
Exploiting interaction contexts in P2P ontology mapping

Paolo Besana, Dave Robertson and Michael Rovatsos
Centre for Intelligent System and their Applications

School of Informatics

University of Edinburgh

Abstract

Agents in peer-to-peer networks may gather into virtual
communities, interacting continuously with agents that
represent disparate actors, each of them with different
interests, needs and views, and having dissimilar on-
tologies. Mapping all the combination of ontologies in
advance is not feasible simply because all the possible
combinations cannot be foreseen. Mapping complete
ontologies at run time is a computationally expensive
task. The framework proposed in this paper maps only
the terms encountered in a dialogue, or those needed
to map them. The efficiency in the mapping process is
increased by accumulating experience and exploiting it
in order to reduce the number of mapping candidates to
verify, focusing only on the most likely ones.

1 Introduction

Open and Peer-to-Peer networks can form the bases for
the ascent of virtual communities populated by agents.
Agents, acting on the behalf of their owner, will enter
and exit these communities: some will offer or sell ser-
vices and knowledge, others will look for them.

For example, in a possible future scenario when e-
paper will be reality and comfortably readable by hu-
mans, we can think of communities composed of li-
braries, publishers, readers and reviewers. The agents
representing these actors will gather together and in-
teract: readers will query libraries for books, and will
download copyrighted e-documents with an expiration
date, or buy them from publishers. Libraries will buy
rights for lending the documents from publishers, or
will ask to other libraries for external lending. Authors
will contact publisher offering their books, reviewers

will be contacted by publishers or readers for an opin-
ion.

Some agents will work under the direct control of
the user they represent, such as the reader, with limited
autonomy. Other agents will have different levels of au-
tonomy, depending on the role they have in the interac-
tion: for example the interactions for lending a book or
the sale of a licence may be completely autonomous,
while other interactions, such as those involving the
choice of what book to buy for a library, will be kept
by under the supervision the real world actors.

1.1 Protocol-Based Coordination

Most of the interactions between agents will follow a
rather predetermined path: there is usually no need to
plan them every time from the scratch, and there is of-
ten little need to reason on the proper reaction for each
of the received messages:protocols, described in lan-
guages such as the Lightweight Coordination Calculus
(LCC) [8, 9], can be very conveniently exploited for the
interactions.

An LCC protocol, such as the one shown in figure 1,
describes a dialogue among different agents. It is based
on process calculus, expressed with horn clauses. Send-
ing and receiving messages are the basic behaviours,
while more complex behaviours can be expressed us-
ing connectives that allow the creation of sequences,
choices or parallelisations. The protocols are logic pro-
grams that can be directly executed once they are re-
ceived or loaded. A protocol contains a clause for each
role, that describes the possible steps for an agent that
has taken the specified role in the dialogue. Each step
can have a precondition that must satisfied before pro-
ceeding, and postconditions that must be satisfied after

1

a(reader(L), R) ::=
download(Title) => a(library,L) <-- want(Title)
then
(ask(accept(Licence)) <= a(library,L)

then (tell((accept(Licence)) => a(library,L) <-- acceptable(Title, License)
then document(Title, File)) <= a(library,L))
or cancel => a(library,L))

)
or unavailable <= a(library,L).

a(library, L) ::=
download(Title) <= a(reader(_),R)
then
(ask(accept(Licence)) => a(reader(_),R) <-- under_licence(Licence,Title)

then ((tell(accept(Licence)) <= a(reader(_),R)
then document(Title,File) => a(reader(_) <-- fetch(Title,Document))
or cancel <= a(reader(_),R))

)
or unavailable => a(reader(_),R).

Figure 1: LCC protocol for an interaction between a library and a reader

the step is taken. Protocols should be coupled with on-
tologies that describes the terms used in the messages
and in the constraints.

Protocols make few assumptions on coordination
skills of the agents. Fewer assumptions means that
more agents can take part in the communities: "socially
simple" agents can just execute predefined protocols,
still offering their specialised knowledge or services.
More sophisticated agents, on the other hand, can syn-
thesise protocols, planning the interactions needed for
more complex tasks.

