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Abstract. Visualizing the human brain using diffusion tensor magnetic reso-
nance imaging (DT-MRI) data has been a key technique to study the structure of
the human brain and its connectivity. The challenge is to find a method that best
exploits the data and serves as a model for visualization and connectivity analy-
sis. This paper presents a novel method of visualizing the human brain structure
with a minimum spanning tree using DT-MRI data. The human brain is modeled
as a graph in which each vertex represents a brain voxel and each edge represents
connectivity between a pair of neighboring brain voxels, resulting in each vertex
having 26 weighted connections with adjacent voxels. The weight of an edge is
calculated from the DT-MRI data with a higher weight assigned to an edge that
are more likely aligned with nerve fiber trajectories. The method then grows a
minimum spanning tree representing paths of the nerve fiber bundles. The resul-
tant minimum spanning tree is consistent with the known anatomical appearances
of the human brain. As the minimum spanning tree representing the human brain
is a global deterministic model with well-defined connectivity between voxels
in the brain, it can serve not only as a deterministic visualization of the human
brain but also as an instrument for connectivity analysis. In addition, this method
overcomes several problems present in previous methods such as tracking ter-
mination in traditional fiber tracking and meaningless streamlines in stochastic
connectivity mapping.
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1 Introduction

The human brain, the center of the human nervous system, is a complex organ. In a vol-
ume less than 1.5 liters lie billions of nerve cells constituting an extremely complicated
network [1, 11, 15, 20, 26, 12, 41–43, 18]. Myelinated nerve fibers, connecting parts of
the human brain, extend to the length of more than one hundred thousand kilometers
[29, 44]. Although it has been known for a long time that the human brain was the cen-
ter of the human nervous system, it was not possible to study the human brain in vivo
(in a living person) until the arrival of recent medical imaging technologies such as
radiography and computed tomography [33, 34]. However, the clinical technique con-
sidered to be the breakthrough in human brain visualization is diffusion tensor mag-
netic resonance imaging (DT-MRI), the first non-invasive in vivo imaging technique
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that measures water diffusion in living tissues [27]. Exploiting the fact that water dif-
fusion has different characteristics in different types of brain tissues, DT-MRI allows
differentiating between different areas of the human brain and visualizing them [5, 6,
38]. It has constantly been proven to be an effective technique. Several neurological
disorders such as multiple sclerosis, stroke, and trauma are characterized by changes
in brain tissues or connections, which can be diagnosed by DT-MRI [14, 32, 48, 49, 47,
51]. In addition, connectivity analysis based on DT-MRI data reveals correlation be-
tween anatomical characteristics of the human brain and quantities such as intelligence
quotient [16, 17, 28].

As DT-MRI provides raw information on water diffusion at centers of voxels on the
three-dimensional human brain grid, one way to visualize the DT-MRI dataset is vector
field visualization. Glyphs, graphical icons, can be used to represent diffusion tensors
[19, 23, 24, 37]. In order to convey diffusion information, glyphs are parameterized by
diffusion quantities computed from the diffusion tensors they represent such as mean
diffusivity, dominant direction of diffusion, and anisotropy. While glyph-based tech-
niques are capable of visualizing the underlying information of the human brain, they
have some certain limitations. Glyphs on the three-dimensional grid can be too visu-
ally dense. Visual occlusion may prevent the grids from conveying information. More
importantly, glyphs primarily show the local information of the individual voxels. The
structure of the human brain, on the contrary, is characterized by connections between
parts of the brain. That means, while diffusion glyph visualization techniques allow us
to explore the diffusion activities in the human brain, they are not a precise tool for
visualizing the human brain structure.

