
Lethe: Saturation-Based Reasoning for

Non-Standard Reasoning Tasks

Patrick Koopmann, Renate A. Schmidt

The University of Manchester, UK
{koopmanp, schmidt}@cs.man.ac.uk

Abstract. We present the saturation-based reasoning system Lethe.
Lethe is a tool that can be used for uniform interpolation, forgetting,
TBox abduction and logical di�erence. To solve these problems, Lethe
uses saturation-based reasoning to eliminate certain symbols from an on-
tology, such that entailments in the remaining vocabulary are preserved.
This is known as forgetting or uniform interpolation. Lethe is an imple-
mentation of our forgetting methods for various expressive description
logics, and can be used as a Java library and as a standalone tool for
the mentioned reasoning tasks. We give a high level description of the
calculi used by Lethe, describe the reasoning algorithm implemented in
Lethe, and give an evaluation of the system on realistic ontologies.

1 Introduction

Lethe is a tool for non-standard reasoning tasks that provides functionality
for forgetting, TBox abduction and logical di�erence, which have applications
in ontology analysis, debugging and ontology change. These functionalities are
implemented by saturation-based reasoning methods for forgetting. The name
Lethe is taken from Greek mythology, and denotes the river of forgetfulness. For-
getting, also known as uniform interpolation, is the core functionality of Lethe.
It reduces the vocabulary of an ontology in such a way that entailments in the re-
stricted vocabulary are preserved. We give a formal de�nition. Let sig(E) denote
the concept and role symbols occurring in an ontology or axioms E.

De�nition 1. The result of forgetting a set of symbols Σ from an ontology O
in a logic L is an ontology O−Σ such that sig(O−Σ) = sig(O) \Σ and for all L
axioms α with sig(α) ∩Σ = ∅ we have O−Σ |= α i� O |= α.

Apart from TBox abduction and computing logical di�erences between on-
tology versions, forgetting has a lot of direct applications, and can be used to
hide con�dential information from an ontology, to analyse hidden relations be-
tween concepts and roles, to generate ontology summaries, and has many more
applications, examples of which can found in [2, 13, 14].

Saturation-based reasoning has received increased interest in the last years by
the description logic community due to its good performance for classi�cation.
Examples include the consequence-based reasoners used by ELK [3] and Con-
DOR [19, 20]. Saturation procedures work by adding new inferences performed

2

by a set of rules to the knowledge until no new inferences can be performed. This
technique is especially useful if the aim is to compute all entailments of a speci-
�ed form, such as atomic concept inclusions in the case of classi�cation. For the
same reason, saturation-based reasoning is well-suited for forgetting. Forgetting
a concept or role symbol x is performed in Lethe by computing all entailments
on that symbol, until axioms containing x can be removed. This can be done
using goal-oriented saturation, provided that the underlying calculus enjoys the
necessary completeness properties.

Common consequence-based reasoning methods do not enjoy these proper-
ties, since they are optimised towards classi�cation. As example, take the fol-
lowing two axioms:

A1 v ∀r.B A2 v ∀r.¬B

Forgetting B from these axioms should result in the single axiom A1uA2 v ∀r.⊥.
However, this inference is not necessary if we are only interested in entailments
of the form A v B. Inferences between universal restrictions are usually not
required for classi�cation.

We developed a new family of saturation-based calculi for ALC, ALCH, SHQ
and SIF ontologies [6, 5, 8, 10], as well as for ALC and SHI knowledge bases [9,
12, 11], that are interpolation complete. Interpolation completeness ensures that
all inferences needed for forgetting are performed. Lethe implements the calculi
for ALCH and SHQ ontologies, as well as for ALC knowledge bases.

Furthermore, Lethe implements optimised variations of the forgetting pro-
cedure to solve the related problems logical di�erence and TBox abduction. The
aim of logical di�erence is to compute di�ering entailments between ontology
versions with respect to some user-de�ned signature [4]. Lethe computes logi-
cal di�erences between two ontologies O1 and O2 by forgetting symbols from O2

that are not in the desired signature, and returning all resulting axioms that are
not entailed by O1 (the same approach followed in [13]), and has some dedicated
optimisations to make this feasible for large ontologies.