1.2 Ontologies mismatch

In the described scenario, each agent will define its
knowledge, services and goals using an ontology. A li-
brary agent will have an ontology to classify its books,
to define the features of books (author, title, pub-
lisher...). A publisher agent will have an ontology to
classify its books and to define their features, as well as
to define the details about the licences and pricing. A
reader or a reviewer will have an ontology to classify
books.

Each agent will likely have different ontologies.
Sometimes the differences simply reflect the different
views of the developers, often they mirror the different
needs and interests of their owner.

Imposing the same ontology on all agents is difficult
and probably infeasible. First some "social" problem
arise: who imposes it? Why should others accept it?
Besides, differences in the interests and needs can make

hard to create a consistent ontology that contain all the
concepts. Finally, it is difficult to keep track of the evo-
lution of an ontology: some agents may keep the pace
of the updates, while others may remain with out of date
versions. Different versions of the same ontology can
sometimes be treated as different ontologies [5].

1.3 Ontology Mapping

A more flexible approach to tackle this heterogeneity
consists in finding mappings between the ontologies:
most mapping processes are aimed at statically align-
ing or merging complete ontologies [6, 4, 7]: two or
more ontologies are reconciled and the result is stored
for possible future use. The research is focused on the
process of mapping, and it is interested in mapping as
many concepts as possible in the ontologies.

In open multi-agent systems, such as the one de-
scribed in the introduction, agents interact with many
different agents, and it is impossible to foresee all the
possible combinations of ontologies. At the same time,
mapping whole ontologies at every interaction is often
not practicable: it is generally a lengthy process while
interactions are often required to be rapid and can also
occour simultaneously. Moreover, agents may have on-
tologies that cover dissimilar domains, with only parts
overlapping. The mapping process tries to find relations
for all the concepts, and fails on most of them, wasting
resources.

1.4 Proposed approach

However, a complete ontology mapping is not a re-
quirement for interactions: agents need to understand
each other just enough to carry out their task. Once
the task is performed, the mutual understanding is no
longer important, as agents interact continuously with
different agents, and the mapping found once might be
useless other times. In fact, agents need to share only
the parts of their knowledge contextual to the interac-
tion in which they are involved.

In this paper we present a framework to map dynami-
cally, and only when needed, the portions of the ontolo-
gies required for perform an interaction dialogue.

2 General definitions and assump-
tions

2.1 Agent model

Each agentai has its own communication environment
ei, consisting of the ontologyOi that defines the terms
available to the agent and of the axioms it can use to
reason. An environment can be seen as the context of
an agent, as described in [2], but renamed to avoid name
conflicts with the concept of context used in this paper.
A definition is valid only within an environment, and
an agent can reason over concepts defined in other en-
vironments only if mapped to some concepts in its own.

We can model an agent as being composed by two
layers: acommunication layer, and areasoning layer.
The communication layer is independent from the on-
tology. It interprets the protocols described in section
1.1 and handles the transmission and reception of mes-
sages. The reasoning layer contains all the agent’s skills
and knowledge, and it is accessible from the communi-
cation layer through access points.

During the execution of a protocol script, the com-
munication layer of the agentai asks the reasoning
layer to satisfy the constraintsΨk = {C1, ..., Cn}
that define the preconditions of a stepsk. In the ex-
ample, the library agents must satisfy the constraint
available(Title) before proceeding in the dia-
logue.

2.2 Ontologies

The ontologies referred in this paper are taxonomies
with roles. Concepts can subsume each other, as well
as be related by roles, which can be with or without
value restrictions. At this stage concepts defined using
more complex constructors, such asintersection, union
or complement, would not be understood by the system.

2.3 Communication model

An interactionk between agentsai and aj is an ex-
change of messagesm. Each message is sent coupled
with the interaction protocolP and consists of a se-
quence of terms:

m = 〈t1, . . . , tn〉
For brevity, when talking about an agent, terms de-

fined in other environments will be calledexternal
terms, and will be referenced asti, while terms defined
in the agent’s environment will be calledinternal terms,
and will be referenced aswi, as in the ontology in figure
3.

For any interactionk every involved agentai pub-
lishes an ontology subsetOki , valid in the context of
the interaction, to explain the terms it has inserted in the
dialogue. For example, the library agent should publish
an ontology to define the different possible licences un-
der which the documents can be downloaded.