Since the beginning of the twenty-first century, the dominant method for visualiz-
ing the human brain structure utilizing DT-MRI data has been fiber tracking [8, 13, 30,
39, 45]. The term fiber tracking generally refers to a collection of methods that exploit
the DT-MRI data to reconstruct the fiber tracts in the human brain. Based on the neu-
roanatomical fact that water diffuses faster along the myelinated fiber tracts, fiber track-
ing follows the dominant eigenvector of the diffusion tensor field in the DT-MRI dataset
to generate curves representing the fiber tracts. The curves are then visualized to show
the structure of the human brain. The explained fiber tracking algorithm, commonly
referred to as traditional fiber tracking, is a forward leap in human brain visualization
as it reveals information on structures and connectivity of the human brain. Neverthe-
less, traditional fiber tracking suffer from some problems. To begin with, traditional
fiber tracking is not tolerant of noise and errors. DT-MRI data are normally discrete,
coarsely-sampled, noisy, and voxel-averaged. Consequently, the dominant eigenvector,
the eigenvector that the fiber tracking algorithm assumes to represent the fiber trajecto-
ries, may be incorrectly rendered. Following only the dominant eigenvector may result
in errors or false fiber tract trajectories. In addition, traditional fiber tracking typically
grows fibers iteratively. In each iteration, the algorithm adds to the end of an existing
polyline a short line segment, the direction of which is determined by values locally
calculated from the DT-MRI data. Thousands of iterations are usually performed to
draw one polyline representing a fiber tract trajectory. Although the noise and errors
are arguably negligible, the nature of traditional fiber tracking results in accumulation
of those noise and errors to a significant amount, which may considerably set the fiber
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tract trajectories off course. Second, traditional fiber tracking neglects the nature of
fiber tract trajectories that fiber tracts neither are uniformly distributed nor behave like
an orderly collection of curves; at some points fiber tracts cross, kiss, branch, or merge.
Traditional fiber tracking is not capable of completely reconstructing fiber tracts with
such characteristics. In addition, while studying the structure of the human brain aims at
exploring its connectivity, traditional fiber tracking provides only implied connections
as its output is simply a set of polylines drawn in three-dimensional space. One may im-
ply that two regions of the human brain are interconnected if, for instance, there exists a
polyline whose two endpoints are in the regions. Implying connections and connectivity
analysis become more difficult if the resultant fiber tracts appear to be torn or rough.

The other notable method for visualizing the human brain structure using DT-MRI
data is connectivity mapping [10, 25, 35, 36]. Unlike traditional fiber tracking, which
follows the dominant eigenvector in the DT-MRI data to generate fiber tracts, connec-
tivity mapping iteratively generates random paths using a probabilistic model such as
Bayesian formulation from a given seeding voxel. After a number of iterations, the
probability that the seeding voxel and any other voxel of interest are connected is equal
to the number of random paths passing through that voxel divided by the number of
random paths generated. Even though this method gives brain connectivity informa-
tion, it has some drawbacks. First, the fiber tract trajectories in the human brain are not
reconstructed; the output of this method is the probability values that pairs of voxels
are connected. Even though the visualizations somehow resemble the fiber tracts, they
should not be interpreted as such due to the fact that the trajectories are not well-defined.
Second, the method is probabilistic, which means that it does not always produce the
same results. It requires a certain amount of iterations in order to justify the results,
which make the method a computational workload.

In this paper, we propose a deterministic method of visualizing the human brain
structure with a minimum spanning tree utilizing DT-MRI data. Our method offers a
concretely-defined model that conforms with the nature of the human brain, provides
ascertained brain connectivity, and mitigates the problem of local noise and errors. In
terms of visualization, our method provides a brain connectivity map that displays the
fiber structures and can serve as a tool for connectivity analysis.

2 Methodology

In this chapter, we explain our method and its rationality.

2.1 Problem formulation

Given the nature of the human brain that it is a network that has evolved to have ad-
equate connections, we propose that an equivalent formulation of reconstructing the
fiber tract structures in the human brain in terms of graph theory is finding a minimum
spanning tree in a given undirected weighted graph.
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2.2 Human brain modeling

The human brain is modeled as an undirected weighted graph. Each brain voxel in a
three-dimensional DT-MRI grid is mapped to a vertex of the graph. Each edge of the
graph connects a pair of vertices that represent a pair of neighboring voxels. Each voxel
not at the boundary has 26 neighboring voxels as a consequence. This results in a graph
representing the human brain. Then, the weight is calculated and assigned to the edges
in the manner that the lower weight represents higher likeliness that two voxels are
connected by fiber tract. The definition of the weight is explained in the next section.

2.3 Defining weight of the edges

The weight of the edges implies the likeliness that the two neighboring voxels are con-
nected by fiber tract. The more likely the two neighboring voxels are connected, the
less the weight of the edge. The following weight calculation formula is based on the
neurological assumption that fiber tracts are smooth and do not make sharp turns [21].
In the similar manner, fiber tracking algorithms are aborted when the fiber tracts have
high curvature [8, 22, 31]. The following paragraphs discuss the measures that are taken
into account when calculating the weight of the edges.

