
Typed Protocols for Peer-to-Peer Service Composition

Christopher D. Walton∗

Centre for Intelligent Systems and their Applications (CISA),
School of Informatics, University of Edinburgh, Scotland, UK.

Email: cdw@inf.ed.ac.uk

Abstract

In this paper we present a technique which addresses
the composition of web services into peer-to-peer sys-
tems. Our approach is founded on the definition of
lightweight protocols, which provide the means to spec-
ify, execute, and verify these systems. The advantage of
our approach is that the protocols are defined indepen-
dent of the domain in question, and therefore allow us
to focus specifically on the composition aspects of the
system. We present a definition of the MAP language
for service composition, and show how it can be used
to specify a simple peer-to-peer file-sharing system. We
also illustrate how the use of type information can al-
low us to gain confidence in the correctness of our pro-
tocols.

1 Introduction

A peer-to-peer (P2P) architecture is one which allows
autonomous peers of similar capabilities to interact in
a distributed and decentralised manner. The advantage
of the P2P approach, over a centralised client/server ar-
chitecture, is that the network resources are effectively
utilised, yielding more scalable and robust operation.
P2P architectures have recently gained significant popu-
larity for the distribution of files over the Internet. How-
ever, the potential scope for P2P techniques is much
greater, and they can be effectively used in a range of
different domains, including the Semantic Web, Grid
Computing, Database Systems, and Multi-Agent Sys-
tems.

The P2P approach encompasses many different tech-
niques from service-oriented and agent-oriented archi-

∗This work is sponsored by the EPSRC Advanced Knowledge
Technologies (AKT) Interdisciplinary Research Collaboration (Grant
GR/N15764/01).

tectures. However, in a P2P system, these techniques
are applied in a purpose-driven manner. That is, a P2P
system is focused on achieving a specific task, and typi-
cally within some reasonable deadline. Therefore, tech-
niques which rely on undecidable reasoning, or lengthy
theorem-proving operations are unsuitable for P2P sys-
tems. Instead, P2P systems rely on decidable and
practical reasoning techniques which can be straight-
forwardly utilised by distributed peers. Nonetheless,
there remain significant challenges to be addressed in
the construction of P2P architectures, particularly in re-
lation to the composition and inter-operability of peers.

For convenience, we make the assumption that the
peers in a P2P architecture are represented and con-
trolled though a web service interface. It is intended that
P2P systems will be rapidly constructed by combining
a range of different services. Thus, the construction of a
P2P architecture is essentially that of web service com-
position. The effective composition of services into a
P2P systems is the theme of this paper. The composi-
tion of web services into P2P architectures, requires a
high degree of interoperability between services. It is
necessary that services built by different organisations,
and using different software systems, are able to com-
municate with one another in a common formalism with
an agreed semantics.

Interaction between web services is currently accom-
plished by a remote procedure call (RPC) mechanism,
by the exchange of SOAP messages between web ser-
vice clients and containers. The SOAP specification de-
fines a one-way stateless communication mechanism,
but this is too restrictive for our purposes. In order to
compose services, we need to define complex commu-
nication patterns between services, for example, broad-
cast or multi-cast communication. It is possible to con-
struct such a system through a static composition of ser-
vices, where the composition is encoded directly into
the services. However, this approach is error-prone and

1

inflexible as it does not allow us to easily change the
kind of system we define. Ideally, we would like a
separate representation which can express complex pat-
terns of interaction between web services, such as we
describe. We are aware of the activities of the W3C
Web Services Choreography group on defining a suit-
able representation for performing choreography (i.e.
composition) between web services [3], but we are un-
aware of any implementation of these proposals.

From our discussion, we would like to specify a
tightly-coupled predictable system with complex com-
munication behaviour and a high degree of interoper-
ability. The approach to service composition which we
adopt in this paper is a dynamic approach, where ser-
vices can be composed in a flexible manner with recur-
sive and concurrent behaviours. As stated previously,
there is some overlap between agent architectures and
P2P architectures. In particular, there are many concep-
tual similarities between agents and peers [6, 8]. We
use this similarity to our advantage in this paper, as
the composition techniques that we present are directly
adapted from our previous work on interaction proto-
cols in Multi-Agent Systems [12, 10].

