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Michel Dojat Université Joseph Fourier (Grenoble I), France
Werner Horn Medical University of Vienna, Austria
Vangelis Karkaletsis NCSR “Demokritos”, Greece
Ioannis Kompatsiaris Centre for Research & Technology Hellas, Greece
Stasinos Konstantopoulos NCSR “Demokritos”, Greece
Luigi Lella Azienda Sanitaria Unica Regionale delle Marche,

Italy
Ilias Maglogianis University of Piraeus, Greece
Yuval Schahar Ben Gurion University of the Negev, Israel
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Preface

The current years are characterized by an unprecedented challenge: the age-
ing of the World population. According to an estimate by the World Health
Organization (“Global health and ageing”), the number of people aged 65 or
older will triple, from 524 million in 2010 to 1.5 billion 2050. This means that
older adults will increase from the 8 percent of the entire population to the 16
percent. We are witness of the increase of chronic diseases and health related
emergencies. In addition, the curve of required medicine cost for the last 10 years
of people’s life is more than the corresponding medical cost used for the rest of
their life. Since Governments and healthcare organizations aim to develop medi-
cal systems which offer higher quality at lower costs, one of the questions at the
heart of this workshop is then whether we can “flatter” or smoother the lifetime
cost curve for the provided healthcare services.

Since its inception, Artificial Intelligence served medicine, and nowdays can
serve assistive medicine in the support of older adults and their carers, during
their treatments as well as at home, trying to extend the time they can au-
tonomously spend in their preferred environment. In fact, the sensor networks
technology and the new technology devices like smart phones, tablets, digital
TVs, web cameras and all the smart gadgets that appear in the market open the
way to the exploitation of years of research in computer vision, machine learn-
ing, reasoning, planning, data mining, ontologies, autonomous agents, robotics,
to make sense of the data generated in pervasive environment, understand and
recognize scenarios, make diagnosis, detect risks and emergencies, recognize de-
pression and cognitive decline, etc.

In such context, what we call “NetMedicine”, i.e. every health related ac-
tivity carried on through the Internet, has the potential to deal with the chal-
lenges imposed by the ageing of world population, especially for real-time health
monitoring, teleconsultation, teleexpertise and second opinion over the Internet.
Moreover, social networking facilitates the constitution of large communities of
members sharing similar medical interest.

Thus, we organized the 4th International Workshop on Artificial Intelligence
and Assistive Medicine (AI-AM/NetMed 2015) which merges the soul of the
first and second edition of the workshop (i.e. NetMedicine) with the need to face
the challenges of the assistive medicine. The papers accepted for this one-day
workshop give special emphasis in:

– Ubiquitous real-time assistive healthcare
– Ambient and active assisted living
– Ambient Intelligence
– Wearable and/or unobtrusive smart healthcare systems
– Multi-Agent architectures for patient monitoring and early diagnosis
– Fusion and interpretation of multimodal medical data and events
– Medical ontology modeling and evolution
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– Semantically diagnosis modeling
– Reasoning with the uncertainty of medical data/knowledge
– Mining on medical data/knowledge
– Patient centric and evidence based decision support systems

This proceedings collect the contributions of the six accepted papers. In their
Argumentation for Traceable Reasoning in Teleexpertise, Doumbouya et al. cou-
ple semantic modeling and argumentation to make traceable a decision process
during an act of teleexpertise, allowing different medical specialists to remotely
reason about the treatments for a patient. In Length of Stay Prediction and
Analysis through a Growing Neural Gas Model, Lella et al. propose the adop-
tion of neural networks to face an issue closely related to the increase of people
affected by chronic disease and of health related emergencies: the prediction of
the Length of Stay which is crucial for hospital bed and resource management.
Rafael-Palou et al., with their Monitoring People that Need Assistance through a
Sensor-based System: Evaluation and First Results, show the potentiality of AI
and network technologies for activity recognition and emergency detection inside
real dwellings, describing the results from two European projects. In Ecologically
Valid Trials of Elderly Unobtrusive Monitoring: Analysis and First Results, Bil-
lis et al. share the field with the previous paper, but focus on the evaluation
of sensor measurements in ecologically valid environments, since the accuracy
of such measurements in real environments is usually lower than in lab set-
tings. Pakawanwong, with his Visualizing the Brain Structure with a DT-MRI
Minimum Spanning Tree, presents a method for the visualization of fiber tract
structures in the human brain, by searching the minimum spanning tree in a
graph where the vertices are the brain voxels. In the last paper, Using a Virtual
Environment to Test a Mobile App for the Ambient Assisted Living, Calvaresi
et al. deal with the challenge of testing software systems for the AAL, proposing
the use of 3D virtual environments to perform a pre-validation phase.

Aldo Franco Dragoni1

Constantine D. Spyropoulos2

Co-chairs of AI-AM/NetMed 2015

1Università Politecnica delle Marche, Italy
2National Center for Scientific Research “Demokritos”, Greece

AI-AM/NetMed 2015 4th International Workshop on Artificial Intelligence and Assistive Medicine

vi



Argumentation for Traceable Reasoning in
Teleexpertise

Mamadou Bilo DOUMBOUYA1,2, Bernard KAMSU-FOGUEM1, Hugues
KENFACK2, and Clovis FOGUEM3

1 Université de Toulouse, Laboratoire de Génie de Production (LGP), EA 1905,
ENIT-INPT, 47 Avenue d’Azereix, BP 1629, 65016, Tarbes Cedex, France

{mdoumbou,bernard.kamsu-foguem}@enit.fr
2 Université de Toulouse, Faculté de droit, 2 rue du Doyen Gabriel Marty, 31042

Toulouse cedex 9, France
hugues.kenfack@ut-capitole.fr

3 Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation
(CSGA), UMR 6265 CNRS, UMR 1324 INRA, 9 E Boulevard Jeanne d’Arc, 21000

Dijon, France
cfoguem@yahoo.fr

Abstract. In this paper we propose a methodological framework based
on Artificial Intelligence tools such as Dung’s argumentation system in
order to provide a decision support tool to the medical professionals
performing an act of teleexpertise. The act of teleexpertise permits to
medical professionals with different skills and specialities to collaborate
remotely for taking suitable decisions for a patient diagnosis or treat-
ment. But in case of litigation, it is important to know where the errors
come from and who is the responsible of these errors. So by making the
decision making process traceable, it will be easy to identify who is the
responsible of the errors that lead to litigation. It is what we try to solve
in this paper by proposing a framework coupling semantic modelling and
argumentation system. A case study showing an act of teleexpertise to
treat an elderly with subdural hematoma is provided in order to illustrate
our proposal.

Keywords : Argumentation; Collaboration; Decision Making; Graph of attacks;
Teleexpertise.

1 Introduction

Telemedicine consists of performing medical acts remotely by the means of
telecommunication and information technologies. It allows the collaboration be-
tween different medical professionals and including sometimes the patient in this
collaboration in order to make suitable diagnosis and treatment of a disease. Its
main purposes [2] are: establishing a diagnosis, providing for a risky patient a
medical monitoring in the context of prevention or a therapeutic monitoring, re-
quiring expert advice, preparing a therapeutic decision, prescribing products, pre-
scribing or performing acts or services and monitoring a patient. Telemedicine
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is declined into four main acts: (i) teleconsulatation, (ii) medical telemonitoring,
(iii) teleexpertise, (iv) medical teleassistance. The acts are depicted in the Fig.
1.

Fig. 1. Main acts of telemedicine [12]

In this paper we are interested in the act of teleexpertise that is used by
medical professionals to seek remotely advices of one or more of others medical
professionals (with different skills or specialities) in order to take and make
decisions in a collaborative manner, which will lead to solve medical problems
related to a patient. In this act important decisions are taken, so the liability of
each stakeholder is engaged. Thus, in case of litigation it is very important to
know where the errors come from and who is or are the responsible. The most
important thing is to make the reasoning traceable in order to know who said
what.

When performing the process of teleexpertise, the advices given by the stake-
holders can be conflictual. In this the argumentative logic is used to provide the
potential acceptable arguments (advices). The notion of argumentative logic is
well explained in [12]. The acceptable arguments are returned to the requesting
physician who will make a final decision and store it.

In the following, the paper is divided into four sections namely: some related
works, the objective of this work, materials and methods section to show the
background of the argumentation logic and the analysis of results with case
study section and finally discussion and conclusion sections.

AI-AM/NetMed 2015 4th International Workshop on Artificial Intelligence and Assistive Medicine
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2 Related Works

Many works have been achieved in order to help in finding the liability of each
stakeholders providing medical advices in case of litigations, for example Coa-
trieux et al., 2011 [10] and Bouslimi et al., 2012 [7]. Coatrieux et al. [10] used a
watermark technique for guaranteeing the traceability of the digital documents
containing medical data. It is the same idea as in [7], where the authors provided
a protocol that combines watermarking-encryption techniques and a third party
in order to easily bring evidences in case of litigations. Compared to our work,
the works achieved in [10] and [7] guarantee traceability by means of security
techniques while we guarantee traceability by means of storage and retrieval
techniques in a structured manner.

Concerning the argumentation applied to medicine, many works have been
also achieved. For example Hunter and Williams, 2012 [16] proposed an ag-
gregating evidence-based approach using argumentation for bringing evidences
about the positive and negative effects of medical treatments. Atkinson et al,
2006 [4] used argumentation to show how argumentation can be a value-added
asset for a collection of existing information agents. This process is applied to
a medical system for reasoning about medical treatments concerning a patient.
Jingyan et al., 2008 [17] used argumentation for collaborative practices in med-
ical emergency decision-making processes. Green, 2014 [15] described the role
that Artificial Intelligence models based on argumentation plays in medical do-
main particularly in personalised and participatory medicine. These works based
on argumentation are somewhat similar to ours, but the main difference is that,
in our work we used structured argumentation [5], which provides an internal
structure of arguments involved in the argumentation system.

3 Objectives

In this paper we want to provide a methodological framework taking both into
consideration semantic modelling and argumentation in the goal of aiding med-
ical professionals in their decision making process. This work aims to provide
innovative solutions coupling conceptual graphs (modelled by CoGui software
[1]) and Dung’s argumentation system [13] applied to telemedicine, which will
contribute to the telemedicine programs’ effectiveness [14]. One of the underlying
framework is called argumentative logic, which will permit to make the decision
making process traceable, in others words, to ensure the reasoning traceability.
Thus, by making the decision process traceable, one can identify clearly the ad-
vices provided by the medical professionals acting in a given act of teleexpertise.

To be clear, the main purpose of this work is to provide a tool to help create
favourable settings for effective interventions of medical professionals in act of
teleexpertise in order to know which of their different conflicting advices are
potentially acceptable. To do so, we use the Dung’s argumentation system in
order to model the conflicting arguments and build the acceptable arguments
under a given semantics (preferred, stable, . . .). These acceptable arguments will

AI-AM/NetMed 2015 4th International Workshop on Artificial Intelligence and Assistive Medicine
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be returned to the requested physician after computation. This medical profes-
sional, according to some specific parameters (e.g. risk management, preferences,
. . .) and to the received acceptable advices will make a final decision i.e. choose
what advices are useful for the patient’s treatment. Furthermore, these chosen
advices will be stored for traceability and future expertise. Many works have
been achieved in the field of argumentation applied to medicine (e.g. Hunter et
Williams, 2012 [16]), but the novel contribution of this work is its positioning in
the highly collaborative segment of telemedicine that integrates additional con-
straints of remote collaborative decision-making in teleexpertise. Another con-
tribution of this work is that the modelling relies on conceptual graphs, which
provide an ontological knowledge with underlying logical semantic guaranteeing
logical arguments. Moreover, the reasoning is based on graph operations allowing
the visualisation of the reasoning steps using mainly the projection operations.

From the point of view of argumentation systems, our work deals with struc-
tured argumentation in which argument has internal structure [5] . The different
fields in the internal structure of the node are the same like those mentioned in
Table 1. Insofar as we combine semantic modelling and argumentation, the use of
CoGui software allowing the visualisation of the different steps of the reasoning
is important to display and store the satisfactory alternatives to queries. Thus,
the output of the argumentative logic is provided in a comprehensible form to
the requesting physician to enable him to reach an informed opinion. The storage
process guarantees the traceability of reasoning procedures.

4 Materials and Methods

4.1 Acceptability semantics

Above all, we define what is a decision framework (system) [6] also called argu-
mentation based framework AF [3].

Definition 1 An (argumentation-based) decision framework AF is a couple (A,D)
where:

– A is a set of arguments,
– D is a set of actions, supposed to be mutually exclusive,
– action: A→ D is a function returning the action supported by an argument.

Definition 2 From an argumentation-based decision framework (A,D), an equiv-
alent argumentation framework AF = (A,Def) is built where:

– A is the same set of arguments,
– Def ⊆ A × A is a defeat relation such that (α, β) ∈ Def if action(α) 6=
action(β).

Definition 3 Let AF = (A,Def) be an argumentation framework, and let B ⊆
A

– B is conflict-free if there are no α, β ∈ B such that (α, β) ∈ Def .

