Small-Scale Peer-to-Peer Publish/Subscribe

Vinod Muthusamy' and Hans-Arno Jacobsen'*
Middleware Systems Research Group
TDepartment of Electrical and Computer Engineering
*Department of Computer Science
University of Toronto
{vinod,jacobsen } @eecg.toronto.edu

Abstract

The scalability of publish/subscribe (pub/sub) systems
and distributed hash tables (DHTs) have been extensively
studied in the literature. However, less well-known are
properties of the pub/sub model and DHTs that make them
suitable for small networks. This paper articulates these
benefits, and evaluates the performance of a DHT-based
pub/sub implementation in small-scale networks. We find
that a fundamental assumption of DHT-based data manage-
ment applications is violated in small networks, and this
makes the pub/sub implementation exhibit poor load bal-
ance under certain workloads. This work illustrates that
data management applications that scale in large networks
may not scale in small networks.

1 Introduction

The publish/subscribe (pub/sub) [7, 6] model, with
proven scalability and decoupling properties, is well suited
to large-scale Internet applications that require selective
data dissemination. There has been much research into both
centralized pub/sub matching algorithms [7, 23] and dis-
tributed pub/sub routing protocols [2, 1]. Distributed hash
tables (DHTSs) [21, 19] have emerged as a routing substrate
for large-scale dynamic networks. The large-scale benefits
of pub/sub systems and DHTs have led to several imple-
mentations of DHT-based pub/sub systems [22, 3, 18, 8].
These implementations address a challenging problem since
the queries, or subscriptions, that need to be managed by a
pub/sub system do not fit naturally over the DHT interface.
The difficulty lies in the fact that DHTs provide exact match
lookup semantics, while content-based subscriptions may
specify a range of interest. The first contribution of this pa-
per is the design of a content-based pub/sub algorithm over
a DHT interface.

The large-scale benefits of pub/sub and DHTs are well
understood. However, less well-known are the properties
of these systems that make them suitable for small net-
works. For example, the loose coupling of entities in the
pub/sub model encourages a reusable software architecture,
and DHTs are ideal to operate with error-prone, cheap, com-
modity hardware affordable in small networks.

It can be argued that in small systems, centralized ar-
chitectures are sufficient, and may perform better than
distributed protocols with their associated overhead costs.
However, deploying a small-scale network based on proto-
cols that scale to large networks allows the system to grow
over time (simply by adding more machines to the network)
without requiring changes to the architecture or protocols.

The small-scale benefits of pub/sub are somewhat artic-
ulated with Service Oriented Architectures [13, 4], but the
small-scale advantages of DHTs are rarely considered. As
another contribution of this paper, we identify the small-
scale benefits of pub/sub and DHTs, and we evaluate the
performance of our DHT-based pub/sub system in small
networks, to determine if the proven large-scale perfor-
mance benefits of DHTs and pub/sub systems apply in small
networks.

After a quick background on the pub/sub model and
DHT networks in Section 2, Section 3 articulates the prop-
erties of these systems that are advantageous in small-scale
networks. In Section 4, the distributed pub/sub matching
algorithm is developed, and Section 5 evaluates the algo-
rithm. Section 6 describes some related work, and Section 7
completes the paper with some concluding remarks and dis-
cussion of future work.

2 Background

In order to keep the paper self-contained, this section
provides a brief background on the pub/sub model and P2P
networks.

2.1 Publish/Subscribe

Pub/Sub is a data dissemination model with three en-
tities: the data producer, or publisher, sends data using
publication messages, the data consumer, or subscriber ex-
presses interest in the publications using subscription mes-
sages, and one or more brokers mediate between the two.

In content-based pub/sub, publications are a set of
{attribute, value} pairs, and subscriptions are a conjunction
of {attribute, operator, value} tuples, where the operator can
be one of {=, <, >, <, >}. This allows subscriptions to dis-
criminate based on the content of the publications.

2.2 Peer-to-Peer

P2P networks are characterized by the direct sharing
of resources among the peers in the network, and can be
loosely classified as unstructured and structured protocols.
Unstructured networks such as Gnutella and Kazaa provide
no performance guarantees. Structured networks [21, 19],
often based on a distributed hash table (DHT) interface, are
load balanced, fault-tolerant, and provide statistical guaran-
tees on routing lengths and storage load.