The focus of this paper is on the definition of a for-
malism for the realisation of interaction between web
services in a P2P architecture. We present a script-
based representation for the interaction between ser-
vices, which is lightweight and verifiable. Our language
appears to be a good complement to SOAP, as both are
independent of the message content or implementation.
Our approach has some similarities to the work in [7]
which defines a formalism based on petri-nets for co-
ordinating BDI agents in a P2P architecture. However,
our approach is based on process calculus [4], and is not
restricted to one specific model of agency. Our work is
also similar to the representation of agent interactions
found in Electronic Institutions [2], though our specifi-
cations are designed to be directly executable. We also
address the verification of protocols, by defining a for-
mal type-system for our language.

Our presentation in this paper is structured as fol-
lows. In section 2 we define the MAP language for
specifying an enacting protocols. To demonstrate the
key features of the language, we present the specifica-
tion of an example P2P file-sharing protocol in Sec-
tion 3. The version of MAP presented in this paper
has been extended with type information, which we use
to perform type-based verification of MAP protocols in
Section 4. Lastly, we conclude in Section 5 with a dis-
cussion of our future work.

2 MAP Language Definition

The MAP protocol language which we present here is
a lightweight protocol language derived from process
calculus, specifically the π calculus [5]. MAP is also
derived from our previous work on multi-agent proto-
cols, and thus we will use the terms peer and agent in-
terchangeably. MAP protocols can be viewed as exe-
cutable specifications, and we have defined an execu-
tion framework for MAP, called MagentA [11]. Two
key concepts in MAP are the division of protocols into
scenes, and the assignment of roles to the peers. A
scene can be thought of as a bounded space in which
a group peers interact on a single task. Thus, a scene
divides a large protocol into manageable parts. Scenes
also add a measure of security to a protocol, in that
peers which are not relevant to the protocol are excluded
from the scene. This can prevent interference with the
protocol and limits the number of exceptions and spe-
cial cases that must be considered in the design of the
protocol. We assume that a scene places a barrier on the
peers, such that a scene cannot begin until all the peers
have been instantiated.

The concept of a role is also central to our definition.
In MAP, each peer is identified by both a name and a
role. Peers are uniquely named, but must be assigned a
role which is specified in the protocol. The role of an
peer is fixed until the end of a scene, and determines
which parts of the protocol the peer will follow. Peers
can share the same role, which defines them as having
the same capabilities, i.e. the same web service inter-
face. Roles are useful for grouping similar peers to-
gether, as we do not have to specify a completely sepa-
rate protocol for each individual. For example, we may
wish to interact with a large number of services, all with
the same interface. We can simply define a single role
(and associated protocol) which corresponds to the in-
terface, rather than defining a separate protocol for each
service. Roles also allow us to specify multi-cast com-
munication in MAP. For example, we can broadcast
messages to all peers of a specific role.

We note that MAP is only intended to express pro-
tocols, and is not intended to be a general-purpose pro-
gramming language. Therefore, the relative lack of fea-
tures for performing computation is appropriate. Fur-
thermore, MAP is designed to be a lightweight lan-
guage and only a minimal set of operations have been
included. It is intended that MAP protocols will be
automatically generated, e.g. from a planning system.
Thus, although MAP protocols appear complex, they

2

would not generally be constructed by hand.
We will now define the abstract syntax of MAP,

which is presented in Figure 1 (BNF notation). We
have also defined a corresponding concrete XML-based
syntax for MAP which is used in our implementation.
However, we restrict our attention in this paper to the
abstract syntax for readability. A protocol P is uniquely
named n and defined as a set of roles r, each of which
defines a set of methods M. A method m takes a list
of terms φ(k) as arguments (the initial method is named
main). Agents (i.e. peers) have a fixed role r for the
duration of the protocol, and are individually identified
by unique names a. Protocols are constructed from op-
erations op which control the flow of the protocol, and
actions α which have side-effects and can fail. Failure
of actions causes backtracking in the protocol.