AI-AM/NetMed 2015 4th International Workshop on Artificial Intelligence and Assistive Medicine
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– B defends an argument α iff ∀β ∈ A, if (β, α) ∈ Def , then ∃γ ∈ B such
that (γ, β) ∈ Def

Definition 4 (Acceptability semantics) Let AF = (D,A,Def) be a decision
system, and B be a conflict-free set of arguments.

– B is admissible extension iff it defends any element in B.
– B is a preferred extension iff B is a maximal (w.r.t set ⊆ ) admissible set.
– B is a stable extension iff it is a preferred extension that defeats any argu-

ment in A \B.

Through these semantics of acceptability, the authors of [3] identify several ar-
guments’ status which are depicted below :

Definition 5 (Argument status) Let AF = (D,A,Def) be a decision system,
and ε1, . . . , εx its extensions under a given semantics. Let a ∈ A.

– a is skeptically accepted iff a ∈ εi, ∀εi with i = 1, . . . , x.
– a is credulously accepted iff ∃εi such that a ∈ εi.
– a is rejected iff @εi such that a ∈ εi.

The property that is directly connected to the above definition is specified as
follows:

Property 1 Let AF = (D,A,Def) be a decision system, and ε1, . . . , εx its
extensions under a given semantics. Let a ∈ A.

– a is skeptically accepted iff a ∈ ⋂x
i=1 εi

– a is rejected iff a /∈ ⋃x
i=1 εi

4.2 Analysis of results with case study

Case study. Ms D. 87 years old, living alone and having arterial hyperten-
sion and myocardial infarction as major medical history diagnosed six months
early and treated by Loxen (Nicardipine chlorhydrateR) 50 mg x 2/D, Corversyl
(PerindoprilR) 2,5 mg/D, Kardegic (AspirineR) 75 mg/D (midday) and Plavix
(ClopidogrelR) 75 mg/D (morning). She is admitted to the emergency depart-
ment of a local Hospital for a fall at home with an initial brief loss of conscious-
ness and caused by a head trauma. The emergency doctor who received the
patient performed a biological examination including a serum electrolytes, a C-
reactive Protein (CRP) and a blood count formula, which becomes normal. The
computed tomographic (CT) scan performed showed only a cortico-subcortical
atrophy without any sign of stroke nor hemorrhage. Thereafter, the patient was
allowed to back home with a simple diagnosis of brain contusion. Four days later,
Ms D. was admitted again to the emergency department for headaches. Another
emergency doctor performed again a second CT scanner, which showed a discrete
subdural hematoma. Given that Ms D. is an elderly and it is the second time
she was admitted, then she is a risky patient. The second emergency doctor who

AI-AM/NetMed 2015 4th International Workshop on Artificial Intelligence and Assistive Medicine

5



received the patient decided to perform an act of teleexpertise. To do this, he
sought the advices of a geriatrician, a neurosurgeon and the attending physician
of the patient. After having taken the required expert advices, the neurosurgical
taken advice does not accept surgical indication. The advice provided by the
geriatrician is to perform immediately an invasive treatment, so he proposed to
make a surgery and the Attending physician of the patient decided to perform
invasive treatment (endoscopic surgery in order to assess the level of severity
the subdural hematoma) and then to perform a surgery if this latter is severe.
Finally the requesting physician (the second emergency doctor) decided to let
the patient back home again with the prescription to stop the Plavix and the
Kardegic is maintained.

Positioning of the stakeholders. According to the case study above the main
stakeholders acting are:

– The geriatrician: referring to the patient health state, he would like to
perform invasive treatment (endoscopic surgery in order to assess the level
of severity the subdural hematoma).

– The neurosurgeon: after receiving the CT scanner, he decided that there
is no need to perform surgery.

– The second emergency doctor: he decided to let the patient back home
with the prescription of stopping the Plavix and maintained the Kardegic.

– The attending physician: he knows very well his patient’s medical his-
tory. So he advised to perform endoscopic treatment followed by a surgical
intervention if the subdural hematoma is severe.

Modeling information available in structured arguments. To perform
a medical act, the medical professionals have the choice between invasive and
non-invasive treatment [9], this is resumed in the following:

– Maximisation of procedures (↗ Proc): it consists of performing invasive
treatments. It corresponds generally to surgical intervention.

– Minimisation of procedures (↘ Proc): it consists of performing non-
invasive treatments. In this option, the medical professionals perform medical
treatments such drug prescriptions, injection...

– It exists also a third option of treatment called medical technical treat-
ment. These treatments are at the frontier of surgery (for example endo-
scopic treatment). In this paper this option of treatment is modelled by
→ Proc.

The advices provided by the different medical professionals acting in this act
of teleexpertise are illustrated in the Table 1. In this table we can note that the
column “Concerns” is redundant because a graph of attacks is built only for a
group of stakeholders with the same “concern”. It is for this reason that “ensure
a good quality of life for this elderly patient” is redundant. It is the requesting

AI-AM/NetMed 2015 4th International Workshop on Artificial Intelligence and Assistive Medicine
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physician who specifies the “concern” in his request of teleexpertise. So all the
stakeholders must give their advices on the basis on this “concern”.

In front of the clinical case described in the section 4.2, the system will be
used to ask remote advices. These advices are asked by the emergency doctor
who receives the patient when she was admitted again. When asking for the
teleexpertise, the requesting physician (the emergency doctor) designates the
required physicians by their specialities. On the basis of the patient medical
record, he chooses a Geriatrician, a Neurosurgeon and the Attending physician
of the patient while accompanying his request with his suggestion (advice) and
the concern. Each of the required physicians can express their advices in a struc-
tured manner according to the field (stakeholder, reason, concern, goal) of the
Table 1. Then a server gathers all the advices as shown in the Table 1, it trans-
lates them in conceptual graphs, builds the graph of attacks and then computes
the argumentative logic to know which arguments (advices) are potentially ac-
ceptable under a given semantics. Therefore, the output of the argumentative
logic is sent to the requesting physician who is empowered to make the final
decision that is stored in the server for potential subsequent verifications.

Table 1. Stakeholders argumentation

StakeholdersReasons Options Concerns Goals
1 Geriatrician α = He would like to

perform immediately
an invasive treat-
ment, he proposed to
make a surgery

↗ Proc Ensuring a
good quality
of life for
this elderly
patient

Removing
the subdural
hematoma
even if it
is not very
severe.

2 Neurosurgeon β = He decided that
there is no need to
perform surgery.

↘ Proc Ensuring a
good quality
of life for
this elderly
patient

Preventing
the side ef-
fects after
surgery.

3 Emergency
doctor

δ = He decided to
let the patient back
home with the pre-
scription of stopping
the Plavix and main-
tained the Kardegic.

↘ Proc Ensuring a
good quality
of life for
this elderly
patient

Avoiding the
blood coag-
ulation by
stopping the
use of Plavix.

4 Attending
physician

γ = He would like
to perform invasive
treatment (endo-
scopic surgery in
order to assess the
level of severity the
subdural hematoma)
and perform a
surgery if this latter
is severe.

→ Proc ∧ ↗
Proc

Ensuring a
good quality
of life for
this elderly
patient

Assessing
the level of
severity of
the subdural
hematoma
and perform-
ing a surgery
if needed.

AI-AM/NetMed 2015 4th International Workshop on Artificial Intelligence and Assistive Medicine
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Graph of attacks. The graph of attacks (Fig. 2) is a set of nodes linked
between them by oriented arcs. It is used in the argumentation system theory
[13] to represent the interaction existing between arguments.

α,↗ Proc

β,↘ Proc

γ,→ Proc ∧ ↗ Proc

δ,↘ Proc

Fig. 2. Graph of attacks

Decision making process. The different extensions below are determined
according the definitions above applied to the graph of attacks Fig. 2.

– Determination of conflict-free sets : the conflict-free sets are : {∅}, {α},
{β}, {δ}, {γ}, {β, δ}.

– Determination of admissible extensions : the admissible extensions
identified are : ε1={∅}, ε2={β}, ε3={δ}, ε3={γ}, ε4={β, δ}.

– Determination of preferred extensions : According to the definition
above the preferred extensions that we can have are: ε3={γ} and ε4={β, δ}

So by the definition above (argument’s status) and under the preferred se-
mantics, the arguments β, γ and δ are credulously accepted. These arguments
are then returned to the requesting physician for final decision. This final de-
cision will be taken under some additional parameters. So by considering these

AI-AM/NetMed 2015 4th International Workshop on Artificial Intelligence and Assistive Medicine
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parameters, the requesting physicians can decide to perform non-invasive treat-
ment (↘ Proc) or invasive and medical technical treatments (→ Proc ∧ ↗ Proc
).

5 Discussions

The provided framework called argumentative logic based on Dung’s argumenta-
tion system guarantees the traceability on the reasoning in the decision making
process while permitting efficient collaboration between medical professionals.
Thus by the traceability, in case of litigation the responsibility of each medical
professional could be easily identified.

The use of Artificial Intelligence tool in the decision making process is taking
a big part in health domain generally and in telemedicine particularly. For exam-
ple the PANDORA system [8], used as learning tool in crisis environment (e.g.
health crisis) for decision makers with underlying Artificial Intelligence tools.
Comparing this one to our work, we can say that our proposal can also be used
as a learning tool since the accepted decisions are stored in a database [12] for
future acts of teleexpertise.

6 Conclusion

In this paper we proposed a methodological framework based on Artificial In-
telligence tools namely the Dung’s argumentation system [13] in order to aid
the medical professionals in their decision making process while ensuring the
reasoning traceability. This traceability will permit to identify the responsible of
medical errors in case of litigation [11].

In further work, we will implement our work to verify it feasibility. This
implementation will permit to the instantiation of the proposed argumentation
system in conceptual graphs in which we can represent rules and constraints.
Also given that CoGui software provides an API1 based on JAVA, it will be
possible to easily develop a kind of middleware to retrieve remotely medical
information to build the graphs of attacks in conceptual graph formalism.
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Abstract. Length of stay (LoS) prediction is considered an important research 

field in Healthcare Informatics as it can help to improve hospital bed and 

resource management. The health cost containment process carried out in 

Italian local healthcare systems makes this problem particularly challenging  in 

healthcare services management. 

In this work a novel unsupervised LoS prediction model is presented which 

performs better than other ones commonly used in this kind of problem. The 

developed model detects autonomously the subset of non-class attributes to be 

considered in these classification tasks, and the structure of the trained self-

organizing network can be analysed in order to extract the main factors leading 

to the overcoming of regional LoS threshold. 

Keywords: Business Intelligence in Health Care - LoS prediction - self 

organizing networks 

1 Introduction 

An accurate prediction of the length of stay (LoS) of recovered patients is 

considered a factor of strategic importance for the optimization of healthcare system 

resources [21,7]. This kind of information can be used to contain costs and eliminate 

waste by the reduction of hospital stays and readmission rates [4,15]. In Marche 

Region (Italy) the central maneuver of health cost containment led to an overall 

reorganization of healthcare system processes and to a heavy reduction in the number 

of hospital beds (and hospitals too). For this reason, the analysis of data on LoS 

becomes essential to effectively manage a hospital structure. Furthermore, the 

knowledge of the potential discharge date could improve also long term care activities 

or discharge activities planning [16]. This indeed can favor the continuity of care, a 

significant reduction of clinical risk together with the lowering of the related costs.  

11



For all the above mentioned reasons it is considered extremely important to choose 

the right tools and methodologies to improve the prediction of LoS. 

There has been a considerable effort in LoS prediction research to define the best 

solutions to cope with this problem. A first kind of methods is based on classic 

statistical algorithms such as t-test, one-way ANalysis Of VAriance (ANOVA) and 

multifactor regression [2]. 

A second kind of methods is based on AI techniques such as decision trees and 

artificial neural networks (ANN). ANN in particular have been successfully used in 

the context of postoperative phase of cardiac patients, or to identify patients at high 

risk of incur in prolonged intensive care [16]. Other ANN models have been used for 

LOS prediction in emergency rooms [20]. 

The best results have been obtained by the adoption of ensemble models and 

multilevel approaches making use of different clustering or categorization algorithms 

[9]. 

2 Methods 

We are not interested here in the development of a new ensemble model. More 

exactly we are not interested in a mere predictive model. Our goal is not just to 

choose a good ANN model in hospital LoS prediction, but we are looking for a model 

or a methodology capable of explaining the acquired knowledge. 

Most of learning techniques are oriented on a sort of structural representation of 

knowledge. This can be symbolic (e.g. acquired set of rules, decision trees etc.) or 

subsymbolic (e.g. associative networks, neural networks etc.). Subsymbolic models 

seem to reach the best results [17], but their structural representation need further 

analysis techniques in order to externalize the acquired knowledge. 

Subsymbolic models can be further subdivided in classification learning 

algorithms (as feed forward networks and back-propagation models [9] [17]), 

association learning algorithms (as the Apriori algorithm [1]) and clustering learning 

algorithms (as the self-organizing networks [10] [18]). 

In classification learning the system is trained to provide an output (a class) given a 

set of classified examples. For this reason, these algorithms are known in literature as 

"supervised". This kind of model is effective only if the correlation among the non-

class attributes and all the possible classes are known beforehand. This is not the case 

of a dynamic model like the LoS prediction model. Our work is based on the 

assumption that almost every year scientific and technological discoveries lead to an 

improvement of care and a consequent reduction of hospital stays. Sometimes new 

therapies or diagnostic techniques can even lead to an increase of hospital stay. So it 

could be very hard and tricky trying to establish a set of classified examples of 

hospital stay, especially when precise guidelines or care pathways have not been 

defined.  