The form of abduction that is implemented in Lethe takes as input an
ontology O, a set of axioms Obs and a signature of abducibles Σ, and computes
a logically weakest set of axioms H such that sig(H) ⊆ Σ and O ∪ H |= Obs.
TBox abduction can support ontology engineers in �nding missing axioms of an
ontology if expected entailments are not satis�ed. This problem can be reduced
to a form of forgetting by observing that O ∪H |= Obs i� O ∪ {¬Obs} |= ¬H.
The negation of a TBox axiom C v D can be encoded in the TBox axiom
> v ∃r∗.(Ci u ¬Di), where r

∗ is fresh. Using the technique described in [7], we
forget all symbols from ¬Obs that are not in Σ , where O is used as background
knowledge. If we negate the result again, we obtain the weakest set of axioms
in Σ such that O ∪H |= Obs.

2 The Calculi

Even though Lethe implements di�erent calculi, these use similar techniques,
which allows to implement a uni�ed reasoning strategy. To give an idea, we

3

Resolution Rule:
C1 tA C2 t ¬A

C1 t C2

∃-Elimination Rule:
C t ∃r.D ¬D

C

∀Q-Combination Rule:

C1 t ∀R.D1 C2 t QS.D2

C1 t C2 t QS.D12

where Q ∈ {∀, ∃} and D12 is a possibly new de�ner representing D1 uD2.

Fig. 1. Rules of the calculus ResALC .

describe a simple calculus for ALC, introduced in [6], that shares main ideas
with these calculi.

The method requires the input to be normalised. Let Nc and Nr be the sets of
concept symbols and role symbols that may be used in an ontology, and Nd ⊂ Nc
be a set of designated concept symbols called de�ners.

De�nition 2. An ALC literal is a concept of the form A, ¬A, ∃r.D, ∀r.D,

where D ∈ Nd. An ALC literal of the form ¬D, D ∈ Nd, is called negative
de�ner literal. An ALC clause is an axiom of the form > v L1 t . . .tLn, where
every Li is an ALC literal. We usually omit the leading `> v' and assume that

clauses are represented as sets, that is, they do not have duplicate literals and

the order of the literals is not important. An ontology is in ALC normal form i�

every axiom is an ALC clause.

Every ALC ontology can be transformed into ALC normal form using stan-
dard structural transformation and CNF transformation techniques. The result-
ing ontology shares all entailments modulo de�ners with the original ontology.
If a normalised ALC ontology contains only clauses with at most one negative
de�ner literal, similar transformations can be applied in the other direction in
order to obtain an ontology without de�ners, which may use greatest �xpoint
operators (see [6] for details).

Example 1. For the ontology given in the introduction, a normalised represen-
tation is N = {¬A1 t ∀r.D1,¬D1 tB,¬A2 t ∀r.D2,¬D2 t ¬B}.

The calculus ResALC is shown in Figure 1. A major di�erence between our
calculi and calculi for consequence-based reasoning [3, 19], or methods for direct
resolution in modal logics [1, 15�17], is that symbols are not only introduced
as part of the normalisation, but are also introduced dynamically during the
saturation process. This allows to preserve the normal form without omitting
required inferences. Speci�cally, the conclusions of the ∀Q-combination rule use
a de�ner D12 representing D1 uD2. Such a de�ner is introduced by adding the

4

two clauses ¬D12tD1 and ¬D12tD2 to the current clause set. New de�ners are
only introduced if no corresponding de�ner already exists. This way, the number
of introduced de�ners can be limited by 2n, where n is the number of de�ners
in the input ontology. As a result, we obtain that any saturated set of clauses is
�nite and contains at most 22

n

clauses.
The calculi for ALCH ontologies, SHQ ontologies and ALC knowledge bases,

as implemented in Lethe, use di�erent rule sets, but the structure of these calculi
is similar. They always have a resolution rule that allows to infer inferences on
a speci�c symbol, and they have a set of combination rules, which lead to the
introduction of new de�ners, and subsequently make further inferences possible.