P ::= n(r{M})+ (Scene)

M ::= method m(φ(k)) = op (Method)

op ::= α (Action)
| op1 then op2 (Sequence)
| op1 or op2 (Choice)
| waitfor op1 timeout op2 (Iteration)
| call m(φ(k)) (Recursion)

α ::= ε (No Action)
| φk = p(φl) fault φm (Procedure)
| ρ(φ(k)) => agent(φ1, φ2) (Send)
| ρ(φ(k)) <= agent(φ1, φ2) (Receive)

φ ::= _ | a | r | c : τ | v : τ

τ ::= utype | atype | rtype | tname

Figure 1: MAP abstract syntax.

The interface between the protocol and the web ser-
vice which defines its behaviour, is achieved through
the invocation of procedures p. A procedure is param-
eterised by three sequences of terms. The input terms
φl are the input parameters to the procedure, and the
output terms φk are the output parameters, i.e. results,
from the procedure. A procedure may also raise an ex-
ception in which case the fault terms φm are bound to
the exception parameters, and backtracking occurs in
the protocol. Interaction between agents is performed
by the exchange of messages which are defined by per-
formatives ρ, i.e. message types. The parameters to pro-
cedures and performatives are terms φ, which are either
variables v, agent names a, role names r, constants c, or
wild-cards _. Literal data is represented by constants c

in our language, which can be complex data-types, e.g.

currency, flat-file data, multimedia, or XML documents.
Variables are bound to terms by unification which oc-
curs in the invocation of procedures, the receipt of mes-
sages, or through recursive method invocations. Con-
stants and variables are assigned explicit types τ to en-
sure that they are treated consistently. We present a for-
mal type-system in Section 4, which is a complement to
our formal semantics, previously defined in [10].

3 Example Scenario

It is helpful to consider an example scenario in order to
obtain an understanding of the MAP protocol language.
Our example is based on a simplified peer-to-peer (P2P)
file sharing system. This kind of system has recently
gained significant popularity for the decentralised dis-
tribution of multimedia files on the Internet, e.g. mp3
music. At present, the majority of file-sharing P2P sys-
tems are based on purely algorithmic techniques. How-
ever, this kind of system appears ideal for the use of
agent-based technology. For example, we can readily
anticipate the exchange of files through negotiation be-
tween agents.

Ping

Pong

Pong

Ping

Pi
ng

Pi
ng

Ping/Pong Protocol

Client

Q
ueryH

it

Query

Hit

Query/Hit Protocol

Client

Hit

Query

Figure 2: Query flooding protocols.

The model that we describe is loosely based on the
Gnutella file sharing protocol. This protocol defines a
completely decentralised method of file sharing, and its
implementation is very straightforward. The Gnutella
system assumes a distributed network of nodes, i.e.
computers, that are willing to share files on the net-
work. The protocol is defined with respect to our own
node on the network, which we call the client. There
are just three main operations performed by a client in
the Gnutella protocol:

1. In order to participate in file sharing it is neces-
sary to locate at least one other active node in the

3

Gnutella network. There are a variety of ways in
which this can be accomplished. The most com-
mon way is to contact one of more Gwebcache
servers which which contain lists of recently ac-
tive nodes. The Gnutella software is usually pre-
configured with the addresses of a large number of
these servers. However, it is not enough simply to
know about other nodes, as there are no guaran-
tees that these nodes will still be active. Therefore,
the client will initiate a simple ping/pong protocol
with each node in the list until a certain quota of
active nodes have been located. This protocol sim-
ply sends a message (ping) to each node in the list,
and waits for a certain period of time until a re-
ply message (pong) is received, indicating that the
node is still active.