In association learning there are not specified classes, the system just tries to find 

any interesting structure or correlation among data. The association rules can be used 

to predict every type of attribute, not just the class ones. Since we are interested in 
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LoS classes prediction, association learning models are not indicated for our problem. 

Association learning algorithms are probably more suited to implement expert 

systems capable to find correlation among clinical data and symptoms or to find 

complex symptomatologies. 

Clustering algorithms, like association algorithms, are "unsupervised" ones, 

meaning that there is not a set of classified examples that can be used to train the 

system. But clustering algorithms try to define autonomously a set of classes. If we 

choose LoS as class attribute, the system can extrapolate different clusters related to 

the class attribute. In this way users are not committed to provide training sets of 

selected LoS examples, and the system could help the experimenters to find out the 

possible reasons leading to the overcoming of a given LoS threshold. In this phase the 

presence of human experts can be avoided making this solution more interesting and 

easy to implement. 

Among the unsupervised algorithms, SOM have been effectively used in grouping 

data related to different lengths of treatments in emergency departments [22]. 

Nevertheless we think that SOM models are not particularly suited for LoS prediction. 

In this kind of unsupervised learning task there is not a clear correlation among the 

class attribute and the other ones. In other terms the exact topology of the input space 

is unknown. 

B. Fritzke in one of his works demonstrated that his Growing Neural Gas (GNG) 

model [5] is capable to identify exactly the local dimension of the input space. In 

other words on LoS prediction the GNG can find how many attributes in the defined 

input space are necessary to predict exactly the class attribute of hospital stay. 

As it will be explained in the following section we have obtained a higher accurate 

prediction by the use of GNG in comparison with other algorithms which are 

commonly used in this kind of problem, in particular the J48 [19] algorithm which is 

one of the best algorithm based on the decision tree paradigm. 

According to these assumptions we have choosen to use ZeroR, OneR, J48 and 

SOM as baseline approaches to compare with the GNG approach. 

The first tested algorithm was the ZeroR [19]. ZeroR algorithm provides as a 

prediction always the majority class (in case of a nominal class attribute) or the 

average (in case of a numeric class attribute). This is considered the most simple 

predictive algorithm that is used to define a threshold for the accuracy. If other 

algorithms perform worse than this, probably they have been badly configured or 

more simply they are not suited for the class of problem to be dealt with. 

The second tested algorithm was the OneR [19,8], which stands for "one rule". 

This method generates a decision tree with just one level. The training algorithm is 

quite simple. For each attribute a rule is created such that an attribute value is 

assigned to the most frequent class value correlated with it. For a numeric attribute a 

range of values is assigned with the most frequent class attribute, for a nominal 

attribute each value is assigned with the most frequent class attribute. Several rules 

are generated, but at last just one attribute is selected to make predictions, that is the 

one that produces the rules with the lowest error rate. Surprisingly this method has 

revealed a predictive power lower than few percentage points compared to other 

decision tree models. 
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The third tested algorithm was the J48 [19], which is the eighth version of C4.5 

[14], corresponding to the last version distributed as free within this family of 

algorithms. J48 is based on the "divide and conquer" algorithm and the decision tree 

is recursively generated. Each time the node with the highest information quantity is 

selected and a branch for each of its possible values is created. This subdivides the 

data set in several subsets, one for every value of the attribute. This process is 

repeated for each branch but if all the instances belong to the same attribute class 

value the growth of the branch stops. The final tree can be downsized and simplified 

by pre-pruning or post-pruning techniques. 

The fourth tested algorithm was the SOM [10]. A Self Organizing Map describes a 

mapping from a higher-dimensional input space to a lower-dimensional map space, 

typically a two-dimensional space like the one tested in this work. The training 

algorithm is designed to cause different parts of the network to respond similarly to 

certain input patterns. The training is based on competitive learning, meaning that for 

each input vector of the training set just a unit is selected as winner, that is the one 

whose weight vector is most similar to the input. The weights of the winner i and of 

the neurons i
*
 close to it in the SOM lattice are adjusted towards the input vector. The 

magnitude of the change decreases with time and with distance (within the lattice) 

from the winner according to the following update formula:  

 

∆𝒘𝑖 = (𝑡)(𝑖, 𝑖∗,(𝑡))(𝒙 − 𝒘𝑖) 
 

Where (t) varies linearly with time from start to end, (t) varies linearly with time 

from start to end, and  is a Gaussian function centered on the winner unit i that 

includes all the neighbor i
*
 units.  

The fifth tested algorithm was the GNG [5]. This algorithm is based on the 

Competitive Hebbian Learning (CHL) [11] and Neural Gas (NG) [12] algorithms. 

The former assumes an initial number of centers (units related to vectors having the 

same dimension of the input space) and successively inserts topological connections 

among them. For each input signal the two closest centers are connected by an edge. 

The other algorithm adapts the k nearest centers to each input which is being 

presented whereby k is decreasing from a large initial to a small final value. 

In GNG algorithm the network topology of centers is generated incrementally by 

CHL and has a dimensionality which depends on the input data and may vary locally. 

The NG algorithm is used to move the nearest unit and its direct topological 

neighbors to the input signal by fractions v and n respectively of the total distance. 

For each input signal presented in the training phase a new connection is established 

between the first nearest unit and the second nearest unit and the local error variables 

of these two units are decreased multiplying them with a constant . The age of all 

the edges connecting units are incremented by one and the edges with an age larger 

than a given threshold (max) are removed as well as isolated nodes. Finally all the 

local error variables are decreased multiplying them with a constant . If the number 

of the presented input signals is a multiple of a parameter  a new unit is inserted and 

connected to the two units characterized by the highest local error variable (computed 

as the squared distance between the input signal and the corresponding center). 
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3 Data-set Preprocessing Techniques 

We have considered as input data-set the hospital discharge summary forms 

regularly provided by our structures. These data have been provided by physicians 

through their electronic health records. Within these forms we were interested more in 

a subset of attributes which are the ones being filled at the admission of the patients. 

In particular we considered the following set of non-class attributes: recovery 

regimen, admission discipline, admission division, provenance, recovery type, 

trauma, hospital day care reason, hospital day care recovery type, main diagnosis, 

main intervention, complications, sex, age, marital status, qualification. We have 

chosen the hospital stay codified in a discretized form as class attribute. 

The recovery regimen can take two values which stand for day hospital and 

ordinary recovery. For the admission discipline and the admission division there are 

99 allowable values. There are only 9 values expected for the provenance: recovery 

without general practitioner suggestion, recovery with general practitioner suggestion, 

recovery programmed, transfer from a public structure, transfer from an accredited 

private structure, transfer from a not accredited private structure, transfer from 

another department or recovery regimen within the same institute, emergency medical 

service and other provenances. The recovery type can take 6 different values: 

recovery programmed, urgent hospitalization, mandatory medical treatment, recovery 

programmed with pre-hospitalization, voluntary hospitalization for medical treatment. 

The last value is used for not ordinary recoveries and for newborns. Trauma attribute 

codifies accidents, injuries and poisonings through 9 possible values: workplace 

accident, home accident, road accident, violence of others, self-harm or suicide 

attempt, animal or insect bite, sports accident, other type of accident or poisoning. 

This field is filled just in case of ordinary recovery. The hospital day care reason can 

be one of the following: day hospital, day surgery, day therapy, day rehabilitation 

while the hospital day care recovery type is codified in 3 values: not specified, first 

cycle for the specified diagnosis, following cycles for the specified diagnosis. The 

main diagnosis follows the international ICD9-CM coding system. Also the main 

intervention is based on the ICD9-CM system, but it considers just the first four digits 

of the code. Complications can take three values: without complications, not specified 

complications, with complications. Eight different age classes are expected: 0 years 

old, 1-4, 5-14, 15-44 male, 15-44 female, 45-64, 65-74, over 74. Six different marital 

status have been considered: celibate or unmarried, married, single separated, 

divorced, widower or widow, not specified. Six different qualifications are provided: 

no qualifications, elementary school license, middle or vocational school license, 

degree of professional qualification, baccalaureate, bachelor's degree. 

At last the class attribute is codified in five different classes: one day hospital stay, 

two day hospital stay, three days hospital stay, below regional threshold stay, over 

regional threshold stay. The actual regional threshold for the hospital stay has been 

fixed to 5 days. 

Weka 3.6.11 platform [19] has been used to launch Zero-R, One-R and J48 

algorithms which need a conversion of all the discretized values in a nominal form by 

the use of "NumericToNominal" filter. 
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We have made the assumption that technologies and processes of care have 

remained unchanged in 2013, and we have processed all the hospital discharge 

summary forms in the year. 

The data-set consisted of 274962 instances of hospital stay. In order to speed up 

the training phase of the chosen model we selected a significant sample of instances 

by the use of Weka "Re-sample" filter. As represented in figure 1, the "Re-sample" 

filter returned 1374 instances (corresponding to the 0.5% of the overall data-set) with 

the exact distribution of the original data-set. 

To improve the learning process of the chosen self-organizing networks (SOM and 

GNG) we adopted the methodology suggested by Kohonen [10]. The representation 

input vector x was formed as a concatenation of a symbol part representing the 

hospital stay of the instance and a context part composed by the other attributes. The 

symbol part xs and the context part xc=[xc1,…,xc15] formed a vectorial sum of two 

orthogonal components such that the norm of the second part predominated over the 

norm of the former:  

 

𝒙 = [

𝒙𝑠
𝒙𝑐1
…
𝒙𝑐15

] = [

𝒙𝑠
0
…
0

] + [

0
𝒙𝑐1
…
𝒙𝑐15

] 

 

In this way the symbols became encoded into a topological order (connection 

among neural units) reflecting their logical similarities. 

Both the symbol part and the context part were encoded in a binary format. 

Discrete variables having relatively few values were encoded using a one-hot code 

system. The main diagnosis and the main intervention attribute values were 

transformed in binary (base-2) representations. 

In the training phase both symbol and context part of input vectors were presented 

to the GNG model, while in the test phase just the context part was presented in order 

to predict the symbol part corresponding to the class attribute (LoS). Every time a test 

input vector was presented to the trained model, only a single unit of the self-

organizing network “fired” (the most activated one). The predicted value, among all 

the possible ones of the class attribute, was the one closest to the symbol part of the 

center (weight vector) associated to the winning node. 

4 Results 

The re-sampled data-set was subdivided in a 66% (n=907 cases) part used as 

training set where the input vectors where used for SOM and GNG models with both 

the symbol part and the context part and a 34% (n=467 cases) part used as test set to 

test the predictive accuracy of the model. 

The first three algorithms have been tested with the Weka default parameters and a 

10-fold cross validation.  

The output of ZeroR, OneR, J48 algorithms provided by Weka Explorer are 

represented in figures 1,2,3. Unexpectedly OneR performed better than the other two. 
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Fig. 1. ZeroR prediction accuracy 

 

 
Fig. 2. OneR prediction accuracy 
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Fig. 3. J48 Prediction accuracy 

 

For the SOM and GNG models we have developed two Java implementations of 

the algorithms. The re-sampled data-set was preprocessed as described in section 2 

obtaining two sets of 123-bit vectors for the training set and the test set.  

A 12x12 SOM was trained for 500 epochs with the following parameters:  start = 

1, end =0.1, start =0.5, end =0.005. In the test phase we obtained an accuracy of 

87,59%. 

Finally the GNG model was tested with the following parameters: 

vnmaxThe training continued until 

the main square error (that is the main of the local square error related to each unit, 

also called expected distortion error) dropped below the threshold of E=1 

(corresponding to 207 epochs e.g. presentations of the training set).

We have reached an expected distortion error of 0.99 in the training phase with a 

network constituted by 950 units. In the test phase we obtained an accuracy of 

96.36% which is considerably higher than the 64.56% accuracy of the OneR 

algorithm and the 87.59% of the SOM algorithm. 

5 Discussion 

The obtained results are indeed valuable for our local healthcare system allowing a 

good management of hospital beds. But we are interested in the extraction of the 

knowledge used by the model to predict so accurately the LoS.  
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Given the peculiar nature of GNG training algorithm we tried to use a clustering 

algorithm particularly suited to community-structured networks, that is networks 

where nodes are joined together in tightly knit groups connected by few edges [6]. We 

have used the JUNG API [13] for this kind of elaboration which was performed on a 

sub-net of the trained GNG network constituted by those units having the context part 

closer with the code of the over regional threshold stay. In other words we have 

selected the part of the trained network tied to the main criticality regarding the 

management of hospital beds. 

For each cluster we extracted a set of attribute values considering the closest ones 

to the symbolic part of the center (or weight vector) of the nodes belonging to the 

cluster. 

We have subsequently tagged the clusters by the use of the classic TF-IDF 

algorithm [3], considering all the extracted attributes. 

The algorithm of Girvan and Norman has found eight main clusters and the TF-

IDF algorithm assigned them seven tags which are related to the cases of 

hospitalization under general practitioner’s suggestion, suspicion of morbid condition 

in children, long stay hospitalization, obstetrics traumas, active muscoloskeletal 

exercises, children's cancer and other not well defined causes. 