A DHT stores (key,value) pairs in a network of nodes.
The core operation of a DHT protocol is to map a key to a
node and efficiently route messages to this node. In the Pas-
try [21] DHT, keys and nodeids are a sequence of 2° digits
and belong in a circular 128-bit identifier space, and are
generated by the SHA-1 cryptographic hash. Pastry maps
keys to the node with the numerically closest nodeid in the
identifier circle, with the hash function ensuring good load
balance: in a network with N nodes and K keys, each node
stores K/ N keys with high probability. Pastry uses a prefix
routing algorithm that requires that each hop of a message
is sent to a node that matches the destination nodeid by at
least one more digit. This routing algorithm is able to route
a message to the destination in [log,s N| overlay hops, and
requires O(log N) node state.

3 Small-Scale Benefits

Existing research on pub/sub networks and DHTSs has
almost exclusively focused on how these systems scale to
large networks. However, there are rarely considered and
seldom exploited properties of both pub/sub and DHTs that
make them suitable for the development of small-scale dis-
tributed applications. The sections below articulate some of
these untapped small-scale benefits.

3.1 Publish/Subscribe Benefits

Some of the purported benefits of the pub/sub model
are multicast event dissemination and distributed matching.

Application
Server
I
Enterprise Service Bus I
| |
User Products
Database Database

Figure 1. SOA architecture of a web server

Application
Server

I
Enterprlse Serwce Bus

User Products Monitor
Database Database

Figure 2. Pluggable monitoring service

The former enables one to many communication with sub-
linear message scalability, and the latter allows each broker
to only store a subset of subscriptions and match a subset of
publications.

Some properties of the pub/sub model are useful even
in small networks. One such advantage is the decoupling
of publishers and subscribers, which encourages the loose
coupling of distributed software components. The pub/sub
model fits very nicely into the emerging Service Oriented
Architecture [13, 4] (SOA). In a SOA architecture, a dis-
tributed application is built using loosely coupled, reusable
services, with an Enterprise Service Bus (ESB) providing a
communication fabric among the services. Figure 1 illus-
trates a SOA architecture of a Web server that consists of a
frontend application server and two backend databases. The
ESB that connects these services is essentially a pub/sub
broker network, and the communication between services is
message-based, with the bindings among the services spec-
ified by subscriptions. That is, messages do not have to be
sent to network addresses, but to “virtual” destinations. For
example, the products database in Figure 1 would subscribe
to product queries, and queries from the application server
for product information would not be sent to the IP address
of the products database, but simply published to whatever
database has expressed (through its subscription) the ability
to handle product queries. Notice that the interaction be-
tween the services are specified with declarative bindings.
Subscriptions and publications support a higher level of ab-

straction when binding services together.

The SOA architecture realized through a pub/sub ESB
also supports incremental service deployment. For example,
it is trivial to add a monitoring service to record all queries
from the application server service, by plugging such a ser-
vice into the ESB, as shown in Figure 2; this service would
subscribe to all messages from the application server that is
of type queries. Notice that absolutely no changes are re-
quired to any existing service. This is possible because the
pub/sub ESB performs late binding of the declarative bind-
ings between the services. That is, not only are the bindings
between services specified with declarative subscriptions,
these bindings are evaluated at runtime. As another exam-
ple of incremental service deployment, consider a products
database that can no longer handle an increasing load. The
products catalog can be partitioned into two databases—say
one for new products, and one for legacy products—and the
current products database can be easily removed from the
ESB and two new databases connected to the bus. Due to
the intelligent routing of the pub/sub ESB, queries from the
application server will be routed automatically to the appro-
priate products database.

3.2 Distributed Hash Table Benefits

Some of the more compelling benefits of DHTs are or-
ganic scaling and self-organization, both of which become
more beneficial with increasing network size. Organic scal-
ing, or infrastructure-less scaling, is the property that al-
lows DHT networks to automatically scale with the load on
the network: as the load on the network increases (through
more peers joining the network), the aggregate resources
in the network naturally grows since peers are required to
donate their resources. Also, the self-organization of DHT
networks removes the complex administrative task of man-
aging large network topologies.

However, just as with pub/sub, DHTs are useful in small
networks too. For example, consider a small corporation
with limited capital running a distributed application over
a DHT substrate. DHTs make effective use of cheap com-
modity hardware due to their fault-tolerance and automatic
load balancing properties.