2. Once a list of active nodes has been obtained, it is
possible to perform a search for a particular file.
Gnutella uses a query flooding protocol to locate
files on the network. The client sends the file re-
quest (query) to every node on its active list. If one
of the nodes has a copy of the requested file, then
it sends back a reply message (hit) to the client. If
the node does not have the file, then the request is
forwarded to all of the active nodes on its own list,
and so on. The query will eventually propagate to
all of the nodes on the network, and the reply will
be returned to the client.

3. If the file is successfully located by the query pro-
tocol, then then client simply contacts the desti-
nation node directly and initiates the download.
If more than one copy is located, the client may
download fragments of the file from different loca-
tions simultaneously and thereby improve down-
load performance.

The Gnutella ping/pong and query/hit protocols are
illustrated in Figure 2. It should be noted that the basic
query flooding protocol, as outlined here, is very ineffi-
cient in operation and a search will typically take a long
time to complete. The number of messages required is
exponential in the depth of the search. This behaviour is
tolerated as the network traffic generated by the queries
is very small, compared to the bandwidth required to
transfer the file itself. A variety of caching strategies
have been proposed to improve the speed of the search,
though we only consider the basic protocol here.

We can readily express the Gnutella protocol in
MAP. The agents follow the protocol to determine the

actions that must be performed by the nodes to retrieve
a particular file. The encoding is presented in Figure 3
for the file-sharing nodes, and Figure 4 for an exter-
nal client. We distinguish between the different types
of terms by prefixing variables names with $, and role
names with %. We use type abbreviations a for an agent,
r for role, and alist for a list of agents.

The protocol for a node, shown in Figure 3, proceeds
as follows. Upon initialisation (line 3), a list of
neighbouring nodes is obtained, and a ping message
is sent to all of these nodes in turn (lines 5-8). The
node then enters a responsive state where is listens
for incoming messages, and acts according to the
message type. An incoming ping message results in
an outgoing pong message (line 11). An incoming
pong message is recorded in the list of active nodes
(line 12). An incoming query results in an outgoing hit
message if the node has a copy of the file (lines 13-15),
or the query is forwarded to all of the neighbouring
nodes (lines 16-18). An incoming hit message (from
a neighbour) is forwarded to the initial requester of
the query (lines 19-21). Finally, a download request
message results in an outgoing message containing a
copy of the file (lines 22-24). The protocol repeats after
each message (line 25). For brevity, the sendquery
and sendhits methods have been omitted as
they have a similar definition to the sendping
method. The procedures startSharing,
addActive, getActiveNodes, recordQuery,
getQueryList, and getFile are defined in the
web service associated with each node, as they are
external to the composition process. The client proto-
col shown in Figure 4 interacts directly with the node
protocol that we have defined. A client obtains a node
on the network (line 3), and constructs a query (line 4).
The query is forwarded to the node (line 5), and the
client waits for a hit message to be returned (line 6). A
download is then initiated from the node which has a
copy of the file (lines 7-8).

Our MAP protocols are clearly a straightforward im-
plementation of the required functionality. However,
there are some subtle issues that require further expla-
nation. The operations in the protocol are sequenced
by the then operator which evaluates op1 followed by
op2, unless op1 involved an action which failed. The
failure of actions is handled by the or operator. This
operator is defined such that if op1 fails, then op2 is
evaluated, otherwise op2 is ignored. The language in-
cludes backtracking, such that the execution will back-
track to the nearest or operator when a failure occurs.

4

1 %node{
2 method main() =
3 $id:a = getId() then startSharing($id:a) then $nodes:alist = getNodes() then
4 (call sendping($nodes:alist) or call mainloop($id:a))
5 method sendping($nodes:alist) =
6 $head:a = Head($nodes:alist) fault nohead then
7 $tail:alist = Tail($nodes:alist) fault notail then
8 ping() => agent($head:a, %node) then call sendping($tail:alist)
9 method mainloop($id:a) =
10 waitfor
11 ((ping() <= agent($n:a, %node) then pong() => agent($n:a, %node))
12 or ((pong() <= agent($n:a, $role:r) then addActive($n:a, $role:r))
13 or ((query($f:string) <= agent($n:a, $r:r) then
14 ($fl:file = getFile($f:string) fault nofile then
15 hit($f:string, $id:a) => agent($n:a, $r:r))
16 or (setQuery($f:string, $n:a, $r:r) then
17 $nodes:alist = getActiveNodes() then
18 call sendquery($f:string, $nodes:alist)))
19 or ((hit($f:string, $hid:a) <= agent($n:a, %node) then
20 $nodes:alist = getQueryList($f:string) then
21 call sendhits($f:string, $hid:a, $nodes:alist))
22 or (download($f:string) <= agent($client:a, %client) then
23 $fl:file = getFile($f:string) fault nofile then
24 file($fl:file) => agent($client:a, %client))))))
25 then call mainloop($id:a)}