The elaborated criticalities have been validated by a group of human experts 

belonging to the management area of our organization. The first one is particularly 

interesting for the dimension of the cluster. The cases of hospitalization under general 

practitioner’s suggestion could represent a widespread phenomenon of defensive 

medicine, where general practitioners prescribe unnecessary and inappropriate visits 

to their patients. 

This is only an attempt to extract valuable knowledge that surely require further 

research and a stricter scientific evidence. But the intent here is just to demonstrate 

how valuable knowledge could be extracted after the training phase with input data 

constituted by a symbol and a context part. Our final objective is to find a solution 

capable to give to our management sound and strong hints on healthcare system 

criticalities.  

6 Conclusions 

The processes of data mining and knowledge discovery don’t follow precise rules. 

There is not a model or a methodology capable to produce valuable results in every 

context of use. In the case of LoS prediction we have chosen a model which performs 

the so called “dimensionality reduction”. In other words it can find a low-dimensional 

space containing most of all input data. 

This choice was driven by the assumption that there is not a clear correlation 

among clinical or anagraphic data and the LoS. The extraction of a significant set of 

examples associating patterns of non-class attributes to the LoS class sometimes can 

be a very problematic task to be performed, especially in all those cases where there is 

a lack of guidelines and clinical pathways, or where the innovation in technologies or 

clinical practice leads to an ever-changing correlation between clinical data and LoS. 
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In these cases the model has to self-organize his structure in an unsupervised 

manner in order to classify training data to the best possible. Growing Neural Gas has 

indeed the potentialities to adapt effectively to the input space, but it has to be 

correctly trained by the use of preprocessing techniques. Binary data in general are 

better assimilated by self-organizing networks, so we turned to the use of one-hot 

codes for nominal attributes with a limited set of values and to the use of binary 

(base-2) conversion in case of nominal attributes with a wide set of possible values.  

Furthermore, we composed the input vector x as a concatenation of a symbol part 

representing the hospital stay of the instance and a context part composed by the other 

attributes taken from the hospital discharge summary forms regularly provided by our 

structures. 

In this way, as suggested by Kohonen, symbols became encoded into a topological 

order (connections among neural units) reflecting their logical similarities.  

The trained GNG performed better than other models (ZeroR, OneR, J48, SOM) 

reaching a prediction accuracy of 96.36%. This result proved the correctness of the 

choice of GNG model in LoS prediction tasks. 

Finally we tried to extract the knowledge used by the model to predict hospital 

stays. As underlined before, symbols are encoded into a topological structure, 

meaning that the corresponding units (i.e. the units which are activated at their 

presentation) are connected to the units corresponding to other factors causing to the 

same LoS. The training algorithm itself is designed in a way that leads to the 

emergency of a community-structure. This consideration suggested us the opportunity 

to use a clustering algorithm suited for this kind of topological structures. Afterward 

by the use of the classic TF-IDF algorithm the identified clusters were tagged in order 

to extract the main factors (described by non-class attribute values) causing the 

overcoming of the regional LoS threshold. 

Further experimentation is needed, but the first obtained results seem promising 

due to the fact that significant and verified knowledge has been extracted by the 

system. 
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Abstract. Decline in daily functioning usually involves the reduction and dis-
continuity in daily routines; entailing a considerable decrease of the quality of
life (QoL). This is especially relevant for people that need assistance, as for in-
stance elderly or disabled people and may also hide pathological (e.g., Alzheimer)
and/or mental (e.g., depression or melancholia) conditions. Thus, there is the need
to intelligent systems able to monitor users’ activities to detect emergencies, rec-
ognize activities, send notifications, and provide a summary of all the relevant
information. In this paper, we present a sensor-based telemonitoring system that
addresses all that issues. Its goal is twofold: (i) helping and supporting people
(e.g., elderly or disabled) at home; and (ii) giving a feedback to therapists, care-
givers, and relatives about the evolution of the status, behavior and habits of each
monitored user. Some features of the system have been evaluated with two health-
users in Barcelona and results show good performance. Finally, the system has
been adopted and installed in several end-users’ homes under the umbrella of the
projects SAAPHO and BackHome.

1 Introduction

In the literature, various studies and systems aimed at detecting and overwhelm-
ing the worsening in daily activities have been proposed. Several methods are
limited to measuring daily functioning using self-report such as with the modified
Katz ADL scale [13] or a more-objective measurement method as the Assessment
of Motor and Process Skills [5]. Recently, solutions have been proposed to unob-
trusively monitor activities of people that need assistance. In particular, sensor-
based approaches are normally used [7]. They rely on a conjunction of sensors,
each one devoted to monitor a specific status, a specific activity or activities re-
lated to a specific location. Binary sensors are currently the most adopted sensors
[11], even if they are prone to noise and errors [10]. Once all of the data have
been collected, intelligent solutions that incrementally and continuously analyze
the data to all the involved actors (i.e., therapists, caregivers, relatives, and end-
users themselves) are required. Moreover, it is then necessary to identify if the
person needs a form of assistance since an unusual activity has been recognized.
This requires the adoption of machine learning solutions to take into account the
environment, the performed activity and/or some physiological data [3]. Further-
more, once data have been analyzed, the system has to react and perform some
actions, accordingly. On the one hand, the user needs to be keep informed about
emergencies as soon as they happen and s/he has to be in contact with therapists
and caregivers to change habits and/or to perform some therapy. On the other side,
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monitoring systems are very important from the perspective of therapists, care-
givers, and relatives. In fact, those systems allow them to become aware of user
context by acquiring heterogeneous data coming from sensors and other sources.
In this paper, we present a sensor-based telemonitoring system aimed at detecting
emergencies, recognizing activities, sending notifications as well as collecting
current and past information in a summary. The goal of the proposed solution
is twofold. On the one hand, it is aimed at helping and supporting people (e.g.,
elderly or disabled) at home. On the other hand, it is devoted to constantly give a
feedback to therapists, caregivers, and relatives about the evolution of the status,
behavior and habits of each monitored user.
The rest of the paper is organized as follows. Section 2 presents the architecture
of the sensor-based solution as well as the intelligent monitoring system. Section
3 shows the evaluation performed to test the availability and reliability of the
proposed solution as well as the results coming from the adoption of the system
in two real scenarios. In Section 4, we conclude with the main results of this work
pointing out its future directions.

2 The Proposed Solution

2.1 The Sensor-based System

Advanced telemonitoring systems entail the composition and orchestration of
heterogeneous distributed technologies and services. In Figure 1, we sketch the
high-level architecture of the proposed system. As shown, its main components
are: home; healthcare center; middleware; and intelligent monitoring system.
The sensor-based system is able to monitor indoor activities by relying on a set
of home automation sensors and outdoor activities by using an activity tracker,
namely Moves1. Moreover, through environmental sensors, the system is able to
detect emergency situations.
At home, a set of sensors are installed. In particular, we use presence sensors (i.e.,
Everspring SP103), to identify the room where the user is located (one sensor for
each monitored room); a door sensor (i.e., Vision ZD 2012), to detect when the
user enters or exits the premises; electrical power meters and switches, to con-
trol leisure activities (e.g., television and pc); and pressure mats (i.e., bed and
seat sensors) to measure the time spent in bed (wheelchair). The system is also
composed of a network of environmental sensors that measures and monitors en-
vironmental variables like temperature, but also potentially dangerous events like
gas leak, fire, CO escape and presence of intruders. All the adopted sensors are
wireless z-wave. They send the retrieved data to a collector (based on Raspberry
pi). The Raspberry pi collects all the retrieved data and securely redirects them
to the cloud where they will be stored, processed, mined, and analyzed. We are
also using the user’s smartphone as a sensor by relying on Moves, an app for
smartphones able to recognize physical activities and movements by transporta-
tion. The user interacts with the overall system through a suitable interface aware
of end-user needs and preferences.
The middleware, which acts as a SaaS, is composed by a secure communication
and authentication module; API module to enable the collector transmitting all

1http://www.moves-app.com/
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Fig. 1. Main components of the sensor-based system focused on the intelligent monitoring.

the data from sensors to make them available to the activity monitoring module;
and further utilities such as load balancing and concurrency.
In order to cope with the data necessities of the actors of the system (i.e., thera-
pists, caregivers, relatives, and end-users themselves), an Intelligent Monitoring
(IM) system has been designed.
The healthcare center receives notifications, summaries, statistics, and general
information belonging to the users through a web application.

2.2 Intelligent Monitoring

IM aims to continuously analyze and mine the data through 4-dimensions: de-
tection of emergencies, activity recognition, event notifications, and summary
extraction. In order to cope with these objectives, the IM is composed of the fol-
lowing modules (see Figure 2): PP, the pre-processing module to encode the data
for the analysis; ED, the emergency detection module to notify, for instance, in
case of smoke and gas leakage; AR, the activity recognition module to identify
the location, position, activity- and sleeping-status of the user; EN, the event no-
tification module to inform when a new event has been detected; and SC, the
summary computation module to perform summaries from the data.

Pre-processing IM continuously and concurrently listens for new data. The
goal of PP is to pre-process the data iteratively sending a chunk c to ED accord-
ing to a sliding window approach. Starting from the overall data streaming, the
system sequentially considers a range of time |ti - ti+1| between a sensor measure
si at time ti and the subsequent measure si+1 at time ti+1. Thus, the output of PP
is a window c from ts to ta, where ts is the starting time of a given period (e.g.,
8:00 a.m.) and ta is the actual time. Thus, each chunk is composed of a sequence
of sensor measures s; where s is a triple < ID,v, t >, i.e., the sensor ID, its value
and the time in which a change in the sensor status is measured. Figure 3 shows
an example of a chunk composed by four sensors measures.
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Fig. 2. The flow of data and interactions among the modules in the proposed approach.

Fig. 3. Example of a chunk composed of four sensor measures.

Emergency Detection ED module aims to detect and inform about emergency
situations for the end-users and sensor-based system critical failures. Regarding
the critical situations for the end-users, simple rules are defined and implemented
to rise an emergency, when specific values appear on c (e.g.; gas sensor ID, smoke
sensor ID). Regarding the system failures, ED is able to detect when the end-
user’s home is disconnected from the middleware as well as a malfunctioning of
a sensor (e.g., low battery). The former is implemented by a keepalive mechanism
in the Raspberry pi. If no signals are received from the Raspberry pi after a given
threshold, an emergency is risen. The latter is implemented by using a multivari-
ate gaussian distributions of sensor measurements on c. If the corresponding total
number of measures is greater than a given threshold, an emergency is risen.
Each emergency is a pair < si, lεi > composed of the sensor measure si and the
corresponding label lεi that indicates the corresponding emergency (e.g., fire,
smoke). Once the ED finishes the analysis of c, the list of emergencies ε is sent
to the middleware, whereas c, filtered from the critical situations, is sent to AR.

Activity Recognition In the current implementation, the system is able to
recognize if the user is at home or away and if s/he is alone; the room in which
the user is (no-room in case s/he is away, transition in case s/he moving from
a room to another); the activity status (i.e., active or inactive); and the sleeping
status (i.e., awake or asleep).
To recognize if the user is at home or away and if s/he is alone, we implemented
a solution based on machine learning techniques [9]. The adopted solution is a
hierarchical classifier composed of two levels: the upper is aimed at recognizing
if the user is at home or not, whereas the lower is aimed at recognizing if the
user is really alone or if s/he received some visits. The goal of the classifier at the
upper level is to improve performance of the door sensor. In fact, it may happen
that the sensor registers a status change (from closed to open) even if the door
has not been opened. This implies that AR may register that the user is away
and, in the meanwhile, activities are detected at user’s home. On the contrary,
AR may register that the user is at home and, in the meanwhile, activities are not
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detected at user’s home. Thus, we first revise the data gathered by AR searching
for anomalies, i.e.: (1) the user is away and at home some events are detected and
(2) the user is at home and no events are detected. Then, we validate those data
by relying on Moves, installed and running on the user smartphone. Using Moves
as an “oracle”, we build a dataset in which each entry is labeled depending on the
fact that the door sensor was right (label “1”) or wrong (label “0”). The goal of
the classifier at the lower level is to identify whether the user is alone or not. The
input data of this classifier are those that has been filtered by the upper level, being
recognized as positives. To build this classifier, we rely on the novelty detection
approach [6] used when data has few positive cases (i.e., anomalies) compared
with the negatives (i.e., regular cases); in case of skewed data.
To measure the activity status, we rely on the home automation sensors. By de-
fault, we consider as “active” the status of the user when s/he is away (the cor-
responding positions are saved as “no-room”). On the contrary, when the user is
at home, AR recognizes s/he as “inactive” if the sensor measures at time ti that
user is in a given room r and the following sensor measure is given at time ti+1
and the user was in the same room, with ti+1− ti greater than a given threshold
θ . Otherwise, the system classified the user as “active”.
Finally, sleeping is currently detected by relying on the presence sensor located
in the bedroom and the pressure mat located below the mattress. In particular, we
consider the presence of the user in that room and no movements detection (i.e.,
the activity status is “inactive”) together with the pressure of the mattress.
Thus, the output of AR is a triple < ts, te, l >, where ts and te are the time in which
the activity has started and has finished, respectively, and l is a list of four labels
that indicates: the localization (i.e., home, away, or visits), the position (i.e., the
room, no-room, or transition), the activity status (i.e., active or inactive), and the
sleeping status (i.e., awake or asleep). To give an example, let us consider Figure
4 where the same chunk of Figure 3 has been processed by AR.