2.4 Semantic bridges

The semantic relations between terms defined in differ-
ent environments are defined as semantic bridges (or
mappings or simply bridges) [7]. A bridgeb is the tu-
ple:

b = 〈relation, t, w, c(true), c(false)〉
where relation is the hypothesised semantic rela-

tion between the termst and w (equivalence or sub-
sumption), whilec(true) is the confidence level that the
bridge is correct andc(false) that the bridge is wrong.
This because the two confidence levels might not sum
to one, as ignorance should be taken into account.

Within an environment, a bridgebh is more generic
(�) than another bridgebg, if the external termt is the
same in both and the internal termwh of bh subsumes
the internal termwg in bg (wh w wg):

bh � bg ↔ (wh w wg) ∧ (th = tg)

Converselybh is more specific than bridgebg if wg sub-
sumeswh (wh v wg):

bh � bg ↔ (wh v wg) ∧ (th = tg)

During the interactionk the bridges are stored in the set
Bk.

For example, using the ontology in figure 3, the
bridge 〈t v w2〉 is more generic than the bridge
〈t v w5〉 becausew2 is more generic and subsumesw5.

3 Framework

The mapping process is the core of the framework. Dur-
ing an interactionk, it receives an external termt, uses
its own ontology and returns the most specific mapping
foundbtk. It is an iterative process, as described in fig-
ure 2, with a primary loop and a secondary loop.

At every iterationi, a semantic bridgebtki is created
for the external termt. The bridgebtki is more specific
than the bridgebtk(i−1), verified in the previous itera-
tion:

bn � bn−1 � . . . � b1

In the main loop, at every iterationi, the framework
executes three steps: it first generates hypotheses for
the most generic mappings that imply the mapping
btk(i−1), then filters the most probable hypotheses, and
finally collects evidence for the remaining hypotheses,
selecting the most reliable hypothesis.

The loop ends when it becomes impossible to gen-
erate hypotheses that imply those proved in the previ-
ous step, or none of the hypotheses generated can be
proved. The bridge created in the last iteration, and
therefore the most specific, is returned and added to the
setBk of all the bridges used in the interactionk. These
mappings are then used to translate the requests from
the communication layer to the reasoning layer.

3.1 Generate the hypotheses

At each iterationi the function GENERATE-HP receives
the external termt and the bridgebtk(i−1) containing
the mapping proved in the previous iteration, and re-
turns a set of hypothesesΩ about the most generic map-
pings that implybtk(i−1).

For example, ifbtk1 = (t v w1), btk2 = (t v w2) ,
given the ontology in figure 3, then for the iteration #3:

w10w9w8w7w6w5

w2 w3 w4

w1

Figure 3:Oi ontology

Ω3 = {〈{v,w,≡} , t, w5〉 , 〈{v,w,≡} , t, w6〉}

The generation must include, as hypotheses, the cases
in which the term in the message should not be mapped:
when it is a number, or when it is a new term received
by the agent as a reply to a question. For instance, if an
agent asks to a library who are the most downloaded au-
thors, the reply is likely to be a set of new terms for the
inquiring agent. Mapping the terms to a classperson
is logically consistent, but it is meaningless for the pur-
pose of the dialogue.

3.2 Filter the hypotheses

The framework usesprefilters to prune hypotheses:
prefilters should process quickly the hypotheses using
heuristics about past and current interactions, without
requiring any symbolic reasoning or semantic analysis
of the mappings proposed. The aim is to minimise, on
average, the number of wrong hypotheses to check.

The function FILTER-HP receives a set of hypotheses
Ω and returns a subsetΩ′ of hypotheses. It combines
the results of different prefilters, extracting the inter-
section of the subsets generated by each filter.

If none of the filtered hypotheses is proved, the func-
tion may be called more than once in the same main
iteration, and at each round the function relaxes the fil-
ter to obtain a wider set of argument trees.