Figure 1 shows the situation where a fiber tract passes through two neighboring
voxels of interest. Each square represents a brain voxel and each arrow represents an
eigenvector. Based on the neurological assumption that fiber tracts are smooth and do
not make sharp turns, the vector difference of the eigenvector of the first voxel that
closest aligns with the fiber tract trajectory and the eigenvector of the second voxel
that closest aligns with the fiber tract trajectory is likely the smallest compared to other
vector differences of any other eigenvector of other neighboring voxels of the voxels
of interest through which the fiber tract does not pass and any other eigenvector of the
voxels of interest. Therefore, we propose that the vector difference of eigenvectors of
two neighboring voxels is a valid measure for calculating the weight of the edge.

However, the aforementioned vector difference alone is not sufficient to comprise
the weight of the edges as the relative position of one voxel with respect to the other
voxel must also be taken into account. Figure 2 and Figure 3 illustrate two situations
where two selected eigenvectors have equal direction and magnitude but are positioned
differently. In Figure 2, the selected eigenvector of the first voxel points directly to the
center of the second voxel. This exhibits the case that it is most likely that two voxels
are connected by fiber tract. In Figure 3, on the contrary, two selected eigenvectors are
parallel. This exhibits the case that the fiber tracts passing through the two voxels, if any,
are most like parallel and, consequently, the two voxels are most likely not connected.
To incorporate the relative position of one voxel with respect to the other voxel into the
weight of the edge connecting two voxels, we propose two other measures: 1) the vector
difference of the selected eigenvector of the first voxel of interest and the normalized
vector that has the same direction as the vector from the center of the first voxel of
interest to the center of the second voxel of interest and 2) the vector difference of the
selected eigenvector of the second voxel of interest and the normalized vector that has
the same direction as the vector from the center of the first voxel of interest to the center
of the second voxel of interest.
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One problem with the eigenvectors from the DT-MRI dataset is that they point along
only one direction of the fiber tract while, in fact, at any point on the fiber tract the fiber
tract extends to both directions [7]. Therefore, the direction of the eigenvectors must be
reversed if necessary to agree with the direction from the first voxel of interest to the
second voxel of interest, or the vector differences will not faithfully reflect the likeliness
of the connection between the two voxels. Figure 4 and Figure 5 illustrate the explained
situation. To determine whether the sign of the eigenvectors must be reversed, the dot
product of two vectors are calculated before calculating the vector difference. If the dot
product is positive, which means the direction of the vectors agree with the direction
from the first voxel of interest to the second voxel of interest, preserve the direction of
the vectors. If the dot product is negative, the direction of one of the vectors is reversed
before calculating the vector difference.

Having calculated all three measures, we propose that the weight of the edges equals
the sum of the magnitudes of the three vector differences, as shown in Figure 6. By
taking every voxel as the first voxel of interest and every of its neighboring voxels as
the second voxel of interest, one can calculate the weight of all the edges and complete
the construction of the undirected weighted graph representing the human brain.

2.4 Selecting the eigenvectors

In the previous section, we propose the formula for calculating the weight of the edges
by using eigenvectors in each diffusion tensor. The question is, however, which eigen-
vector truly represents the fiber tract in the voxel? In other words, which eigenvector
should be selected for calculating the weight of the edges? Several fiber tracking al-
gorithms assume that only the dominant eigenvector of the diffusion tensor is parallel
to and hence reflects the fiber tract alignment [8, 13, 30, 31, 39, 45]. Nevertheless, this
assumption ignores two important facts. First, the fiber tract structure of the human
brain is complicated. The fiber tracts neither are uniformly distributed nor behave like
a collection of curves; at some points fiber tracts cross, kiss, branch, or merge [2, 4,
46]. Under those circumstances, two or three eigenvectors reflect fiber tract alignment.
Second, noise and errors in the DT-MRI dataset may result in distorted eigenvalues and
eigenvectors. In case two largest or all three eigenvectors differ by a small amount,
the noise and errors may render the wrong dominant eigenvector [3, 7]. Based on the
assumption, fiber tract extracting may fail to flow the true fiber tract trajectory.