In order to forget a concept symbol from the ontology, all inferences of the
resolution rule for which the conclusion contains maximally one negative de�ner
literal have to be performed. This may involve several applications of the com-
bination rules, as these lead to the introduction of new de�ners and clauses. In
the resulting clause set, all de�ners can be eliminated by applying the normali-
sation backwards, resulting in an ontology without de�ner symbols, which may
use �xpoint operators. As described in [6], we can obtain a representation with-
out �xpoints by leaving some de�ner symbols in the ontology or use the de�ner
symbols as a guide to approximate the result. Both methods are implemented
in Lethe.

3 Central Reasoning Algorithm Used in Lethe

The main challenge of implementing the calculi is to determine which applica-
tions of the combination rules are required in order to compute the forgetting
result. If combination rules are applied unrestricted, we infer more clauses than
necessary, and the implementation becomes impractical already for small on-
tologies. On the other hand, applications of the combination rules are necessary
to make further inferences possible. Lethe uses an easy technique to ensure
that all required inferences of combination rules are applied, while keeping the
number of unnecessary inferences low. The idea is to use the resolution rule as
guide to determine which de�ners should be introduced if possible. We can then
determine how this de�ner can be introduced by using the combination rules.

Symbols to be forgotten are processed one after another, starting with the
symbols with less occurrences in the ontology. For each symbol, we process only
the portion of the ontology that uses this symbol. The main inference loop for
forgetting a concept symbol A is then controlled by the following methods:

MAIN_LOOP. Process each negative occurrence of A one after another
and perform all possible resolution steps. Pass the results to the method PRO-
CESS_CLAUSE.

PROCESS_CLAUSE(C). Determine whether the clause C contains more
than one negative de�ner literal. If not, pass it to ADD_CLAUSE. Otherwise,
we have C = ¬D1 t¬D2 tC ′. If there is a de�ner D12 that represents D1 tD2,
replace C by ¬D12 t C ′ and pass it again to PROCESS_CLAUSE. (This step
basically performs resolution on the clauses ¬D12 t D1 and ¬D12 t D2, which

5

are then also in the current clause set). If there is no such de�ner yet, look for
occurrences of D1 and D2 under a role restriction and apply the corresponding
role combination rules if possible, which may then introduce the de�ner D12.
Every clause that is inferred in this process, as well as the clause ¬D12 t C ′ if
it could be generated, is sent again to PROCESS_CLAUSE, since it may again
contain more than one negative de�ner symbol.

ADD_CLAUSE(C). We apply simpli�cation rules on the clause and check
whether it is redundant. If the clause does not contain the symbol to be elimi-
nated, we add it to the �nal output clause set.

Example 2. Assume we want to forget A from the clauses in the last exam-
ple. MAIN_LOOP resolves on the clauses ¬D1 t A and ¬D2 t ¬A, and passes
¬D1 t ¬D2 to PROCESS_CLAUSE. As this clause contains more than one neg-
ative de�ner literal, we do not have to add it to the result. Instead, we check
whether we can apply combination rules on clauses in whichD1 andD2 occur un-
der a role restriction. This is possible on the clauses ¬A1t∀r.D1, ¬A2t∀r.D2, and
we pass the resulting clauses ¬A1t¬A2t∀r.D12, ¬D12tD1, ¬D12tD2 and ¬D12

to the method ADD_CLAUSE. The �nal output contains only clauses with at
most one negative de�ner literal, and no occurrences of B. The clause ¬D12

corresponds to the axiom D12 v ⊥. We can therefore replace D12 by ⊥. After
some further syntactic adjustments we obtain the result A1 uA2 v ∀r.⊥.

Several hash maps are used in the implementation to allow fast access of all
occurrences of de�ners and the symbols that are currently forgotten. Through-
out the computation, we ensure the invariant property that every stored clause
contains maximally one negative de�ner literal. This is necessary to be able to
eliminate introduced de�ner symbols in the end.