Also, the incremental scalability of DHT networks al-
lows the corporation to simply plug in more commodity ma-
chines to the DHT as required; there is no need to rewrite
the distributed application or reconfigure the network topol-
ogy. Together, these properties allow the corporation to
build an incrementally scalable distributed application us-
ing cheap commodity components.

There is a harmonious intersection of the small-scale
benefits of pub/sub and DHTs, namely the incremental de-
velopment and deployment of distributed applications and
networks. This, on its own, is a compelling argument for

implementing a pub/sub system over a DHT substrate, as
described in Section 4.

4 DHT Publish/Subscribe Design

The topic-based pub/sub matching and routing prob-
lems have been addressed in P2P networks [3, 20]. How-
ever, the techniques used in topic-based P2P pub/sub cannot
be trivially extended to content-based pub/sub in P2P net-
works. The problems become evident when subscriptions
with range predicates are used.

Despite the benefits of structured P2P networks, it is
non-trivial to build a content-based pub/sub system over a
DHT. In particular, a hash table is not well suited for per-
forming range queries. It is typically necessary to “walk”
the range to find all matching entries in the hash table. This
problem is exacerbated when the data items are continu-
ous (floating point) values. Finally, range queries in a dis-
tributed system introduce the issues of data placement and
query routing.

4.1 Distributed Multidimensional Matching

We now develop the distributed multidimensional
matching (DMM) algorithm, which can match multiple at-
tributes simultaneously. The DMM algorithm maps the pub/
sub matching problem to one of multidimensional indexing.

The algorithm assumes each attribute has a known do-
main (for example, between [1, 232]), a known finest gran-
ularity (for example, 10 units), and that there is a known
global order of the attributes in the system (for example, the
lexicographic ordering of the attribute names).

4.1.1 Mapping Pub/Sub to Multidimensional Indexing

The mapping from the pub/sub domain to a spatial domain
is as follows: (1) A d-dimensional space S is created, where
d is the number of unique attributes in the pub/sub domain.
(2) Every attribute a; in the pub/sub domain maps to a di-
mension d; in S.

A d-dimensional space S is managed by a binary search
tree that represents a recursive subdivision of the universe
into subspaces (regions) by means of (d — 1)-dimensional
hyperplanes. The hyperplanes are iso-oriented and their di-
rection alternates among the d possibilities, with each hy-
perplane dividing a region in half. Each region r has a cor-
responding node n(r) in the search tree.

Each region is addressed by a bit string, called a z-
code, and is associated with one node in the tree. Figure 4
presents the algorithm to convert an integer attribute to a z-
code. The z-code of a region is computed by interleaving
the z-codes of the corresponding ranges of each dimension

(00) (@) (10) (11)

100
o 01 |1t
. Subscription Publication '5-, Py 4
| price < 50 price = 10 2 U o I
{ weight > 50 weight = 70
00 10
0
0 price 100

5

Figure 3. Mapping from pub/sub to spatial to network domain

Algorithm IntegerAttributeToZCode(lval, uval, lbnd, ubnd)
(* Attribute has value [lval,uval] and bounds [lbnd,ubnd] *)
[— lbnd
u «— ubnd
zc «— nil
lastIter «— false
repeat
m <—
if lval < m A uval <m
then u «— |m|
zc « zc.Append(0)
else if lval > m A uval >m
then! — [m]
zc «— zc.Append(1)
else (x Doesn’t fit in either half. *)
stop
lastIter — | ==u
until lastIter
return zc

I+u

Figure 4. Determining the z-code

that constitute that region, as shown by the algorithm in Fig-
ure 5.

A subscription (object) s is stored at all the leaf nodes
n(r;) in the search tree such that r; intersects s. Thus the
insertion or deletion of a subscription requires the traversal
of multiple paths from the root to leaves. An event (point) e
will find matching subscriptions by traversing a single path
from the root to a leaf, where matching subscriptions will
be found.

