additionally, RuQAR checks if a rule is safe (whether each variable from the
rule’s head occurs in the rule’s body).

5. Mapping method between an ontology and a relational database. Currently,
we are developing an interface which is based on the R2RML specification.”

6. Query answering functions that allow for querying Jess and Drools engines
with their native methods as well as our own methods. One of our method
uses a relational database to store the ABox part of an ontology. Another one
provides some optimizations regarding rules that are used while processing
the query. It is based on a previously developed extended rules approach [1].

7. Reasoning and query answering management functions for Jess, Drools and
HermiT. Moreover, additional functions are also available. For example, we
can compare reasoning results (or query answers) computed by the engines.

) e)
Reasoning Transformations
Manager

CHermiT) [OWL-API)
ASRF

<
=
g :
DI e
. AL
L Query Answering J M
RDB

Fig. 2. The architecture of RuUQAR

2.2 Architecture and Implementation Details

RuQAR is developed in Java as a library which can be included in applications
requiring efficient ABox reasoning. The framework uses the following tools: Jess
7.1, Drools 5.5, HermiT 1.3.8 and OWL-APT 3.4.10.

" http://www.w3.org/TR/r2rml/

4 Jaroslaw Bak

The architecture of RuQAR is presented in Figure 2. The tool contains a set
of modules that provide different functionalities. If a module overlaps another
one in Figure 2 it means that they share some part of the RuQAR’s Java code.
The tool contains the following modules:

Transformations Module

This module uses OWL-API to handle ontology files as well as to extract
the logical axioms from an ontology. The module creates ASRF rules and
facts and is responsible for creating mappings between a relational database
and an OWL ontology. It provides RulesInto interface which has to be imple-
mented in order to translate the ASRF notion into the language of a selected
reasoning engine. An implementation of this interface requires to define map-
ping between ASRF elements and the destination language. The current
implementation provides mappings for Jess and Drools. Both engines use
different languages as well as different approaches for rule and fact repre-
sentations. Jess uses its own scripting language and represents rules and
facts as internal Java objects. However, rules in Drools are represented as
when...then... statements in which any Java class can occur (as a pattern).
Moreover, facts can be represented as pure Java objects. As a result we de-
veloped an additional class Triple which can be applied in the body of each
rule as well as to represent facts as Triple objects. Thus, we confirmed that
the ASRF syntax can be applied in different rule reasoning engines.

Reasoning Manager Module

The module provides a set of functions to handle reasoning engines. We can
use this module to perform ABox and TBox reasoning separately using Her-
miT. We can manage Drools and Jess when performing ABox reasoning or
query answering. We can save results as a new OWL ontology. Additionally,
we can obtain the profile information about a given ontology. Whether it is
within OWL 2 RL or not. If it is not, the violations are provided (mainly
due to the OWL-API functions).

Query Answering Module

This module supports query answering with Drools and Jess. We can use
native methods of those engines or our (optimized) methods that include
a relational database access. Application of our method requires rules to
be modified. However, this module provides such a modification which can
be applied automatically with the ASRF rules. As a result we provide an
optimized set of rules which can be translated into Drools or Jess rules out
of the box.

RuQAR implements our method of transforming OWL 2 ontologies into a set
of rules and a set of facts expressed in the ASRF syntax. Table 1 shows currently
supported rules by our implementation. This set comes from the specification of
OWL 2 [8]. However, this set is smaller than the original one. We decided to use
the simplest subset of OWL 2 RL/RDF rules which is easily implementable in
any reasoning engine. Moreover, we excluded each rule which is a “constraint”

RuQAR : Reasoning with OWL 2 RL Using Forward Chaining Engines 5

Table 1. Currently supported OWL 2 RL entailment rules.

IOWL 2 RL Specification Table“ Supported Rules‘

Table 4. eq-sym, eq-trans,

The Semantics of Equality eq-rep-p eq-rep-s,
eq-rep-o

Table 5. prp-dom, prp-rng,

The Semantics of Axioms prp-ip, prp-ifp,

about Properties prp-symp, prp-trp,

prp-eqpl, prp-spol,
prp-eqp2, prp-invl,

prp-inv2
Table 6. cls-intl, cls-int2,
The Semantics of Classes cls-uni, cls-svfl,

cls-svf2, cls-avf,
cls-hvl, cls-hv2,

cls-maxc2
Table 7. cax-sco, cax-eqcl,
The Semantic of Class Axioms cax-eqc2

rule (e.g. cls-nothing2 from Table 6 in the OWL 2 RL profile) and each rule
which does not have an impact on ABox reasoning (e.g. all rules from Table 9
in the OWL 2 RL profile).

In ontology-to-ASRF transformation we translate each logical ontology axiom
into its equivalent rule. As a result the transformation materializes the semantics
of a given ontology in a set of Datalog-like rules (we consider it as a non-naive
translation). Since we are focused on ABox reasoning, each rule should be per-
ceived as an implementation of the axioms from a given ontology. According to
this, we obtain a significant performance gain [2].