A filter fi is characterised by itsbreadthandconfi-
denceand is composed by two functions, FILTER() and
FEEDBACK(): FILTER() is the function that actually
prunes the hypotheses, while FEEDBACK() is called af-
ter a term is successfully mapped, and receives the new
bridge that can be used to improve the prefilter’s heuris-
tics.

b
tk

b
tk

b
tk

null(b)tkgenerate−hp

b
tk

empty() filter−hp select−hp
Ω Ω

Ω

’

t

no

yes

yes

no

Figure 2: framework process

Thebreadthis the “band-pass” of the filter: the nar-
rower, the fewer hypotheses are left to verify. If the
function FILTER-HP must be repeated within the same
iteration, the narrowest filter used in the previous call is
removed from the set of applied filters, until no filters
are left.

The elementconfidenceindicates how likely is it that
the correct hypothesis is in the subset selected by the
FILTER().

3.3 Select the best hypothesis

In this step, the system processes the set of hypothe-
ses filtered by the previous step, and tries to extract the
most likely one. If the system fails to select any hypoth-
esis, it goes back to the previous step, relaxes the filter
if possible, and tries to obtain a wider set of hypotheses,
as described in the previous section.

This step is composed by three actions.

3.3.1 Collect evidence

The framework processes the filtered hypotheses using
selection rules. A selection rule generates an argument
in favour or against a hypothesis. Rules can be based on
syntactic matching or can be based on semantic match-
ing. A possible rule can search for common substrings.
Another possible rule can check if the terms in the hy-
pothesis are synonyms using an external oracle, such
as WordNet. A more complex rule can check, when
terms are properties, if they have equivalent range and
domain, generating more hypotheses.

Algorithms developed and tested for static mapping
can be used by the rules to collect evidence for or
against a hypothesis: working only on a subset of hy-
potheses, these algorithms do not need to compute use-
less mappings. Therefore, algorithms like S-Match or
CTXMatch can be used for this purpose.

Arguments gathered in favour or against a hypothe-
sis are organised in a tree: the root is the hypothesis
to verify. The branches connected to the root are ar-
guments attacking or supporting the hypothesis in the
root. A rule can produce an argument that requires fur-
ther verification. For example, to check the equivalence
between two properties, the system may use a rule that
checks if the two properties have equivalent domains,
as the ruler2 in figure 4. The rule generates the argu-
ment<eqDom,t1,w2> . To accept the argument as a
support for the hypothesis, the system must verify the
equivalence between the domainst2 adw3of the prop-
erties, for example using the ruler1 . If the terms are
not equivalent, then the argument becomes an attack to
the hypothesis.

Formally, a rule is the tuple:

ri = 〈id, π, I, proc, c(hp|arg), c(¬hp|¬arg)〉

whereπ is the pattern of the proposition in the hypoth-
esis to verify, the setI is the information the system
needs to collect in order to generate the argument. The
information is about terms semantically related to the
terms in the proposition (such as, for example, the su-
perclasses, the subclasses or the instances). Informa-
tion about internal terms are easily accessible, while the

<=,t1,w2>

<syns,t1,w2> <eqDom,t1,w2> <eqRan,t1,w2>

<=,t4,w6><=,t2,w3>

<syns,t4,w6>

r1

r1

<syns,t2,w3>

r1

r2
r3

Figure 4: An argument tree

agents may need to ask to the other agent for informa-
tion about external terms, if the information is not di-
rectly available in the published ontology.

The rule specifies two confidence levels, that mea-
sures how strong is the support or the attack of the argu-
ment generated by the rule:c(hp|arg) is the confidence
level that the hypothesis is true, given that the support-
ing argument is true, whilec(¬hp|¬arg) that it is false,
given that the supporting argument is false.

The system processes one argument tree at a time,
and returns an updated version of the tree: it finds
the first argument to prove, extracts the proposition,
chooses the matching rule and calls the procedure spec-
ified in the rule, creating an argument added to the tree.

3.3.2 Combine evidence

The arguments in the tree are combined to obtain two
confidence levels for the hypothesis: one that the hy-
pothesis is true, and one that it is false.

If a hypothesis has just one argument, the confidence
that the hypothesis is true is thea posterioriconfidence
that the hypothesis is true given that the argument is
true:

c(hp) = c(hp|arg)c(arg)

where thea posteriori confidencec(hp|arg) is given
by the rule, while the confidence of the argument being
truec(arg) is computed for the argument, either by the
procedure itself, or recursively from other arguments.
Similar considerations apply for thea posterioriconfi-
dence that the hypothesis is false. When there is more
than one argument, thea posterioriconfidences must
be combined.