Fig. 4. Example of a chunk after the AR processing.

Event Notification By relying on a set of simple rules, EN is able to detect
events to be notified. Each event is defined by a pair < ti, l > corresponding to
the time ti in which the event happens together with a label l that indicates the
kind of event. In particular, we are interested in detecting the following kind
of events: leaving the home, going back to home, receiving a visit, remaining
alone after a visit, going to the bathroom, going out of the bathroom, going to
sleep, and awaking. Following the example, in Figure 3, an event is the pair <
2014−02−2410 : 31 : 55, going to the bathroom >.

Summary Computation Once all the activities and events have been classi-
fied, measures aimed at representing the summary of the user’s monitoring during
a given period are performed. In particular, two kinds of summary are provided:
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historical and actual. As for the historical summary, we decided to have a list of
the activities performed during (i) the morning (i.e., from 8 a.m. to 8 p.m.), (ii)
the night (i.e. from 8 p.m. to 8 a.m.), (iii) all the day, (iv) the week (from Monday
morning to Sunday night), as well as (v) the month. In particular, we monitor:
sleeping time; time spent outdoors; time spent indoors; time spent performing in-
door activities; time spent performing outdoor activities; number of times spent
in each room; and number of times that the user lefts the house. As for the actual
summary, we are interested in monitoring: the room in which the user is; if the
user is at home, or not; the number of times that s/he leaves the home; sleeping
time; activity time; and number of visits per room.
As a final remark, let us note that all emergencies, activities, notifications, and
summaries are stored in a database to be available to all the involved actors.

3 Evaluation and First Results

The proposed solution has been developed according to a user-centered design
approach in order to collect requirements and feedback from all the actors. For
evaluation purposes, the system has been installed in two healthy-user homes
in Barcelona. Moreover, the system has been used in the SAAPHO2 project to
monitor elderly people and in the BackHome3 project to monitor disabled people.

3.1 Evaluation

Before installing the system at real end-users home, its evaluation was undertaken
by a control group of healthy users. Two healthy users participated in the study
as a control group (1 female, M=32.5 years). The evaluation has been performed
from November 2nd, 2014 to December 21st, 2014 for a total of 34 days. The
performed testing activity was focused on evaluating some of the features of AR
and EN. In particular, we evaluated: the performance of the hierarchical approach
(AR) as well as the ability in recognizing the events of leaving the home and
receiving visits (EN); and the ability in recognizing the sleeping activity (AR).
As for the evaluation of the hierarchical approach, we first trained both classifiers.
To measure the performance, we compared the overall results with those obtained
by using a rule-based approach at each level of the hierarchy. Results are shown
in Table 1 and point out that the proposed approach outperforms the rule-based
one with a significant improvement. The interested reader may refer to [9] for
details about the adopted rules.
To evaluate in the ability of EN in correctly detecting the notification about the
number of times that the user leaves the home and the number of received visits,
we daily ask the users to answer to the questions: “How many times did you go
out from home?” and “How many times did you receive visits at your home?”.
Then, we compared the answers given by the user with the number of detection by
EN. Figure 5 sketches the results whereas, in Table 2, the first two columns show
the cosine similarity and the accuracy for each of the considered notifications. As
it can be noted, the system is able to recognize quite well the number of times the
user leaves the home as well as the number of visits that s/he receives, thanks to
the proposed hierarchical approach.

2http://www.saapho-aal.eu/
3http://www.backhome-fp7.eu/backhome/
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Table 1. Results of the overall hierarchical approach with respect to the rule-based one.

Rule-based Hierarchical Improv.
Accuracy 0.80 0.95 15%
Precision 0.68 0.94 26%
Recall 0.71 0.91 20%
F1 0.69 0.92 23%

Fig. 5. Comparisons between the results given by EN and those coming from the questionnaire
in detecting the number of times that the user leaves the home (on the left) and the number of
received visits (on the right).

Table 2. Cosine similarity and accuracy calculated between pipeline outputs and answers from
daily user questionnaire.

Leavings Visits Sleeping
Cosine similarity 0.9689 0.6172 0.8888
Accuracy 0.8823 0.8823 0.8529

As for the evaluation in the ability of AR to recognize the sleeping activity, we
daily ask the users to answer to the questions “What time did you stand up from
bed?” and “What time did you go to sleep?”. Then, we compared the answers
given by the user with the sleeping time calculated by AR. Figure 6 sketches the
results whereas, in Table 2, the last column shows the cosine similarity and the
accuracy. Let us note that, due to the fact that we are not relying on further infor-
mation such as luminosity to understand if the user is on the bed doing something
(e.g., reading) or if s/he is really sleeping and that the user in the questionnaire
is giving the time in which s/he turns-off the light, we are considering a bias of
5400 secs to consider the user as awake.

3.2 First Results

SAAPHO was an European R&D project aimed at integrating health, social,
and security services seamlessly in the same architecture [1]. The main objec-
tive of the sensor-based system was to control health parameters of elderly and
warn them in time in order to increase their personal independence. In the final
SAAPHO pilot, the composition of the trial formed by 6 participants from Spain
(N=3) and Slovenia (N=3). They were invited to use the system at their own home
for 2 months. The mean age of the 3 participants in Spain was 69.3 (SD: 9.9), 66-
72 years; whereas the mean age of the 3 participants in Slovenia was 65.7 (SD:
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Fig. 6. Comparisons between the results given by AR system and those coming from the ques-
tionnaire regarding the sleeping activity.

9.9), 60-74 years. Regarding the gender both in Spain and Slovenia, 66.6% of
the participants were women. Moreover, 100% of the participants had experience
using computers; 66.6% had experience in using tablet PC and all of them had
Internet at home. ED has been used in SAAPHO to detect fire and smoke, AR
and EN to detect events, such as inactivity and toileting4. This information has
been then sent to the end-user through a suitable interface in a smart portable de-
vice. In particular, it is possible to check on real time the status of environmental
sensors (e.g., temperature, humidity), to trigger an alarm (e.g., when smoke or
gas lekeage is detected), to view the list of the recent home notification events
(e.g., sharp increase/decrease of temperature, prolonged lack of movements) as
well as to configure the home sensors. In [8], some of the main qualitative results
of the SAAPHO final prototype after one-month testing have been presented. The
evaluation was performed following a systematic approach. Positive impressions
were collected from the participants using SAAPHO in real settings; the system
was very well accepted among the participants in both countries: it was consid-
ered easy to use; most of the offered services extremely useful; and respondent to
users’ needs.
BackHome is an European R&D project that focuses on restoring independence
to people that are affected by motor impairment due to acquired brain injury or
disease, with the overall aim of preventing exclusion [4]. In BackHome, informa-
tion gathered by the sensor-based system is used to provide context-awareness by
relying on ambient intelligence [2]. AR is currently used in BackHome to study
habits and to automatically assess QoL of people [12]. Figure 7 shows an exam-
ple of user habits recognized by AR. The BackHome system is currently running
in three end-user’s home in Belfast.

4 Conclusions and Future Work

In this paper, we presented a sensor-based system aimed at detecting emergencies,
recognizing activities, sending notification as well as collecting the information in
a summary. The goal of the implemented system was to help and support people
that need assistance and to constantly give a feedback to therapists, caregivers,
and relatives about the evolution of the status, behavior and habits of the corre-
sponding user. The system has been evaluated with 2 healthy-users to assess if

4SC has not been implemented due to the self-managing purpose of the project; i.e., no care-
givers were involved.
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Fig. 7. User habits recognized by AR in BackHome.

the user is at home or away, the number of times the user leaves the home; if s/he
receiving visits as well as the number of received visits; and the sleeping activ-
ity. Results show that the system performs well in all of these tasks. Moreover,
under the umbrella of SAAPHO and BackHome, the system has been installed
and tested in 6 homes of elderly people and in 3 homes of disabled people, re-
spectively. As a final remark, let us note that the intelligent monitoring system
could be extended by adding new functionalities into the modules depending on
the requirements of the corresponding use-case(s).
As for the future work, we are currently improving the sleeping activity recogni-
tion by relying also to a sensor that measures luminosity in addition to presence.
Moreover, we are setting up new tests to evaluate the ability of the system in
recognizing when the user is active or inactive, relying also on the information
coming from Moves. We are also planning to recognize more activities, such as
cooking and eating. Finally, in order to assess quality of life, we are interested in
measuring the sleep quality and in making some studies on the (virtual or physi-
cal) social interactions of the users.
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Abstract. Intelligent health monitoring systems of elderly have been around for 

several years now. Evaluation of sensor measurements and intelligent pro-

cessing algorithms has been performed mainly in lab settings, prohibiting the 

collection of datasets that reflect real behavior of seniors. As a result, when 

technology migrates to real-life settings, fails to achieve similar monitoring ac-

curacy. Our approach tackles this problem, by piloting the USEFIL intelligent 

monitoring system, to elderly people both at lab and home settings. Fifteen (15) 

seniors were recruited to follow a number of predefined activities in a free-form 

manner for 2 weeks. Five (5) of them were also recruited for piloting the system 

in their own homes for a period of two months. Statistical analysis of sensor ob-

servations and clinical assessment tools revealed the monitoring added value of 

the sensors in an ecological valid environment. In addition, trend analysis based 

on lab findings, showed – by means of a single case study- the potential of the 

system to continuously assess health indicators and detect health deterioration 

signs.  

Keywords: ecological validity; continuous in-home health assessment; active 

and healthy ageing; statistical process control; living lab; ambient assisted liv-

ing 

1 Introduction 

Ambient Assisted Living (AAL) systems have widely developed and evaluated to-

wards their capacity to monitor pathological patterns in elderly people, so to promote 

early risk identification, related to chronic diseases [1], [2]. However, most approach-

es followed have severe limitations in their prospect to be applied in real-life settings 

[3], since evaluation of algorithms is done either by recruiting young adults [4] or by 

strict lab experiments [3] or short-term trials at home with small amount of trial 

homes [5]. Our approach provides evaluation of the USEFIL intelligent monitoring 

system [6], both in an ecologically valid lab environment and at seniors’ residencies. 

Analysis of low level events, derived by sensors, are correlated to clinical assessment 
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batteries, providing evidence for the clinical added value of the USEFIL intelligent 

monitoring system. Contrary to existing work in the field [3], free-form activities 

have been introduced to alleviate strict execution of tasks, resulting to a free-form, 

ecological valid dataset. Long-term, trend analysis has been subsequently applied to 

low-level events that have been found statistical significantly correlated to clinical 

assessment tests. Statistical process control modeling [7] has allowed for retrospective 

visualization of seniors health patterns, while leaving at their own homes.   

2 Materials & Methods 

2.1 Lab pilots 

Lab pilots ran in Thessaloniki, in the Active & Healthy Aging Living Lab (AHA 

LL). There, a living room environment and a kitchen environment were set up in the 

same room. The initial layout of the AHA LL is visualized in Fig. 1. In order to look 

more realistic, AHA LL was equipped with home appliances and furniture so as to 

better resemble a senior’s home. There, the necessary technological infrastructure and 

the USEFIL hardware were installed.  

 

Fig. 1. AHA LL spaces & monitoring system unobtrusive set up 

The methodology that was followed towards the execution and evaluation of the trials 

at the lab was: i) recruitment, ii) baseline assessment & follow up, iii) protocol of 

directed activities definition, iv) trial execution – ongoing period of trials, v) end users 

feedback and vi) data analysis. 

As a first step seniors’ demographic data and medical history were obtained. Global 

cognitive functioning was assessed using the MMSE. Depression levels were evaluat-

ed with the PHQ-9 scale, Quality of life index was measured by SF12, ICECAP and 

ASCOT INT 4, whereas the ability of independent living was assessed by the Barthel 

index. Fullerton test was used to assess participant’s physical performance. After a 

two weeks period, participants were assessed to the previous assessment battery for 

follow up purposes. 
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The real testing and use of the environment took place for 8 days maximum for each 

participant. Each session lasted approximately 60-90 minutes. The participants were 

asked to conduct a series of specific tasks as independently as possible.  

 

 

Fig. 2. Recorded activities in AHA LL  

2.2 Home pilots 

Technical setup of the USEFIL system took place in five (5) seniors’ homes. USEFIL 

software and hardware was installed and setup a-priori at lab premises. Typical instal-

lation example is shown in Fig. 3. 

 

Fig. 3. USEFIL system setup at senior’s home 

Five (5) elderly, lone-living women aged 75,6±4,72 years and 14.8±6.57 years of 

education were recruited. Four out of five seniors (4/5) had memory problems, while 

Body Scale 
Kinect 

Smart TV 

WWU 

charger 
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two (2) of them had depressive symptomatology. All five seniors had participated in 

the lab pilots. So, recruitment took place after they had completed the testing of the 

system and were asked of their intention to use the USEFIL system at their own 

homes, in the realm of a focus group discussion. Participants, that declared interest, 

were explained about the purposes of the home study and upon acceptance, they 

signed an informed consent, declaring their voluntary participation. Seniors were 

examined by two (2) neuropsychologists at baseline, one-month follow up and at the 

end of the two-month period. Global cognitive functioning was assessed using the 

MMSE. Depression levels were evaluated with the PHQ-9 scale, Quality of life index 

was measured by SF12, ICECAP and ASCOT INT 4, whereas the ability of inde-

pendent living was assessed by the Barthel index. Fullerton test was used to assess 

participant’s physical performance. 