Figure 3: MAP encoding of a P2P node.

Similarly, the body of a waitfor loop will be repeat-
edly executed upon failure, and the loop will terminate
when the body succeeds.

1 %client{
2 method main() =
3 $node:id = getStartNode() then
4 $fname:string = getQuery() then
5 query($fname:string) =>

agent($node:a, %node) then
6 waitfor (hit($fname:string, $hitid:a)

<= agent($name:a, $role:r))
7 then download($fname:string) =>

agent($hitid:a, %node) then
8 waitfor (filereply($file:file) <=

agent($hitid:a, %node))}

Figure 4: MAP encoding of a P2P client.

The semantics of message passing in MAP corre-
sponds to non-blocking, reliable, and buffered commu-
nication. Sending a message will succeed immediately
if an agent matches the definition, and the message will
be stored in a buffer on the recipient. When exchang-
ing messages through send and receive actions, a unifi-
cation of terms against the definition agent(φ1, φ2)
is performed, where φ1 is matched against the agent
name, and φ2 is matched against the agent role. For

example, the receipt of the ping message in line 11 of
the node protocol will match any agent whose role is
%node, and the name of this node will be bound to the
variable $n. In this definition, a client is not permitted
to send a ping message to a node. Although not illus-
trated in this example, we can use a wildcard _ to send
a message to all agents regardless of their role. The ad-
vantage of non-blocking communication is that we can
check for a number of different messages at the same
time. Race conditions are avoided by wrapping all re-
ceive actions by waitfor loops. A waitfor loop
can also include a timeout condition which is trig-
gered after a certain interval has elapsed.

4 Protocol Verification

MAP protocols specify complex, concurrent, and asyn-
chronous patterns of communication. The presence of
concurrency introduces non-determinism which gives
rise to a large number of potential problems, such as
synchronisation, fairness, and deadlocks. It is difficult,
even for an experienced designer, to obtain a good in-
tuition for the behaviour of a concurrent protocol. This
is primarily due to the large number of possible inter-
leavings which can occur, even when considering very

5

simple protocols. Traditional debugging and simula-
tion techniques cannot readily explore all of the pos-
sible behaviours of such systems, and therefore signifi-
cant problems can remain undiscovered. The detection
of problems in these systems is typically accomplished
through the use of formal verification techniques such
as theorem proving and model checking. We have pre-
viously shown [9] how we can use the SPIN model
checker to verify properties of MAP protocols.

The application of model checking to protocol is a
powerful technique for ensuring that certain properties
of the protocols hold. However, while model check-
ing itself is fully automatic, it is still necessary to in-
terpret the outcome of the process. In many cases, it
can be difficult to pin-point the exact location of the
problem. This is principally because the model check-
ing is performed on an encoding of the protocol, rather
than directly on the MAP language itself. Therefore,
we have recently turned our attention toward improv-
ing this process. We note that a significant cause of
failure in MAP protocols can be attributed to the pat-
tern matching process. Both method calls, and message
passing operations involve a unification step which can
fail. Our model checking technique can detect this kind
of failure. However, we note that failure of unification
is normally detected by a type checking process. Thus,
our intention is to detect type errors statically before
model checking or enactment.