The transformation method may produce more entailments during reasoning
than those represented by OWL 2 RL/RDF rules. It is caused by the fact that
we apply TBox reasoning with a DL-based reasoner. However, it depends on the
expressivity of a given ontology. Nevertheless, the application of our method to
ontology beyond OWL 2 RL will not produce the same consequences as derived
by an appropriate DL-based reasoner (in our case the set of inferences will be
smaller). As a result, the reasoning with rules generated by our methodology is
sound but not complete.

Since RuQAR generates rules and facts in the native language of a rule en-
gine, the tool can be easily integrated into an existing environment. For example,
assume that we have an application X which uses Drools to perform reasoning
with some data. If we create an ontology that describes the data, and then we
translate the data into RDF triples, we can employ RuQAR to generate rules
(and facts) that can be easily and directly applied with X.

6 Jaroslaw Bak
3 Conclusions and Future Work

In this paper we presented the RuQAR tool which is a framework that provides
many useful functionalities to: (i) perform ABox reasoning and query answer-
ing with OWL 2 RL ontologies executed by forward chaining rule reasoners,
(ii) translate an OWL ontology into rules, (iii) use SWRL rules together with
ontologies, (iv) manage reasoning engines and to (v) store OWL individuals in
a relational database.

Moreover, presented work is the first implementation of OWL 2 RL reasoning
in Drools and Jess (except the work presented in [9] that implements directly
the semantics of OWL 2 RL) which can be applied in any application requir-
ing efficient ABox reasoning. Transformation provided by RuQAR should be
considered as a generic one. Rules generated for different rule engines are the
same — they differ only in the language of a reasoning engine. The next step of
development is to provide rules that are optimized according to a chosen rule
engine.

Currently, we are implementing R2RML mappings which will be useful to
measure the performance of query answering algorithms. In this case we are
going to use the NPD benchmark [6] which is specifically designed for Ontology
Based Data Access systems (since RuQAR provides relational data access it can
be perceived as a OBDA/RBDA83-like system). We also plan to perform tests
with the latest versions of Jess and Drools, 8.0 and 6.2, respectively. It will be
useful to check if reasoning efficiency as well as query answering performance
have been increased in newer versions. As a result, in Drools case, we will be
able to compare two different algorithms: ReteOO (Drools 5.5) and PHREAK
(Drools 6.2).

More information about the RuQAR framework can be found at its web
page: http://etacar.put.poznan.pl/jaroslaw.bak/RuQAR. php.

Acknowledgments. The work presented in this paper was supported by UMO-
2011/03/N/ST6/01602 grant and 04/45/DSMK /0124 project.

References

1. Jaroslaw Bak, Grazyna Brzykcy, and Czeslaw Jedrzejek. Extended rules in
knowledge-based data access. In Proceedings of the 5th international conference on
Rule-based modeling and computing on the semantic web, RuleML’11, pages 112—
127, Berlin, Heidelberg, 2011. Springer-Verlag.

2. Jaroslaw Bak, Maciej Nowak, and Czeslaw Jedrzejek. RuQAR: Reasoning frame-
work for OWL 2 RL ontologies. In Valentina Presutti, Eva Blomqvist, Raphaél
Troncy, Harald Sack, Ioannis Papadakis, and Anna Tordai, editors, The Semantic
Web: ESWC 2014 Satellite Events - ESWC 2014 Satellite Events, Anissaras, Crete,
Greece, May 25-29, 2014, Revised Selected Papers, volume 8798 of Lecture Notes in
Computer Science, pages 195-198. Springer, 2014.

® http://wiki.ruleml.org/index.php/Rule-Based_Data_Access

RuQAR : Reasoning with OWL 2 RL Using Forward Chaining Engines 7

. Aidan Hogan and Stefan Decker. On the ostensibly silent W in OWL 2 RL. In Axel
Polleres and Terrance Swift, editors, Web Reasoning and Rule Systems, volume 5837
of Lecture Notes in Computer Science, pages 118-134. Springer Berlin Heidelberg,
2009.

. Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for working
with OWL 2 ontologies. In OWLED, 2009.

. Tan Horrocks, Peter F. Patel-schneider, Harold Boley, Said Tabet, Benjamin Grosof,
and Mike Dean. SWRL: A semantic web rule language combining OWL and
RuleML. 2004. Accessed: 04/04/2013.

. Davide Lanti, Martin Rezk, Guohui Xiao, and Diego Calvanese. The NPD Bench-
mark: Reality Check for OBDA Systems. In Proc. of the 18th Int. Conf. on Ezxtend-
ing Database Technology (EDBT 2015), 2015. To appear.

. Georgios Meditskos and Nick Bassiliades. Combining a DL reasoner and a rule
engine for improving entailment-based OWL reasoning. In Proceedings of the 7th
International Conference on The Semantic Web, ISWC ’08, pages 277-292, Berlin,
Heidelberg, 2008. Springer-Verlag.

. Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and
Carsten Lutz. OWL 2 Web Ontology Language Profiles (Second Edition). W3C
Recommendation, 2012.

. Martin J. O’Connor and Amar Das. A pair of OWL 2 RL reasoners. In Pavel
Klinov and Matthew Horridge, editors, OWLED, volume 849 of CEUR Workshop
Proceedings. CEUR-WS.org, 2012.