After, the initial training period neuropsychologists either visited in person seniors 

twice per week or they contacted them via telephone. Seniors were encouraged to 

perform a list of minimum optional daily tasks related to their interaction with 

USEFIL system’s devices and apps.  

3 Results 

3.1 Sensors vs Clinical assessment 

In order to evaluate the clinical added value of the USEFIL system, sensor meas-

urements (Low-Level Events) were correlated to the battery tests that were performed 

at the baseline and the follow up. In particular, correlation analyses were performed 

between the neuropsychological, physical test results and sensors’ observations. The 

correlation coefficient used was Pearson's r. The statistical significant findings of the 

analyses are shown in Fig. 4. PHQ results – which refer to the assessment (existence 

and severity) of the depressive symptomatology - were correlated either negative or 

positive to mobility or gait parameters as measured by sensors, e.g. StepCount (num-

ber of Steps per minute), WalkingSpeed (cm/sec), feetElevation (height of feet while 

walking in front of the Kinect) speech and facial expression characteristics, e.g. 

speech arousal, eyes’ blinking rate and facial skin color redness level. Most of the 

above findings are in line with medical literature [8][9][10]. SF12 mental component 

is a subjective feeling of a senior about his/her mental ability/ies. This subjective 

measure of quality of life was negatively correlated to feet elevation. However no 

data are available, supporting the fact that someone has increased levels of quality of 

life, while their feet elevation decreases. A statistically significant relationship was 

found between ICECAP (sum score) and walking speed (p=.046). This evidence is in 

line with previous studies [11], where walking speed is considered as a predictor of 

quality of life. Additionally, the item of ‘thinking about the future’ from ICECAP is 

related to speech arousal (p=.05), which means that participants who expressed wor-

ries and were anxious regarding the future, were more likely to have higher speech 

arousal scores, compared to those who felt more safe about the future. The variable of 

independence, measured by ICECAP too, is related to the sitting speed and the walk-

ing speed, which means that those who feel independent in their daily life, had a bet-

ter mobility status. Furthermore, ASCOT INT 4 scale, which also assess quality of 

life, was found to be positively related to speech arousal (p=.015), and negatively 
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related to sitting speed (p=.034). Although there are no data supporting this evidence, 

it is a quite important evidence to be studied in following studies.  Parameters of in-

dependent living, specifically, bowels control, toilet use and transfer activity, are sig-

nificantly related to sitting speed, while toilet use (p=.025) and transfer activity 

(p=.025) are correlated with number of steps. Chair stand test (measures lower body 

strength in terms of number of completed chair stands in 30 seconds) was negatively 

related to feet elevation, step count and sitting speed. Lower sitting speed time de-

notes better balance and lower body strength. Therefore more repetitions executed by 

participants show their good balance ability and lower body strength. 2-minute step 

test (measures seniors’ aerobic endurance and dynamic balance) was negatively relat-

ed to sitting speed and walking speed. The latter seems to be inconsistent and it needs 

more data to be confirmed. Finally, Foot up & go test (measures speed, agility and 

balance while moving) had statistical significant relationship to step count (p=.044), 

while it is negatively related to walking speed (p=.036). The latter was an unexpected 

result and needs to be studied with more participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Clinical Assessment vs Sensor Measurements correlation (1st line – Pearson 

correlation, 2nd line - significance) 
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3.2 Long-term follow up 

In order to demonstrate the monitoring capabilities of the USEFIL system within 

home settings, long-term trends relative to health parameters such as mobility, gait, 

emotion and cognition. Taking into account lab findings, i.e. correlations found 

among sensor observations and clinical assessment batteries, three time periods were 

recognized (baseline period, intermediate period and follow up period) and modeled 

as statistical processes with respect to sensor observations, calculating their mean and 

control limits.  Based on these control limits, days that do not lie within process con-

trol limits are candidate abnormal points.  

Analysis of long-term sensor observations is presented in one case study, which re-

fers to recognition of depressive symptoms’ deterioration.  

Participant #5.  
 

Participant #5 is 71 years old and lives alone. She presents with symptoms of de-

pression of which the most eminent are her lack of interest in activities and her fre-

quently expressed sadness. Her mood fluctuates throughout the day from happy and 

energetic to pretty sad and tired. Loneliness and bad quality of sleep are important 

factors of her symptoms of depression. Other important factors are her poor capability 

to concentrate on activities and her fear of having memory losses. Also her mobility is 

limited because of her arthritis. Her knees are a source of severe and persistent pain 

which also affects negatively her mood. 

Participant’s clinical assessment of depressive symptomatology is provided for all 

three assessment periods: baseline, 1-month interim and 2-months follow up. 

Table 1. Participant #5 depressive symptoms. Red cells indicate symptoms’ deterioration. 

 

PHQ-1 

(loss of 

interest) 

PHQ-2 

(depressive 

mood) 

PHQ-7 (con-

centration defi-

cits) 

Baseline 

27/1/2015 
1 2 3 

Interim 

27/2/2015 
3 2 1 

Follow up 

17/3/2015 
3 3 3 

Based on correlations that were found in the AHA LL data between sensors and di-

agnostic tools, concentration deficits severity is inversely proportional to number of 

steps, walking speed and speech arousal. Therefore, all three parameters are modeled 

and their statistical properties – the three parameters are modeled as statistical pro-

cesses as described in [7] - are calculated for time periods where state deterioration is 

annotated according to PHQ-9 (c.f. Table 1). The whole monitoring period is divided 

in three time periods: the baseline period, - which accounts for a 2-week period, start-

ing from the date that the baseline assessment was performed -, the interim period,- 

which accounts for the period starting right after the end of the baseline period and 

ending at the time of the interim visit and assessment was performed-, and the follow 
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up period, which accounts for the period starting right after the end of the interim 

period and ending at the time that follow up assessment is performed, at the end of the 

trial period. 

Connected line represents the parameter’s value fluctuation during the reference peri-

od, while the dots represent parameter’s values during the period under investigation. 

Horizontal lines represent the statistical properties of the reference period, namely the 

mean process value, the lower and upper control limits (green, yellow and red color 

lines respectively). Values out of reference period’s control limits may be considered 

as “abnormal” values and need to be interpreted according to the given context. 

 

Fig. 5. Participant #5 step count modelling. Horizontal axis represents day number. Vertical 

axis represents the total number of steps per day.  

 

Fig. 6. Participant #5 walking speed modelling. Horizontal axis represents day number. Verti-

cal axis represents daily average walking speed measured in meters/second (m/s).  
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Fig. 7. Participant #5 speech arousal modelling. Horizontal axis represents day number. Verti-

cal axis represents daily average speech arousal measured in abstract units (1-10).  

All three figures show a decreasing trend in number of total steps per day, daily aver-

age walking speed and speech arousal. The decreasing trend is expressed in terms of 

follow up period days that lie below the lower control limit (yellow horizontal line) of 

the interim period. However, this is more apparent to the modeling representation of 

the mobility and gait parameters, rather than in the speech modeling. Concentration 

deficits of the participant seemed to got worsen according to the ground truth provid-

ed by the neuropsychological assessment. Therefore, there exists a correlation with 

the decreasing trends of the three parameters and the seniors’ cognitive status.  

4 Discussion 

Three clinical scenarios were piloted in the AHA LL: monitoring of emotional dis-

turbances, cognitive decline and functional ability. According to sensor analysis, qual-

ity of life and depressive symptomatology are related to mobility quantified as walk-

ing speed, step count and feet elevation. Through this kind of identification specific 

directions can be followed for both early diagnosis and accurate treatment. Elderly 

people quality of life is strongly related to physical performance [12], and therefore, 

there is a need to early detect any decreasing trends.  

Robust measurement of health parameters in ecologically valid environments is a 

very important step, towards integration of intelligent monitoring systems in seniors’ 

homes. We need to stress the fact that the protocol of activities that was used in the 

lab pilots, led seniors to behave in a free-form manner, being themselves and not hav-

ing the belief and the anxiety they were assessed or monitored. This fact strengthens 

the results that have been obtained and is obviously along the lines of the overall sys-

tem objectives which call for unobtrusiveness. 

Pilots at home focused on the potential of using the technology developed within 

the project in real-life settings and provide evidence regarding its efficacy as a daily 
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assistive tool for the elderly. Long term monitoring of seniors, based on lab evidence 

allow for deriving safer conclusions about the intelligent monitoring aspects of the 

monitoring system. Trend analysis presented preliminary evidence on decreasing 

health patterns, as sensor measurements were tested against changes annotated by 

neuropsychologists with clinical assessment tests. However, a two month monitoring 

period is considered as a limitation of our study, since it does not allow to check for 

slow varying disease trends, such as cognitive decline. This way the reason that just 

one case study was presented, since no significant health changes were observed to 

the rest of the participants, during the two-month period. However, since equipment is 

already in place in a limited number of homes, we plan -for those individuals that will 

accept the system to continue to be in their homes, - to allow for its existence for an-

other six months or 1 year period. In this way, more validated data may be gathered 

and multiple follow up measurements may be obtained. The latter will provide useful 

insights not only for the health and quality of life of the involved individuals but for 

the entire health care system per se. 
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Abstract. Visualizing the human brain using diffusion tensor magnetic reso-
nance imaging (DT-MRI) data has been a key technique to study the structure of
the human brain and its connectivity. The challenge is to find a method that best
exploits the data and serves as a model for visualization and connectivity analy-
sis. This paper presents a novel method of visualizing the human brain structure
with a minimum spanning tree using DT-MRI data. The human brain is modeled
as a graph in which each vertex represents a brain voxel and each edge represents
connectivity between a pair of neighboring brain voxels, resulting in each vertex
having 26 weighted connections with adjacent voxels. The weight of an edge is
calculated from the DT-MRI data with a higher weight assigned to an edge that
are more likely aligned with nerve fiber trajectories. The method then grows a
minimum spanning tree representing paths of the nerve fiber bundles. The resul-
tant minimum spanning tree is consistent with the known anatomical appearances
of the human brain. As the minimum spanning tree representing the human brain
is a global deterministic model with well-defined connectivity between voxels
in the brain, it can serve not only as a deterministic visualization of the human
brain but also as an instrument for connectivity analysis. In addition, this method
overcomes several problems present in previous methods such as tracking ter-
mination in traditional fiber tracking and meaningless streamlines in stochastic
connectivity mapping.

Keywords: Diffusion tensor magnetic resonance imaging, brain visualization,
minimum spanning tree

1 Introduction

The human brain, the center of the human nervous system, is a complex organ. In a vol-
ume less than 1.5 liters lie billions of nerve cells constituting an extremely complicated
network [1, 11, 15, 20, 26, 12, 41–43, 18]. Myelinated nerve fibers, connecting parts of
the human brain, extend to the length of more than one hundred thousand kilometers
[29, 44]. Although it has been known for a long time that the human brain was the cen-
ter of the human nervous system, it was not possible to study the human brain in vivo
(in a living person) until the arrival of recent medical imaging technologies such as
radiography and computed tomography [33, 34]. However, the clinical technique con-
sidered to be the breakthrough in human brain visualization is diffusion tensor mag-
netic resonance imaging (DT-MRI), the first non-invasive in vivo imaging technique
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that measures water diffusion in living tissues [27]. Exploiting the fact that water dif-
fusion has different characteristics in different types of brain tissues, DT-MRI allows
differentiating between different areas of the human brain and visualizing them [5, 6,
38]. It has constantly been proven to be an effective technique. Several neurological
disorders such as multiple sclerosis, stroke, and trauma are characterized by changes
in brain tissues or connections, which can be diagnosed by DT-MRI [14, 32, 48, 49, 47,
51]. In addition, connectivity analysis based on DT-MRI data reveals correlation be-
tween anatomical characteristics of the human brain and quantities such as intelligence
quotient [16, 17, 28].

As DT-MRI provides raw information on water diffusion at centers of voxels on the
three-dimensional human brain grid, one way to visualize the DT-MRI dataset is vector
field visualization. Glyphs, graphical icons, can be used to represent diffusion tensors
[19, 23, 24, 37]. In order to convey diffusion information, glyphs are parameterized by
diffusion quantities computed from the diffusion tensors they represent such as mean
diffusivity, dominant direction of diffusion, and anisotropy. While glyph-based tech-
niques are capable of visualizing the underlying information of the human brain, they
have some certain limitations. Glyphs on the three-dimensional grid can be too visu-
ally dense. Visual occlusion may prevent the grids from conveying information. More
importantly, glyphs primarily show the local information of the individual voxels. The
structure of the human brain, on the contrary, is characterized by connections between
parts of the brain. That means, while diffusion glyph visualization techniques allow us
to explore the diffusion activities in the human brain, they are not a precise tool for
visualizing the human brain structure.