We have recently introduced types into the MAP lan-
guage, defined by τ in Figure 1. Types are directly as-
signed to all variables and constants. We define four
different types: utype is an unknown (wildcard) type,
atype corresponds to an agent name, rtype which cor-
responds to a role, and tname is a type name. Type
names tname will typically be XML schema types, e.g.
xsd:string. As MAP does not attempt to perform
any computation on the constants, our choice of type
names is only dependent on the kinds of data that the
external web services can interpret. Type checking en-
sures that these types are used consistently.

Type checking is performed by defining a formal type
system, from which the checking algorithm can be de-
rived. Our type system is presented in the style of [1],
and complements the formal semantics of MAP defined
in [10]. A type system is defined by a collection of rules
which are used to determine if a program is well-typed.
Well-typing corresponds to a notion of predictability
of behaviour. Our typing rules check for three kinds
of consistency in a protocol: every call operation
matches at least one method in the protocol; each pro-

cedure p is invoked consistently; and every message ρ

is constructed consistently.

Environment Γ ::= (RE , PE , ME)

Roles RE ::= r
map
7−→ {τ (k)}

Procedures PE ::= p
map
7−→ (τ

(k)
in

, τ
(l)
out, τ

(m)
flt

)

Messages ME ::= ρ
map
7−→ τ (k)

Figure 5: Typing environment.

Our typing rules, are all defined with respect to a typ-
ing environment Γ, illustrated in Figure 5. The type
environment is represented by a three-tuple comprising
a role environment RE , a procedure environment PE ,
and a message environment ME . The role environment
maps role names r to sets of type sequences τ (k). Type
sequences are the argument types for the methods of
the protocol, associated with each role. The procedure
environment maps procedure names p to tuples, which
defines the types of the input, output, and fault terms for
the procedure. Finally, the message environment maps
performatives ρ to a sequence of types τ (k), which are
the types of the terms used in the body of the message.
We use the abbreviation Γ∪{ρ 7→ τ (k)} to denote the
environment ME in Γ extended with a mapping from ρ

to τ (k), and Γ(ρ) = ∅ indicate that ME in Γ contains
no mapping for ρ.

The types of the terms in MAP are defined in Fig-
ure 6 (1). The term typings all have the form ` φ : τ ,
where φ is a MAP term, and τ is the resulting type.
The unknown type utype is assigned to a wild-card
term. The types aterm and rterm are assigned to agent
names and role names respectively. Constants and vari-
ables are typed according to their definitions.

At the core of the typing process is a very simple uni-
fication procedure, defined in Figure 6 (2). As stated
earlier, MAP does not attempt to assign any meaning
to the types. Thus, the unification rules simply check
that the types match. The first case states that any type
τ matches an unknown type utype. The second case
states that two types match if they are identical. The fi-
nal case states that two sequences of types will match,
if they are the same length, and all the individual types
in the sequence can be matched.

The MAP typing rules are defined in Figure 6(3-11).
The rules are all judgements of the form Γ ` θ : Γ′,
which assert that the MAP program fragment θ is valid
(i.e. type-able) in Γ, and yields the new environment Γ′.
The typing rules are applied recursively, reading from

6

` _ : utype ` a : atype ` r : rtype

` (c : τ) : τ ` (v : τ) : τ

(1)

` unify(utype, τ) ` unify(τ, τ)

` unify(τ1
(k), τ2

(k)) =

unity(τ1
1 , τ1

2) · · · unify(τk
1 , τk

2)

(2)

Γ, r1 ` M1 : Γ1 · · ·

Γn−1, rn ` Mn : Γn

Γ ` n(r1{M1}, . . . , rn{Mn}) : Γn

(3)

Γ, r ` method(φ1
(k)) : Γ1 · · ·

Γn−1, r ` method(φn
(k)) : Γn

Γn, r ` op1 : Γ′

1 · · · Γ′

n−1, r ` opn : Γ′

n

Γ, r ` {method(φ1
(k)) = op1, . . . ,

method(φn
(k)) = opn} : Γ′

n

(4)

Γ ` φ(k) : τ (k)