A leaf node with an excessive number of subscriptions
can create two children and move its subscriptions to them.
This load balancing technique is referred to as subscription
delegation. The splitting/merging of regions is done dy-
namically based on local decisions. If the number of sub-
scriptions stored at a node n(r) exceeds some threshold,
then region r is split into 7/ and r”, and new nodes n(r’)
and n(r") are created. The z-code of the new region ' (r’)
is the z-code of r with bit 0 (1) appended. A subscription s
at node n(r) is sent to n(r') (n(r")) if s intersects v’ (r’).
Notice that s may be delegated to one or more child nodes
depending on how coarse grained s is. This increases sub-
scription load, but allows events to only traverse one path

Algorithm AttributesToZCode(attrs)

(x Return the z-code of the specified attributes)

1. (* Determine the minimum z-code of all attributes. %)
minlen «— MinZCodeLength(attrs)

(* Weave zcodes into one. *)
zc «— nil
for i < 0 to minlen — 1
do for attr € attrs
do z «— ZCodeO f(attr)
bit — GetBit(z,1)
zc «— zc.Append(bit)

e Aol ol

—_— O

return zc

Figure 5. Determining the z-code of a set of
attributes

down the tree to find matching subscriptions.

4.1.2 Mapping Multidimensional Indexing to a DHT

Each region r with z-code z has a corresponding node n(r)
in the tree. The information of each node is stored at the
peer p(r) (as determined by the DHT) in the network. Note
that given the z-code of a region r, peers can independently
find p(r).

We begin with a single root peer p(S) for the entire
space. In order for both publishers and subscribers to find
this root, p(S) can be the hash of the attributes in the system
(which is known to all peers). Subscriptions are sent to the
root peer p(S) and flow down to the appropriate leaf nodes.
To avoid the root peer from becoming overloaded, an event
e flows up the tree to find matching subscriptions. We can
find the smallest region r that encloses e, and send e to p(r).
If n(r) doesn’t exist in the binary search tree, p(r) forwards
e to its parent p(r’) in the tree. An example of a complete
mapping from the pub/sub to spatial to network domain is
shown in Figure 3.

Storage for various peer populations
1200

--+--ideal

1000

@
=]
S

600 -

N
o
=]

subscriptions (cdf)

200 -

20 40 60 80 100
% peers

Figure 6. DHT key storage distribution

4.1.3 Algorithm

The propagation of a subscription s goes through two
stages. First, during the finding tree stage s travels towards
the DMM tree, with every peer along the path storing s; the
reverse path of these subscriptions builds the multicast tree.
Once s has found a node in the tree, it then goes into the
finding leaf stage. In this stage, it travels up or down the
tree searching for an existing leaf node; s is not stored at
the peers in this stage until it reaches an existing leaf node.
Publication propagation is similar to that of subscriptions.

5 Evaluation

The experiments are run on SimPastry [3], a Pastry simu-
lator, with the DMM algorithm implemented on top of Sim-
Pastry.

The main metric studied in this paper is the storage load
on the peers in the system. Only the storage of subscriptions
in the DMM tree structure are counted. Notably, subscrip-
tions that are used to create the multicast tree are ignored.
The number of hops in the multicast tree varies with the size
of the network, the efficiency of the DHT routing protocol,
and the locations of the subscribers. Therefore in order to
keep the results independent of secondary variables, only
the DMM structure’s storage performance is measured.

Unless otherwise specified, the subscriptions in the
workloads consist of a single attribute whose name is se-
lected randomly, and whose value is an integer range with
lower and upper bounds in [1,2'8]. The number of peers in
the DHT is varied from 2 to 30.

5.1 DHT Key Storage

We first evaluate the performance of the underlying DHT
substrate without considering the pub/sub protocol. This
experiment inserts 1000 randomly generated (key,value)

pairs into the DHT and measures the distribution of keys
in the network. Figure 6 shows a cumulative distribution
function of the storage load among the peers in the DHT for
various peer populations. A point (z,y) in the graph means
that the = percent of peers with the smallest storage load
store y percent of the keys in the system. The ideal distribu-
tion is a straight line, and Figure 6 shows that the keys are
indeed well balanced among the nodes. Note that the step
function-like CDF for the case with 2 peers is an artifact of
the fact that there are only two peers but five data points on
the horizontal axis.

Although not shown here, the lookup of keys in the DHT
averages only one hop due to the aggressive caching of
routes by the DHT.

5.2 Fine Grained Subscriptions

Now we evaluate the performance of our pub/sub design.
In this experiment 1000 subscriptions are generated with the
same attribute name but random value; the upper value is set
equal to the lower value. This results in fine grained sub-
scriptions, that is, subscriptions with very specific interests.
Since subscriptions have the same attribute name, subscrip-
tions are initially clustered; this is done to emphasize the
effects of the load balancing algorithm.