4 Evaluation

We evaluated the current version of Lethe on a set of 339 ontologies taken
from the NCBO BioPortal repository [18], restricted to the di�erent fragments
supported by the di�erent calculi. The ontologies correspond to the consistent
ontologies of that repository that have less than 100,000 axioms. The average
number of axioms of these ontologies is 4,760, and the 90th percentile is 13,045
axioms. For each ontology and each supported description logic, we generated
360 sets of symbols of size 50 and of size 100 and eliminated the symbols using
Lethe. A timeout was set to 30 minutes. Table 1 shows the results of this
evaluation. The tables show the success rate for each experiment, the fraction
of results that could be represented without �xpoints, and the mean, median
and 90th percentile of the duration of the computation. Note that for SHQ
ontologies, Lethe only supports elimination of concept symbols.

In around 90�95% percent of cases, forgetting could be performed within
30 minutes. In most cases, the computation took just a few seconds, with the
median of the duration being below 7 seconds in all cases. Except for the ALC
forgetter with ABox support, the 90th percentile of the duration was always
below 22 seconds.

6

ALCH, forget 50 symbols

Success Rate: 91.10%
Without Fixpoints: 95.29%
Duration Mean: 7.68 sec.
Duration Median: 2.74 sec.
Duration 90th percentile: 12.45 sec.

ALC w. ABoxes, forget 50 symbols

Success Rate: 94.79%
Without Fixpoints: 92.91%
Duration Mean: 23.94 sec.
Duration Median: 3.01 sec.
Duration 90th percentile: 29.00 sec.

SHQ, forget 50 concept symbols

Success Rate: 95.83%
Without Fixpoints: 93.40%
Duration Mean: 7.62 sec.
Duration Median: 1.04 sec.
Duration 90th percentile: 4.89 sec.

ALCH, forget 100 symbols

Success Rate: 88.10%
Without Fixpoints: 93.27%
Duration Mean: 18.03 sec.
Duration Median: 3.81 sec.
Duration 90th percentile: 21.17 sec.

ALC w. ABoxes, forget 100 symbols

Success Rate: 91.37%
Fixpoints: 92.48%
Duration Mean: 57.87 sec.
Duration Median: 6.43 sec.
Duration 90th percentile: 99.26 sec.

SHQ, forget 100 concept symbols

Success Rate: 90.77%
Fixpoints: 91.99%
Duration Mean: 13.51 sec.
Duration Median: 1.60 sec.
Duration 90th percentile: 11.65 sec.

Table 1. Forgetting 50 and 100 symbols using Lethe.

5 Outlook

Lethe currently supports forgetting of concept and role symbols from ALCH
ontologies and ALC knowledge bases with ABoxes, as well as forgetting concept
symbols from SHQ ontologies. Apart from providing functionality for forgetting,
Lethe uses these forgetting procedures together with dedicated optimisations
for TBox abduction and computing logical di�erences. The current version can be
downloaded at http://www.cs.man.ac.uk/~koopmanp/lethe. It can be used as
command line tool and as Java library. Furthermore, a simple GUI for computing
and showing forgetting results on smaller ontologies is provided.

We currently have a prototypical implementation for SHI knowledge bases
with ABoxes, which still has to be thoroughly tested and debugged. Even though
our implementation of TBox abduction and logical di�erences has been thor-
oughly optimised, a proper evaluation on realistic use cases is still open.

A natural next step is to develop and implement a method for SHIQ knowl-
edge bases, which would generalise all three currently implemented methods.
Though currently only used for forgetting, the calculi can in theory also be
used for classical reasoning tasks such as satis�ability checking, classi�cation
or realisation. An interesting open question is how Lethe would perform as a
reasoner if it is implemented towards these reasoning tasks. Another open ques-
tion is whether our saturation-based reasoning approach can be used for other
non-classical problems, such as for example approximation or ABox abduction.