Γ, r ` method(φ(k)) : Γ ∪ {r 7→ τ (k)}

(5)

Γ, r ` op1 : Γ′ Γ′, r ` op2 : Γ′′

Γ, r ` op1 then op2 : Γ′′

(6)

Γ ` φ(k) : τ1
(k)

∃τ2
(k) ∈ Γ(r) | unify(τ1

(k), τ2
(k))

Γ, r ` call(φ(k)) : Γ

(7)

Γ(p) = ∅ Γ ` φ(k) : τ (k) Γ ` φ(l) : τ (l)

Γ ` φ(m) : τ (m)

Γ ` φ(k) = p(φ(l)) fault φ(m) :

Γ ∪ {p 7→ (τ (k), τ (l), τ (m))}

(8)

Γ(p) = (τ
(k)
in

, τ
(l)
out, τ

(m)
flt

) Γ ` φ(k) : τ (k)

Γ ` φ(l) : τ (l) Γ ` φ(m) : τ (m)

` unify(τ
(k)
in

, τ (k)) ` unify(τ
(l)
out, τ (l))

` unify(τ
(m)
flt

, τ (m))

Γ ` φ(k) = p(φ(l)) fault φ(m) : Γ

(9)

Γ(ρ) = ∅ Γ ` φ(k) : τ (k)

Γ ` φ1 : atype Γ ` φ2 : rtype

Γ ` ρ(φ(k)) => agent(φ1, φ2) : Γ ∪ {ρ 7→ τ (k)}

(10)

Γ ` φ(k) : τ1
(k) ` unify(Γ(ρ), τ1

(k))

Γ ` φ1 : atype Γ ` φ2 : rtype

Γ ` ρ(φ(k)) => agent(φ1, φ2) : Γ

(11)

Figure 6: MAP typing rules.

the bottom left of each rule, in an approximately clock-
wise manner. For example, Rule 6 states that in order to
check the sequence op1 then op2 in Γ and role r, we
must first check op1 in Γ, which yields Γ′, and then we
check op2 in Γ′ which yields the final environment Γ′′.
For brevity we have omitted the majority of the opera-
tions in MAP, as they are all defined similarly to Rule 6.
We only consider the operations and actions which up-
date the environment.

The typing process begins in Rule 3 which simply
decomposes a scene into a collection of separate typing
problems, where each role and associated set of meth-
ods are considered individually. In Rule 4 we consider
a single role r, and all the methods associated with this
role. The method declarations are checked (by Rule 5)
before the operations which comprise the method, as we
wish to have all the method declarations in the environ-
ment before typing the method calls. Method calls are
typed in Rule 7, which ensures that a matching method
can be found.

Procedure calls are typed by ensuring that every in-
vocation of a procedure p is performed with the same
argument types. This is accomplished by storing the ar-
gument types of the first call to the procedure in the en-
vironment, and then checking that all subsequent calls
are consistent with the types in the environment. Rule 8
enters the argument types into the environment if no ex-
isting match is found, and Rule 9 checks subsequent
calls for consistency.

The typing of message passing is performed in a sim-
ilar way to the typing of procedures. We ensure that the
types of the terms which are associated with a perfor-
mative ρ are all consistent with one another. Rule 10
enters the performative types into the environment if no
existing match is found, and Rule 9 checks subsequent
performatives for consistency. The rules for message
passing also ensure that φ1 is a valid agent name, and
φ2 is a valid role name. We have only defined the typing
rules for sending messages here. The rules for message
receipt are essentially identical.

5 Conclusion

The purpose of this paper was to demonstrate that we
can use protocols to assist in the construction, enact-
ment, and verification of peer-to-peer (P2P) systems.
Specifically, our previous research on agent protocols
can readily be adapted to the composition of the as-
sociated web services. Our technique is founded on

7

MAP, which is a formally-defined and executable pro-
tocol language. MAP is a lightweight formalism, pro-
viding only a minimal set of operations. This was a
deliberate choice as it allowed us to define the lan-
guage and the type system without unnecessary com-
plication. However, we are now considering many en-
hancements to the language that would make it more
suited to P2P architectures. These enhancements in-
clude explicit support for different message communi-
cation patterns, improved fault-tolerance mechanisms,
and additional data-types.