To tackle the abovementioned problem, we use the anisotropy measures proposed
by Westin et al. in [50], i.e. linearity, planarity, and sphericity, to classify the diffu-
sion tensors into three types: linear, planar, and spherical. Given the linearity threshold,
denoted by Tl where 0 ≤ Tl ≤ 1 ,and the planarity threshold, denoted by Tp where
0 ≤ Tp ≤ 1, we classify diffusion tensors into linear diffusion tensors, planar diffusion
tensors, and spherical diffusion tensors using the following definitions: 1) a diffusion
tensor is linear if its linearity exceeds the linearity threshold, i.e. Cl > Tl; 2) if a dif-
fusion tensor is not linear, it is planar if its planarity exceeds the planarity threshold,
i.e. Cp > Tp; and 3) if a diffusion tensor is neither linear or planar, it is spherical. The
linearity threshold and planarity threshold are adjustable and should be appropriately
assigned to faithfully reflect the nature of the human brain.
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After the diffusion tensors are classified, for each diffusion tensor the eigenvector
is selected and the weight of a certain edge is calculated by the following rules: 1) if
the diffusion tensor is linear, select the dominant eigenvector and use it to calculate
the weight of the edges; 2) if the diffusion tensor is planar, select two eigenvectors
associated with two largest eigenvalues, use them to calculate the weight of the edge,
resulting in two weight values, and assign the lower weight value to the edge; and 3) if
the diffusion tensor is spherical, select all three eigenvectors, use them to calculate the
weight of the edge, resulting in three weight values, and assign the lowest weight value
to the edge.

2.5 Growing a DT-MRI minimum spanning tree

After all the edges have been assigned weight, use Prim’s algorithm [40] to grow the
minimum spanning tree.

2.6 Visualizing the DT-MRI minimum spanning tree

After the DT-MRI minimum spanning tree has been grown, visualize the edges of the
tree using the average of fractional anisotropy, proposed by Basser and Pierpaoli in
[9], of two adjacent vertices as a parameter of the opacity of the edge connecting the
vertices.

3 Implementation and results

3.1 Implementation

The DT-MRI analysis, graph construction, and minimum spanning tree growing de-
scribed in the previous section were implemented with in-house software written in
C++. The DT-MRI data and minimum spanning tree visualization program was writ-
ten using OpenGL and the Fast Light Toolkit (FLTK). The method was applied to a
256×256×53 human brain DT-MRI dataset containing 548166 valid diffusion tensors.
We constructed several graphs based on various combinations of linearity and planarity
threshold values and in those graphs we grew minimum spanning trees by seeding them
at voxels in several recognizable white matter structures.

3.2 Results

Figure 7 shows the minimum spanning tree seeded in the right internal capsule and
comprised of 4000 nodes. The DT-MRI graph in which the minimum spanning tree
was grown was constructed using the linearity threshold value of 0.15 and the planarity
threshold value of 0.05. The minimum spanning tree represents the structure of the right
internal capsule, the fiber bundle that connects the cerebral cortex and the subcortical
structures. The minimum spanning tree displays the fanning and funneling of the sheet
of fibers, which are consistent with the known anatomy of the internal capsule.
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Figure 8 shows the minimum spanning tree seeded in the fiber bundle connecting
the parietal lobe and the occipital lobe in the left cerebral hemisphere and comprised
of 4500 nodes. The DT-MRI graph in which the minimum spanning tree was grown
was constructed using the linearity threshold value of 0.15 and the planarity threshold
value of 0.05. The minimum spanning tree represents the structure of the fiber bundle
connecting the parietal lobe and the occipital lobe in the left cerebral hemisphere, suc-
cessfully segregating the fiber bundle from the surrounding structures of the cerebrum.
A part of the minimum spanning tree penetrates the cerebellum.

For comparison, Figure 9 shows the fiber tract trajectories computed from the same
DT-MRI dataset using the technique explained in [8]. The fiber tracking stopped when
fractional anisotropy became less than 0.35.

4 Conclusion

In this paper, we have presented a novel method for analyzing a DT-MRI dataset and
visualizing the human brain using a minimum spanning tree. The minimum spanning
tree has proven to be an effective tool for representing the human brain structure as it
is a global deterministic model with well-defined connectivity. The minimum spanning
tree acts as a connectivity map that shows the human brain fiber tract structures and
facilitates global connectivity analysis.
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