Since the beginning of the twenty-first century, the dominant method for visualiz-
ing the human brain structure utilizing DT-MRI data has been fiber tracking [8, 13, 30,
39, 45]. The term fiber tracking generally refers to a collection of methods that exploit
the DT-MRI data to reconstruct the fiber tracts in the human brain. Based on the neu-
roanatomical fact that water diffuses faster along the myelinated fiber tracts, fiber track-
ing follows the dominant eigenvector of the diffusion tensor field in the DT-MRI dataset
to generate curves representing the fiber tracts. The curves are then visualized to show
the structure of the human brain. The explained fiber tracking algorithm, commonly
referred to as traditional fiber tracking, is a forward leap in human brain visualization
as it reveals information on structures and connectivity of the human brain. Neverthe-
less, traditional fiber tracking suffer from some problems. To begin with, traditional
fiber tracking is not tolerant of noise and errors. DT-MRI data are normally discrete,
coarsely-sampled, noisy, and voxel-averaged. Consequently, the dominant eigenvector,
the eigenvector that the fiber tracking algorithm assumes to represent the fiber trajecto-
ries, may be incorrectly rendered. Following only the dominant eigenvector may result
in errors or false fiber tract trajectories. In addition, traditional fiber tracking typically
grows fibers iteratively. In each iteration, the algorithm adds to the end of an existing
polyline a short line segment, the direction of which is determined by values locally
calculated from the DT-MRI data. Thousands of iterations are usually performed to
draw one polyline representing a fiber tract trajectory. Although the noise and errors
are arguably negligible, the nature of traditional fiber tracking results in accumulation
of those noise and errors to a significant amount, which may considerably set the fiber
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tract trajectories off course. Second, traditional fiber tracking neglects the nature of
fiber tract trajectories that fiber tracts neither are uniformly distributed nor behave like
an orderly collection of curves; at some points fiber tracts cross, kiss, branch, or merge.
Traditional fiber tracking is not capable of completely reconstructing fiber tracts with
such characteristics. In addition, while studying the structure of the human brain aims at
exploring its connectivity, traditional fiber tracking provides only implied connections
as its output is simply a set of polylines drawn in three-dimensional space. One may im-
ply that two regions of the human brain are interconnected if, for instance, there exists a
polyline whose two endpoints are in the regions. Implying connections and connectivity
analysis become more difficult if the resultant fiber tracts appear to be torn or rough.

The other notable method for visualizing the human brain structure using DT-MRI
data is connectivity mapping [10, 25, 35, 36]. Unlike traditional fiber tracking, which
follows the dominant eigenvector in the DT-MRI data to generate fiber tracts, connec-
tivity mapping iteratively generates random paths using a probabilistic model such as
Bayesian formulation from a given seeding voxel. After a number of iterations, the
probability that the seeding voxel and any other voxel of interest are connected is equal
to the number of random paths passing through that voxel divided by the number of
random paths generated. Even though this method gives brain connectivity informa-
tion, it has some drawbacks. First, the fiber tract trajectories in the human brain are not
reconstructed; the output of this method is the probability values that pairs of voxels
are connected. Even though the visualizations somehow resemble the fiber tracts, they
should not be interpreted as such due to the fact that the trajectories are not well-defined.
Second, the method is probabilistic, which means that it does not always produce the
same results. It requires a certain amount of iterations in order to justify the results,
which make the method a computational workload.

In this paper, we propose a deterministic method of visualizing the human brain
structure with a minimum spanning tree utilizing DT-MRI data. Our method offers a
concretely-defined model that conforms with the nature of the human brain, provides
ascertained brain connectivity, and mitigates the problem of local noise and errors. In
terms of visualization, our method provides a brain connectivity map that displays the
fiber structures and can serve as a tool for connectivity analysis.

2 Methodology

In this chapter, we explain our method and its rationality.

2.1 Problem formulation

Given the nature of the human brain that it is a network that has evolved to have ad-
equate connections, we propose that an equivalent formulation of reconstructing the
fiber tract structures in the human brain in terms of graph theory is finding a minimum
spanning tree in a given undirected weighted graph.
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2.2 Human brain modeling

The human brain is modeled as an undirected weighted graph. Each brain voxel in a
three-dimensional DT-MRI grid is mapped to a vertex of the graph. Each edge of the
graph connects a pair of vertices that represent a pair of neighboring voxels. Each voxel
not at the boundary has 26 neighboring voxels as a consequence. This results in a graph
representing the human brain. Then, the weight is calculated and assigned to the edges
in the manner that the lower weight represents higher likeliness that two voxels are
connected by fiber tract. The definition of the weight is explained in the next section.

2.3 Defining weight of the edges

The weight of the edges implies the likeliness that the two neighboring voxels are con-
nected by fiber tract. The more likely the two neighboring voxels are connected, the
less the weight of the edge. The following weight calculation formula is based on the
neurological assumption that fiber tracts are smooth and do not make sharp turns [21].
In the similar manner, fiber tracking algorithms are aborted when the fiber tracts have
high curvature [8, 22, 31]. The following paragraphs discuss the measures that are taken
into account when calculating the weight of the edges.

Figure 1 shows the situation where a fiber tract passes through two neighboring
voxels of interest. Each square represents a brain voxel and each arrow represents an
eigenvector. Based on the neurological assumption that fiber tracts are smooth and do
not make sharp turns, the vector difference of the eigenvector of the first voxel that
closest aligns with the fiber tract trajectory and the eigenvector of the second voxel
that closest aligns with the fiber tract trajectory is likely the smallest compared to other
vector differences of any other eigenvector of other neighboring voxels of the voxels
of interest through which the fiber tract does not pass and any other eigenvector of the
voxels of interest. Therefore, we propose that the vector difference of eigenvectors of
two neighboring voxels is a valid measure for calculating the weight of the edge.

However, the aforementioned vector difference alone is not sufficient to comprise
the weight of the edges as the relative position of one voxel with respect to the other
voxel must also be taken into account. Figure 2 and Figure 3 illustrate two situations
where two selected eigenvectors have equal direction and magnitude but are positioned
differently. In Figure 2, the selected eigenvector of the first voxel points directly to the
center of the second voxel. This exhibits the case that it is most likely that two voxels
are connected by fiber tract. In Figure 3, on the contrary, two selected eigenvectors are
parallel. This exhibits the case that the fiber tracts passing through the two voxels, if any,
are most like parallel and, consequently, the two voxels are most likely not connected.
To incorporate the relative position of one voxel with respect to the other voxel into the
weight of the edge connecting two voxels, we propose two other measures: 1) the vector
difference of the selected eigenvector of the first voxel of interest and the normalized
vector that has the same direction as the vector from the center of the first voxel of
interest to the center of the second voxel of interest and 2) the vector difference of the
selected eigenvector of the second voxel of interest and the normalized vector that has
the same direction as the vector from the center of the first voxel of interest to the center
of the second voxel of interest.
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One problem with the eigenvectors from the DT-MRI dataset is that they point along
only one direction of the fiber tract while, in fact, at any point on the fiber tract the fiber
tract extends to both directions [7]. Therefore, the direction of the eigenvectors must be
reversed if necessary to agree with the direction from the first voxel of interest to the
second voxel of interest, or the vector differences will not faithfully reflect the likeliness
of the connection between the two voxels. Figure 4 and Figure 5 illustrate the explained
situation. To determine whether the sign of the eigenvectors must be reversed, the dot
product of two vectors are calculated before calculating the vector difference. If the dot
product is positive, which means the direction of the vectors agree with the direction
from the first voxel of interest to the second voxel of interest, preserve the direction of
the vectors. If the dot product is negative, the direction of one of the vectors is reversed
before calculating the vector difference.

Having calculated all three measures, we propose that the weight of the edges equals
the sum of the magnitudes of the three vector differences, as shown in Figure 6. By
taking every voxel as the first voxel of interest and every of its neighboring voxels as
the second voxel of interest, one can calculate the weight of all the edges and complete
the construction of the undirected weighted graph representing the human brain.

2.4 Selecting the eigenvectors

In the previous section, we propose the formula for calculating the weight of the edges
by using eigenvectors in each diffusion tensor. The question is, however, which eigen-
vector truly represents the fiber tract in the voxel? In other words, which eigenvector
should be selected for calculating the weight of the edges? Several fiber tracking al-
gorithms assume that only the dominant eigenvector of the diffusion tensor is parallel
to and hence reflects the fiber tract alignment [8, 13, 30, 31, 39, 45]. Nevertheless, this
assumption ignores two important facts. First, the fiber tract structure of the human
brain is complicated. The fiber tracts neither are uniformly distributed nor behave like
a collection of curves; at some points fiber tracts cross, kiss, branch, or merge [2, 4,
46]. Under those circumstances, two or three eigenvectors reflect fiber tract alignment.
Second, noise and errors in the DT-MRI dataset may result in distorted eigenvalues and
eigenvectors. In case two largest or all three eigenvectors differ by a small amount,
the noise and errors may render the wrong dominant eigenvector [3, 7]. Based on the
assumption, fiber tract extracting may fail to flow the true fiber tract trajectory.

To tackle the abovementioned problem, we use the anisotropy measures proposed
by Westin et al. in [50], i.e. linearity, planarity, and sphericity, to classify the diffu-
sion tensors into three types: linear, planar, and spherical. Given the linearity threshold,
denoted by Tl where 0 ≤ Tl ≤ 1 ,and the planarity threshold, denoted by Tp where
0 ≤ Tp ≤ 1, we classify diffusion tensors into linear diffusion tensors, planar diffusion
tensors, and spherical diffusion tensors using the following definitions: 1) a diffusion
tensor is linear if its linearity exceeds the linearity threshold, i.e. Cl > Tl; 2) if a dif-
fusion tensor is not linear, it is planar if its planarity exceeds the planarity threshold,
i.e. Cp > Tp; and 3) if a diffusion tensor is neither linear or planar, it is spherical. The
linearity threshold and planarity threshold are adjustable and should be appropriately
assigned to faithfully reflect the nature of the human brain.
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After the diffusion tensors are classified, for each diffusion tensor the eigenvector
is selected and the weight of a certain edge is calculated by the following rules: 1) if
the diffusion tensor is linear, select the dominant eigenvector and use it to calculate
the weight of the edges; 2) if the diffusion tensor is planar, select two eigenvectors
associated with two largest eigenvalues, use them to calculate the weight of the edge,
resulting in two weight values, and assign the lower weight value to the edge; and 3) if
the diffusion tensor is spherical, select all three eigenvectors, use them to calculate the
weight of the edge, resulting in three weight values, and assign the lowest weight value
to the edge.

2.5 Growing a DT-MRI minimum spanning tree

After all the edges have been assigned weight, use Prim’s algorithm [40] to grow the
minimum spanning tree.

2.6 Visualizing the DT-MRI minimum spanning tree

After the DT-MRI minimum spanning tree has been grown, visualize the edges of the
tree using the average of fractional anisotropy, proposed by Basser and Pierpaoli in
[9], of two adjacent vertices as a parameter of the opacity of the edge connecting the
vertices.

3 Implementation and results

3.1 Implementation

The DT-MRI analysis, graph construction, and minimum spanning tree growing de-
scribed in the previous section were implemented with in-house software written in
C++. The DT-MRI data and minimum spanning tree visualization program was writ-
ten using OpenGL and the Fast Light Toolkit (FLTK). The method was applied to a
256×256×53 human brain DT-MRI dataset containing 548166 valid diffusion tensors.
We constructed several graphs based on various combinations of linearity and planarity
threshold values and in those graphs we grew minimum spanning trees by seeding them
at voxels in several recognizable white matter structures.

3.2 Results

Figure 7 shows the minimum spanning tree seeded in the right internal capsule and
comprised of 4000 nodes. The DT-MRI graph in which the minimum spanning tree
was grown was constructed using the linearity threshold value of 0.15 and the planarity
threshold value of 0.05. The minimum spanning tree represents the structure of the right
internal capsule, the fiber bundle that connects the cerebral cortex and the subcortical
structures. The minimum spanning tree displays the fanning and funneling of the sheet
of fibers, which are consistent with the known anatomy of the internal capsule.
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Figure 8 shows the minimum spanning tree seeded in the fiber bundle connecting
the parietal lobe and the occipital lobe in the left cerebral hemisphere and comprised
of 4500 nodes. The DT-MRI graph in which the minimum spanning tree was grown
was constructed using the linearity threshold value of 0.15 and the planarity threshold
value of 0.05. The minimum spanning tree represents the structure of the fiber bundle
connecting the parietal lobe and the occipital lobe in the left cerebral hemisphere, suc-
cessfully segregating the fiber bundle from the surrounding structures of the cerebrum.
A part of the minimum spanning tree penetrates the cerebellum.

For comparison, Figure 9 shows the fiber tract trajectories computed from the same
DT-MRI dataset using the technique explained in [8]. The fiber tracking stopped when
fractional anisotropy became less than 0.35.