The MAP language can be used to encode a wide
range of protocols, as previously demonstrated in our
work on agent protocols. However, the hand-encoding
of protocols into the MAP formalism remains a time-
consuming process. We are therefore currently consid-
ering a number of approaches which will permit proto-
cols to be constructed in a more efficient manner. The
simplest approach is the provision of a graphical tool
for constructing protocols. Beyond this, we would like
to support the automatic generation of protocols. We
have made some initial progress into the construction
of protocols as an outcome of a planning process.

A further issue that we intend to address, concerns
the discovery of web services. At present, the web ser-
vices that we use to define a system must be known in
advance. We would like to relax this restrictions, and al-
low a more flexible kind of composition, which allows
for (semi-)automatic web service discovery and invoca-
tion. For this, we will need semantically annotated web
services, on which we can reason about the behaviour of
the services. This is currently an active area of research
in the Semantic Web community.

References

[1] L. Cardelli. Type Systems, chapter 140, pages
2208–2236. The Computer Science and Engineer-
ing Handbook. CRC Press, 1997.

[2] M. Esteva, J. A. Rodrı́guez, C. Sierra, P. Garcia,
and J. L. Arcos. On the Formal Specification of
Electronic Institutions. In Agent-mediated Elec-
tronic Commerce (The European AgentLink Per-
spective), volume 1991 of Lecture Notes in Artifi-
cial Intelligence, pages 126–147, 2001.

[3] N. Kavantzas, D. Burdett, G. Ritzinger,
T. Fletcher, and Y. Lafon. Web Ser-
vices Choreography Description Language

(WS-CDL) Version 1.0. Available at
http://www.w3.org/TR/ws-cdl-10/,
December 2004.

[4] R. Milner. Communication and Concurrency.
Prentice-Hall International, 1989.

[5] R. Milner, J. Parrow, and D. Walker. A Calculus
of Mobile Processes (Part 1/2). Information and
Computation, 100(1):1–77, September 1992.

[6] M. Oriol. Peer Services: From Description to In-
vocation. In Proceedings of the First International
Workshop on Agents and Peer-to-Peer Comput-
ing (AP2PC02), volume 2530 of Lecture Notes in
Computer Science, pages 21–32, July 2002.

[7] M. Purvis, M. Nowostawski, S. Cranefield, and
M. Oliveira. Multi-agent Interaction Technology
for Peer-to-Peer Computing in Electronic Trading
Environments. In Proceedings of the Second In-
ternational Workshop on Agents and Peer-to-Peer
Computing (AP2PC03), volume 2872 of Lecture
Notes in Computer Science, pages 150–161, July
2003.

[8] M. Singh. Peer-to-Peer Computing for Informa-
tion Systems. In Proceedings of the First Interna-
tional Workshop on Agents and Peer-to-Peer Com-
puting (AP2PC02), volume 2530 of Lecture Notes
in Computer Science, pages 15–20, July 2002.

[9] C. Walton. Model Checking Multi-Agent Web
Services. In Proceedings of the 2004 AAAI Spring
Symposium on Semantic Web Services, Stanford,
California, March 2004. AAAI.

[10] C. Walton. Multi-Agent Dialogue Protocols. In
Proceedings of the Eighth International Sympo-
sium on Artificial Intelligence and Mathematics,
Fort Lauderdale, Florida, January 2004.

[11] C. Walton and A. Barker. An Agent-based e-
Science Experiment Builder. In Proceedings of
the 1st International Workshop on Semantic Intel-
ligent Middleware for the Web and the Grid, Va-
lencia, Spain, August 2004.

[12] C. Walton and D. Robertson. Flexible Multi-
Agent Protocols. In Proceedings of UKMAS
2002. Also published as Informatics Technical Re-
port EDI-INF-RR-0164, University of Edinburgh,
November 2002.

8