7

References

1. Enjalbert, P., Fariñas del Cerro, L.: Modal resolution in clausal form. Theoretical
Computer Science 65(1), 1�33 (1989)

2. Gabbay, D.M., Schmidt, R.A., Szaªas, A.: Second Order Quanti�er Elimination:
Foundations, Computational Aspects and Applications, Studies in Logic, vol. 12.
College Publications (2008)

3. Kazakov, Y.: Consequence-Driven Reasoning for Horn SHIQ Ontologies. In:
Boutilier, C. (ed.) Proceedings of the International Joint Conference on Arti�cial
Intelligence (IJCAI-09). pp. 2040�2045. AAAI Press (2009)

4. Konev, B., Walther, D., Wolter, F.: The logical di�erence problem for description
logic terminologies. In: Automated Reasoning, Lecture Notes of Computer Science,
vol. 5195, pp. 259�274. Springer (2008)

5. Koopmann, P., Schmidt, R.A.: Forgetting concept and role symbols in ALCH-
ontologies. In: Logic for Programming, Arti�cial Intelligence and Reasoning. Lec-
ture Notes in Computer Science, vol. 8312, pp. 552�567. Springer (2013)

6. Koopmann, P., Schmidt, R.A.: Uniform interpolation of ALC-ontologies using �x-
points. In: Frontiers of Combining Systems. Lecture Notes in Computer Science,
vol. 8152, pp. 87�102. Springer (2013)

7. Koopmann, P., Schmidt, R.A.: Computing uniform interpolants of ALCH-
ontologies with background knowledge. In: Proc. ARW-DT'14 (2014)

8. Koopmann, P., Schmidt, R.A.: Count and forget: Uniform interpolation of SHQ-
ontologies. In: Automated Reasoning. Lecture Notes in Computer Science, vol.
8562, pp. 434�448. Springer (2014)

9. Koopmann, P., Schmidt, R.A.: Forgetting and uniform interpolation for ALC-
ontologies with ABoxes. In: Proceedings of the 27th International Workshop of
Description Logics (DL 2014). CEUR Workshop Proceedings, vol. 1193, pp. 245�
257. CEUR-WS.org (2014)

10. Koopmann, P., Schmidt, R.A.: Saturation-based forgetting in the description logic
SIF . In: Proceedings of DL-15. CEUR Workshop Proceedings, vol. 1350, pp. 439�
451. CEUR-WS.org (2015)

11. Koopmann, P., Schmidt, R.A.: Saturation-based reasoning for SHI-knowledge
bases with applications to forgetting and uniform interpolation. In: Proceedings
of ARW-15. University of Birmingham (2015)

12. Koopmann, P., Schmidt, R.A.: Uniform interpolation and forgetting for ALC on-
tologies with ABoxes. In: Proceedings of AAAI-15. AAAI-Press (2015), to appear

13. Ludwig, M., Konev, B.: Practical uniform interpolation and forgetting for ALC
TBoxes with applications to logical di�erence. In: Proc. KR'14. AAAI Press (2014)

14. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-
pressive description logics. In: Proceedings of the International Joint Conference
on Arti�cial Intelligence (IJCAI-11). pp. 989�995. AAAI Press (2011)

15. Mints, G.: Gentzen-type systems and resolution rules part I: propositional logic. In:
COLOG-88, Lecture Notes in Computer Science, vol. 417, pp. 198�231. Springer
Berlin Heidelberg (1990)

16. Nalon, C., Dixon, C.: Clausal resolution for normal modal logics. Journal of Algo-
rithms 62(34), 117 � 134 (2007)

17. Nalon, C., Marcos, J., Dixon, C.: Clausal resolution for modal logics of con�uence.
In: Automated Reasoning, Lecture Notes of Computer Science, vol. 8562, pp. 322�
336. Springer (2014)

8

18. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Gri�th, N., Jonquet,
C., Rubin, D.L., Storey, M.A., Chute, C.G., Musen, M.A.: BioPortal: ontologies
and integrated data resources at the click of a mouse. Nucleic Acids Research 37,
170�173 (2009)

19. Simancík, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn
ontologies. In: Proceedings of the Twenty-Second International Joint Conference
on Arti�cial Intelligence (IJCAI-11). vol. 22, pp. 1093�1098. AAAI Press (2011)

20. Simancík, F., Motik, B., Krötzsch, M.: Fixed parameter tractable reasoning in
DLs via decomposition. In: Proceedings of the 24th International Workshop on
Description Logics (DL 2011). CEUR Workshop Proceedings, vol. 745, pp. 400�
410. CEUR-WS.org (2011)