4 Conclusion

In this paper, we have presented a novel method for analyzing a DT-MRI dataset and
visualizing the human brain using a minimum spanning tree. The minimum spanning
tree has proven to be an effective tool for representing the human brain structure as it
is a global deterministic model with well-defined connectivity. The minimum spanning
tree acts as a connectivity map that shows the human brain fiber tract structures and
facilitates global connectivity analysis.
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Abstract. In recent years the number of ICT-based solutions for the
Ambient/Active Assisted Living (AAL) has grown continuously. Such
technologies need to be validated before being used on a large scale to
help people to live independently and longer in their preferred environ-
ment. However, the testing of ICT solutions to manage smart homes
requires huge resources, since the tests need to be conducted for a long
time, with real human inhabitants, taking into account different kind
of impairments and different economical conditions. In this paper, we
present the use of a 3D simulator for the AAL: as a use case, we describe
how the simulator can be used to interact with a real mobile applica-
tion to manage a smart home, using the app to control a “virtual smart
home”.

Key words: Mobile Application, Ambient Assisted Living, Active As-
sisted Living, Virtual Environment, Smart Home

1 Introduction

Over the years a growing number of ICT-based solutions has been proposed to
address the main objective of the Ambient Assisted Living (AAL): to extend
the time people can live in their home independently. Researchers, companies
and end-user organizations are focusing on building smart homes, by equipping
patients’ home with sensor and actuator networks. The term “smart home”
defines a dwelling equipped with technology to monitor its inhabitants and to
ensure their independence and good health [1]. Smart homes ease daily life,
by increasing user comfort, and provide healthcare facilities to generate health
reports and to guarantee emergency support [2].

Unfortunately, the testing of software systems to control smart homes and
to process data requires enormous resources in terms of time, work and money,
since tests need to be conducted:
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– with real human inhabitants,
– in different environmental situations,
– taking into account different kinds of impairments,
– under different economical capabilities and conditions.

In order to speed up the development and testing of ICT technologies and
tools for the AAL, we propose the use of a virtual environment, i.e. a 3D simu-
lator that provides interfaces to virtual sensors and actuators; such a simulator
could allow to perform the testing of software solutions for the AAL; ideally, the
tested software systems could be migrated in a transparent way to a real smart
home at the end of the tests.

1.1 Paper Contribution

We present a mobile application to manage a smart home and we describe how
it can interact with a virtual environment, using the AAL simulator outlined
in [3]: we developed a virtual smart home in a robotics simulator, controlling it
through the real mobile application. Using a simulator has two main advantages:

– Speeding up the implementation of software prototypes;
– the transparent migration of the tested software from the simulator to the

“real world”.

In facts, the real mobile application communicates with the simulated environ-
ment (receiving values from sensors and sending commands to the actuators) by
means of TCP/IP sockets, allowing the decoupling of the software development
from the hardware development. Thus, the mobile application could be migrated
in a real environment if the real sensors have the same interface of the simulated
ones and are able to communicate via the TCP/IP protocol.

1.2 Paper Structure

The remainder of the paper is as follows: section 2 reports related works on
AAL mobile applications and other approaches to the use of virtual environments
within the AAL domain. Section 3 describes the implemented mobile application
and shows the interaction with our proof-of-concept simulator. Finally, section 4
draws the conclusions of this work and highlights future works.

2 Related Works

The increasing success of mobile devices has relevant effects even in the health-
care and assistance sector: entire surveys are dedicated to mobile-based based
assistive technologies and mobile devices are crucial in the trend toward more
personalized care [4]. The availability of mobile devices is pushing researchers
to develop methodologies and software to support remote monitoring by gen-
eral practitioners [5] and to ease the use of tele-rehabilitation systems [6] by
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end-users, without the direct intervention of formal caregivers. In [7], authors
developed an agent platform that runs on Android devices to monitor patient
with chronic diseases, by defining alerting rules. Indeed, smartphones are hand-
held computers that can act as information filters and providers, processing data
about the patient’s activities and health status from body area networks to the
healthcare facilities [8]. In [9] a mobile application is used within a framework
to assess the quality of life of people. Moreover, smartphones can be used on
board of AAL robots: they can be the brain of a mobile robot, using the camera
and computer vision algorithms to track the patient or being a remote control
to send commands to the robots [10, 11].

Despite the potential of ICT applications in the AAL, many difficulties en-
cumber the testing of software systems in real home environments. Kormanyos
and Pataki [12] identify two ways of collecting data to test activity recognition
algorithms:

– by building an ad-hoc home and forcing a patient to live there for weeks;

– by re-furnishing the homes of the assisted people.

Of course, such tasks require many resources; moreover, to collect data, the
system developers should directly follow patients (living with them) or patients
themselves should record their activities: the normal flow of actions is influenced.
Thus, authors propose a model to represent human behaviours in a simulated
environment in order to generate data for activity recognition algorithms. By
providing distinct models for the human behaviours, the environment and the
sensor networks, authors implemented a tool able to generate textual logs about
variables such as bed pressure and unwashed dishes in the sink; the tool can also
simulate different kinds of humans. Even in [13], authors remark that generating
test data for algorithms to recognize Activities of Daily Living (ADL) can be a
cumbersome and slow task. Thus, they propose to use game engine features, as
the collision mechanisms typical of physics engines, to simulate data gathered
by motion sensors; authors also show that the simulated data are comparable to
data from a real scenario.

Beyond simulation for testing purposes, virtual environments are used in the
design of AAL platforms: Van’t Klooster et al. [14] propose the use of Interactive
Scenario Visualization to clarify system requirements through the stakeholders’
feedbacks, by means of 3D models. The tool presented in [15] allows usability
engineers to define the workflow of a simulation and to visualize the simulation
in a 3D environment, in order to validate AAL systems.

3 A real mobile application in a simulated environment

Similarly to what happens in the robotics field, in which several simulation
environments are available, we want to test IT systems for the AAL in a 3D
virtual environment that provides APIs to the interfaces of sensors and actuators
available in the market; this approach allows:
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– to speed up the development of software systems, by decoupling hardware
from software; in facts, real tests can result in the need to modify or even
redesign a component. With the simulator this process is faster and real tests
can be conducted in more advanced phases;

– to easily migrate software systems from the simulator to the real world.
This can be an advantage for both the development of a system and its
maintenance (as the migration can be also in the opposite direction);

– to execute tests in an economically sustainable way.

The addition of the 3D feature plays an important role to allow interactions,
as those typical of AAL applications. Moreover it allows designers and developers
to interact on the fly with the simulation environment, giving them the chance
to generate unexpected events or move objects during the execution. In the
following subsections we highlight: the mobile application implemented to ease
the control of a smart home (3.1), the tools used to develop the simulator (3.2),
the interaction between the mobile application on a real smartphone and the
simulator (3.3).

3.1 Mobile Application

The mobile application allows to manage a smart home. Thus, a smartphone
becomes a real remote control, equipped with sensors, that interacts with the
home environment of the assisted person: through the smartphone interface, the
assisted person can manually control lights, doors, windows, temperature and
more.

Figure 1 shows some screenshots of the pages of the mobile application. The
first one (Figure 1a) is the main page: it allows the access to all the pages for the
interaction with the listed controls. We designed the Graphical User Interface
(GUI) to be user friendly, with minimal graphics and large icons, taking into
account visually impaired or disabled patients.

The stylized light bulb controls the lights of the environment (Figure 1c).
Figure 2 shows an example of interaction: one can turn the light on in a room
by touching the icon that corresponds to that room. The interface provides an
immediate feedback of the status of the lights in the home: a yellow background
of the icon of a light indicates that it is turned on. The ambient light sensor allows
to automatically detect the lighting and to turn the light on if needed: this kind
of behaviour is present when the slider, in the light interface, is activated. The
sensor can be used even to turn the flashlight on in case of unexpected blackout.

Automatic doors and windows can be controlled through the respective styl-
ized icons (Figure 1b-d). Even in this case (Figure 1d) there is an immediate
feedback of the status of the home: if the background of an icon is blue, the
correspondent window is open.

Through the thermometer icon, the assisted person can set the desired tem-
perature inside the home: intuitively, the blue and red icons decrease and increase
the preferred value (Figure 1e).
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(a) Home page (b) Doors control (c) Lights control (d) Windows control

(e) Thermostat (f) Emergency calls (g) Safe number call (h) Voice commands

Fig. 1: Different pages of the mobile application.

In the SOS page (Figure 1f), the patient can quickly send emergency or
familiar calls; in the second case (Figure 1g) either a normal call or a skype call
can be selected.

One of the most important features, specifically addressed to visually im-
paired patients, is represented by the icon with the stylized microphone (Fig-
ure 1h): it allows to use the smartphone speech recognition system to send voice
commands to the home. In facts, we mapped all the commands available in the
interface, adding also the possibility to open/close all the windows or turn the
light on/off with a single command.

3.2 Simulation tools

For the simulation of the virtual environment we used different softwares. To
represent the home environment we used Sweet Home 3D3, a free interior design
application to draw the plan of a house and to arrange the furniture in a 3D

3 http://www.sweethome3d.com

AI-AM/NetMed 2015 4th International Workshop on Artificial Intelligence and Assistive Medicine

57



Fig. 2: Example of interaction between the mobile application and the simulator.

model. It allows to easily create and export in Blender4 models of domestic
environments, in which the different sensors and actuators can be placed.

To implement our simulation, we used Morse5, the Modular Robots Open
Simulation Engine. It is an open-source robotics simulator based on the Blender
game engine. The architecture is based on components able to simulate sensors,
actuators and robots; its structure is flexible, allowing to specify a level of ab-
straction of the simulation according to the needs, and modular because it is able
to interact with any middleware used in the robotics field, without imposing a
standard to which others must adapt.

Within the 3D home environment, we represented the patient with an avatar
on a wheelchair equipped with sensors as described in the next subsection.

3.3 Interactions with the virtual environment

The virtual domestic environment can be manually controlled by a user through
the mobile application: the communication between the simulation in Morse and
the mobile application on a real smartphone uses TCP/IP sockets. This allows
to simulate a real world scenario where the domestic Wi-Fi network can be used
to take advantage, anywhere in the environment, of all the services offered by the
application and the smart home. Each actuator and each sensor are associated
to a thread in order to send commands and retrieve values.

For an accurate interaction some sensors need to be simulated. For example,
the possibility to adjust the ambient temperature is essential in order to ensure
the maximum comfort within the house. The simulated temperature sensor em-
ulates a thermometer, measuring the temperature with respect to the distance

4 http://www.blender.org/
5 http://www.openrobots.org/wiki/morse/
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from heat sources. It defines a default temperature throughout the scenario,
which is affected by local heat sources. The temperature rises exponentially
when the distance between the sensor and the heat source decreases. Its equa-
tion is given by:

temperature = DefaulTemperature+
∑
s FireTemperature(s)∗e(−α∗distance(s))

We placed the temperature sensor on the wheelchair of the patient, in order
to ensure the possibility to control the perceived temperature at any given point
using a digital thermometer. One of the functionalities of the mobile application
is to control the thermometer, and thus we modeled this kind of interaction.

In addition, we simulated motion sensors; beyond complex applications for
activity detection and recognition, they are essential even in simple tasks, such as
turning on certain lights (entrance, rooms, etc.) only when it is actually needed;
similar checks can be applied also to the climate system. Since in Morse there
are no motion sensors as those described, we simulated it using a SICK sensor,
made available by the software. It is a laser scanner which works by generating
a series of rays in predefined directions, and by using the collision system of
the physics engine to detect whether any active object is found within a certain
distance from the origin of the sensor. We used the simulated motion sensors
to localize the assisted person inside the home. They were placed in strategic
points of the house to try to get through each of them the maximum possible
coverage.

Beside the simulated sensors, we used the sensor available on the smartphone,
transforming it in a real remote control. The available sensors include:

– ambient light sensor;
– accelerometer, gyroscope and GPS;
– microphone.

The ambient light sensor is able to detect changes in light: hence, we used it
to automatically activate the lights in the room, inside the virtual environment,
where the avatar of the assisted person is located; in case of emergency as a
blackout, it can activate the flashlight of the camera. The accelerometer, gyro-
scope and GPS can be used for fall detection, indoor and outdoor localization of
the patient’s wheelchair and accidental situation. Finally, through the use of the
microphone and speech recognition on the smartphone operating system, voice
commands can be sent to the system that manages the house.

4 Conclusions

In this paper, we described the interaction between a mobile application to man-
age a smart home, running on a real smartphone, and a virtual home environ-
ment, implemented within the Morse robotics simulator6. The developed mobile

6 the video of the simulation is available on youtube:
http://www.youtube.com/watch?v=zXEpShRNGuo
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software should be easily migrated in real environments, since the interaction
with the simulator is based on TCP/IP sockets: the only requirement is that
the simulated sensors should provide the same interface as the sensors available
in the market (being able to operate in a TCP/IP network). More in general,
the used simulator is intended to develop and test also intelligent systems, able
to manage a smart home and execute plan to ensure the safety of the assisted
person, as described in [16], where the same robotics simulator is used.

Of course, more qualitative and quantitative tests on the simulator are needed.
The objective of future work could be the design and development of a simula-
tor specifically dedicated to the AAL: it would be an effective means to develop
and test the proposed AAL solutions, simulating the interfaces to real sensors
and actuators, and representing human behaviours through virtual avatars. In
our vision, such a simulator should allow AAL researchers and organizations to
cooperate in enabling people to live in their preferred environment as long as
possible.
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