Figure 7(a) shows a CDF plot of the distribution of sub-
scriptions among the peers in the network. We see that the
storage load is highly unbalanced, with a few peers shoul-
dering all the load. However, the results improve when the
subscription delegation load balancing feature of the DMM
algorithm is enabled. Figure 7(b) shows that subscription
delegation results in subscription load that is distributed
similar to the DHT keys in Figure 6.

5.3 Coarse Grained Subscriptions

The above results suggest the DMM structure balances
subscription storage well, but this is not true in all cases. In
this experiment the subscriptions have a random lower and
upper value, resulting in coarser grained subscriptions than
the previous workload. For this workload, Figure 8(a) again
shows that without load balancing enabled, the distribution
is highly uneven. When load balancing is enabled the load
is again relatively evenly balanced in Figure 8(b).

However, while the shape of the storage load looks bal-
anced in Figure 8(b), an examination of the absolute values
leads to a different conclusion. The total load with load
balancing enabled is more than twenty times the number of
total subscriptions in the system. This is because the sub-
scription delegation algorithm in the DMM structure is not
efficient when the subscriptions are coarse grained. Recall
that when an overloaded node in the DMM tree wishes to
delegate a subscription to its children, it may send the sub-

Storage for various peer populations

1200
< 1000 ~2
e =5
z 800 10
g 600 20
sg --30
2400 -
3
[%2]
% 200 /
0
20 40 60 80 100

% peers

(a) no load balance

Storage for various peer populations

1200
-2
< 1000 +—
E 10
2 8009 5
g
3 600 {—=30
5
& 400
=1
€ -
#* 200 - /
0 ;
20 40 60 80 100
% peers

(b) load balance

Figure 7. Fine grained subscriptions

scription to both its children if the subscription is too coarse
grained to be enclosed by the region indexed by any one of
its children. Therefore, a single coarse grained subscription
may result in up to m copies in the system after m delega-
tions.

The explosion of subscriptions illustrated in Figure 8(b)
occurs because of an assumption of the DMM algorithm:
there are some peers in the DHT that are not overloaded.
Therefore, after enough delegation steps, the subscriptions
will find their way to and terminate at a peer with suffi-
cient resources. However this assumption is less likely to
hold in small networks, where all the peers may become
overloaded. Subscription delegation (for coarse grained
subscriptions) makes the situation worse by increasing the
number of subscriptions and storing them on already over-
loaded peers. In fact, delegation will continue recursively
until a predefined limit (which is related to the known finest
granularity of an attribute’s domain) is reached.

To solve runaway subscription delegation requires that
a node has knowledge about the unused resources in the
DHT, so that delegation can stop when there are no nodes
with some threshold of unused resources. Acquiring such
global knowledge is usually not practical in distributed sys-
tems, but may be estimated. For example, each peer may
probe the available resources of some random set of peers
and assume that these few peers are representative of the
entire network. We plan to pursue such techniques in future
work.

The load balancing technique that assumes there are suf-
ficient unused resources (whether storage, bandwidth, or
processing cycles) somewhere in the network occurs in sev-
eral DHT applications, such as the active caching and repli-
cation techniques in the CAN DHT [19], and the routing
hotspot circumvention in the Meghdoot [8] pub/sub design.
This assumption is often implicit and is rarely given a sec-
ond thought. However, as we have argued above, this as-

Storage for various peer populations

4000

— 3500 *g

< .

g 3000 +—1_, 1o

_g 2500 + 20 /

3 2000 +— =30

S 1500 -

Ke)

= 1000

* 500 R
0 : —

20 40 60 80 100

% peers

Figure 9. Coarse grained subscriptions (cov-
ering and load balance)

sumption may not be true in small-scale networks.
5.4 Subscription Covering

The storage of coarse grained subscriptions can be
improved with the covering [2] optimization. Covering
quenches subscriptions before they reach the DMM tree. A
subscriptions s covers subscription s’ if the set of events E
that match s is a superset of the set of events E’ that match
s’. That is, a more general (or coarse grained) subscription
covers a more specific (or fine grained) one. If the paths of
s and s’ from their respective subscribers to the DMM tree
intersect at peer p , then p only needs to forward s.

Figure 9 shows the storage distribution with load balanc-
ing and covering enabled for coarse grained subscriptions.
We see that the total number of subscriptions is greatly re-
duced from Figure 8(b) where covering was disabled. Fur-

Storage for various peer populations

1200
—_ +2
g 1000 .5 / /
2 800 +— 10
g 20
E 600 |30
3
2 400
>
w
2 2001 /

0 ‘

20 40 60 80 100

% peers

(a) no load balance

Storage for various peer populations

25000
— +2
:8_) 20000 +——=5
e 10 /
(2]
_S 15000 +—— 20
a - 30
S 10000 H
(2]
Qo
> 5000 4 /
*

0
20 40 60 80 100

% peers

(b) load balance

Figure 8. Coarse grained subscriptions

thermore, the load decreases as the number of peers in the
system decreases. This is a nice property, since the total
load increases only when more peers are added to the net-
work; the aggregate load grows as the aggregate available
resources increases. It is important to point out, however,
that this property is not due to the load balancing algorithm
itself, but is a side effect of the covering optimization: the
paths of any two subscriptions are more likely to intersect,
and hence be covered, where there are fewer peers in the
network.

6 Related work

The closest work related to this paper is Service Ori-
ented Architectures [13, 4] (SOA). The Enterprise Service
Bus (ESB), which plays an integral role in the SOA model
is often a simplified pub/sub or messaging broker network.
However current ESBs are proprietary systems [5, 14, 9]
and few implementations or performance details are avail-
able. We are not aware of any academic research into small-
scale pub/sub or DHT environments. In order to provide
some context for this work, this section discusses related
designs that implement a pub/sub system over a DHT.

Scribe [3] is a channel-based pub/sub system built over
the Pastry DHT. Scribe treats a channel name c as a key
in the DHT which is stored at peer r called the channel
root. Subscriptions are sent towards r, and their reverse
path builds a multicast tree from the channel root r to the
subscribers. Publications are also sent to the channel root,
and then follow the multicast tree to the subscribers in the
channel.

Hermes [18] is a content-based pub/sub system built over
the Pastry DHT. It essentially assigns a channel to each pub-
lication and subscription and the matching algorithm degen-
erates to that of Scribe. Unlike the algorithm in this paper,
Hermes’ initial matching algorithm does not discriminate

based on content, resulting in unnecessary load on the chan-
nel root peer.

Meghdoot [8] is a content-based pub/sub system built
over the CAN DHT. For an application with & attributes,
Meghdoot constructs a CAN space of dimension 2k. Sub-
scriptions are mapped to a point in the CAN space and
stored at the responsible node. Publications traverse all re-
gions with possible matching subscriptions. Meghdoot han-
dles routing load by splitting a subscription at a peer to its
neighbors. As discussed in Section 5, this may lead to an
explosion of subscriptions in small-scale networks where
all nodes are already overloaded.

This work—referred to as P2P-ToPSS [22]—is part of
the ToPSS (Toronto Publish/Subscribe System) research
projects [10, 12, 11, 15, 16, 17].

7 Conclusions

Distributed pub/sub systems can benefit from P2P net-
works. Notably, scalability is possible without dedicated
infrastructure. The Pastry DHT is a P2P overlay that pro-
vides probabilistic performance guarantees. We develop an
algorithm that implements a pub/sub system over a DHT.

Research into pub/sub systems and DHT networks have
traditionally focused on their large-scale benefits. However,
both pub/sub systems and DHTs have properties that bene-
fit small-scale networks as well, namely the decoupling of
producers and consumers, and incremental service deploy-
ment inherent in the pub/sub model, and the effective use of
commodity hardware, and incremental scalability abilities
of DHTs.

Experiments show that in small networks (with less than
30 peers) DHTs continue to exhibit good storage load bal-
ance of (key,value) pairs, and lookup costs. The former
is because the DHT hash function distributes keys evenly
throughout the identifier circle, and the latter is due to ag-

gressive route caching in the Pastry DHT. Good load bal-
ance is also achieved by our DMM pub/sub indexing al-
gorithm under certain workloads, particularly, fine grained
subscriptions. However, coarse grained subscriptions are
not indexed efficiently by the DMM structure, and cause an
explosion in the total subscription load.

The large increase in subscription load is due to a fun-
damental assumption in DHT applications that unused re-
sources are available somewhere in the network. This as-
sumption is necessary because there is no global knowledge
of unused resources in a large DHT network. In small net-
works, however, the assumption is not valid, as it is conceiv-
able that every peer is already overloaded. The important
point illustrated by this work is that data management appli-
cations with proven scalability in large P2P networks may
not scale in small networks. This arises from the flawed
assumption of ample aggregate available resources.

For future work, we would like to evaluate more metrics.
In particular, some preliminary results indicate that while
the aggregate bandwidth requirements to perform pub/sub
matching decreases as the network gets smaller, the average
load on each peer increases. We would like to investigate
this further. We also plan to implement some heuristics to
stop the runaway subscription delegation in cases where do-
ing so will not improve the system-wide load balance; that
is, we would no longer assume there are unused resources
in the network. Another area for future research is to obtain
real-world workloads to gain a more realistic understanding
of the system’s performance.

References

[1] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao,
R. E. Strom, and D. C. Sturman. An efficient multicast
protocol for content-based publish-subscribe systems. In
ICDCS, 1999.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
ToCS, 19(3):332-383, Aug. 2001.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Row-
stron. Scribe: A large-scale and decentralized application-
level multicast infrastructure. IEEE JSAC, 20(8), oct 2002.

[4] K. Channabasavaiah, K. Holley, and J. Edward M. Tug-
gle. Migrating to a service-oriented architecture.
http://ibm.com/developerworks/webservices/library/ws-
migratesoa/, 2003.

[5] D. Chappell. Enterprise Service Bus. O’Reilly, 2004.

[6] P.T.Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec. The many faces of publish/subscribe. ACM Comput.
Surv., 35(2):114-131, 2003.

[7] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and
D. Shasha. Filtering algorithms and implementation for very
fast publish/subscribe systems. In SIGMOD, 2001.

[8] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi.
Meghdoot: Content-based publish/subscribe over P2P net-
works. In Middleware, pages 254-273, 2004.

(9]

(10]

(1]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

F. Ibarra. The enterprise service bus: Building
enterprise SOA. http://dev2dev.bea.com/pub/a/2004/12/
soa_ibarra.html, Dec 2004.

G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to
routing, covering and merging in publish/subscribe systems
based on modified binary decision diagrams. In ICDCS,
Columbus, Ohio, 2005.

H. Liu and H.-A. Jacobsen. Modeling Uncertainties in Pub-
lish/Subscribe System. In ICDE, 2004.

V. Muthusamy, M. Petrovic, and H.-A. Jacobsen. Effects
of routing computations in content-based routing networks
with mobile data sources. In MOBICOM, Cologne, Ger-
many, August 2005.

Y. V. Natis. Service-oriented architecture scenario.
http://www.gartner.com/DisplayDocument?doc_cd=114358,
Apr 2003.

C. Nott, P. Edwards, A. Humphreys, and M. Keen.
Using message sets in websphere business integra-
tion message broker to implement an ESB in an SOA.
http://www.redbooks.ibm.com/abstracts/redp3978.html,
2005.

M. Petrovic, I. Burcea, and H.-A. Jacobsen. S-ToPSS — a
semantic publish/subscribe system. In VLDB, Berlin, Ger-
many, September 2003.

M. Petrovic, H. Liu, and H.-A. Jacobsen. G-ToPSS - fast
filtering of graph-based metadata. In WWW, Chiba, Japan,
May 2005.

M. Petrovic, V. Muthusam, and H.-A. Jacobsen. Content-
based routing in mobile ad hoc networks. In MobiQuitous,
July 2005.

P. R. Pietzuch and J. Bacon. Peer-to-peer overlay broker
networks in an event-based middleware. In DEBS Workshop
at SIGMOD/PODS, pages 1-8. ACM Press, 2003.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Applications, technologies, architectures, and protocols for
computer communications, pages 161-172. ACM Press,
2001.

S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker.
Application-level multicast using content-addressable net-
works. In NGC Workshop at SIGCOMM, pages 14-29,
2001.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In ICDSP (Middleware), pages 329-350, Nov. 2001.
D. Tam, R. Azimi, and H.-A. Jacobsen. Building content-
based publish/subscribe systems with distributed hash ta-
bles. In DBISP2P Workshop at VLDB, September 2003.

Y. Zhao and R. Strom. Exploiting event stream interpreta-
tion in publish-subscribe systems. In PODC, pages 219—
228. ACM Press, 2001.