It cannot be assumed that the confidences about the
truth values of a hypothesis sum to one: if a rule estab-
lishes that a hypothesis is true with 40% of confidence,
it does not imply that the hypothesis is false with 60%
of confidence. Therefore, the theory used to combine
confidences should be able to express ignorance about
the truth value of the hypothesis.

One possible approach is Dempster-Shafer theory
[10], which computes the probability of a proposition
supported by evidences. In Dempster-Shafer theory the
belief in a proposition and the belief in its negation are
not required to sum to one: the theory introduces the
concept of plausibility, that is the extent to which the
available evidence fails to refute the proposition. The

interval between the belief and the plausibility is the ig-
norance about a proposition.

Moreover the theory provides a formula, called
Dempster’s rule of combination, to combine the evi-
dencesmi for a propositionA.

In Dempster-Shafer theory,c(hp) is interpreted as
the belief that the hypothesis is true, while1 − c(¬hp)
is the plausibility that the hypothesis is true.

3.3.3 Harvest Hypothesis

At the end of an iterationi , the hypothesis with the
highest confidence is selected. If there are more than
one hypothesis within a narrow band of confidence, the
system first tries to apply more rules - if available - to
gather more evidence for the conflicting hypotheses. If
the conflict remains, it takes the strongest hypothesis,
even if the interval is minimal. Then the procedure
restarts, until no more hypotheses can be generated.

The bridge obtained in the last iteration is extracted
and pushed into the setBk of the bridges for the inter-
action.

3.4 Relation between filters and rules

As the heuristics available to the prefilters improves us-
ing the feedback obtained from proved hypotheses, the
confidence about the result increases and the set of hy-
potheses filtered narrows: in the long run, the prefilters
can replace the rules, at least for some external terms,
making the mapping process quicker.

4 Statistical prefilters

As noted in the section 3.2, prefilters must operate
rapidly, making it difficult to apply complex, symbolic
or inductive inference methods. Nevertheless, it is im-
portant that mapping performance should improve with
experience. One way to avoid this dilemma is to har-
ness the large volume of event-based data available as
feedback from previous interactions in order to deter-
mine statistical patterns.

4.1 Statistical contexts

As hinted in section 1.4, contexts can be the key to fo-
cus the search of the correct mappings: an external term

is unlikely to be mapped to a term that is completely un-
related from the context of the interaction.

There are many different proposals, from various dis-
ciplines, for the theoretical definition of contexts [3], al-
though remains the problem of how to create a context
for a conversation.

Yet, contexts can be seen as possible patterns in in-
teractions: some terms tend to appear together in differ-
ent dialogues about similar topics. Some of these terms
are actually contextual to the topic of the conversation
(document, download,...), and do not appear in conver-
sations about other subjects, while other terms are aux-
iliary to any kind of conversation (ask, inform,...).

Following this intuition, the terms can be clustered
together, and each cluster is a possible context for an
interaction. The contexts are created and updated using
the feedback from the framework and they are used to
predict which are the most likely terms that can occour
during a conversation, excluding hypotheses relative to
unrelated terms.

4.1.1 Definition

More formally, acontextis a set of internal elementsη,
identified by a unique number and characterised by the
numberN of dialogues used to build this context.

Each term elementηi in S is a pair:

ηi = 〈w, µC〉
wherew is the term in the agent’s ontology andµC

is the grade of membership of the term in the context:
terms can appear in contexts with different frequencies:
some will occour in every dialogue classified by the
context, other will appear more rarely. The same term
can appear in different contexts with different grades of
membership.

The functionµC(K) returns the grade of member-
ship to a contextC of a setK of terms:

µC(K) = 1
|K|

∑
w∈K µC(w)

4.1.2 Use

Contexts are used to classify dialogues as they are per-
formed. After a new term is mapped during the in-
teraction, the system tries to reclassify the dialogue:
it searches the contexts that maximise the function
µC(W), whereW is the set of internal terms in the
bridges contained inBk.

When an interaction starts, the framework will use
the protocol ontology to map the terms in the clauses
relative to its role in the uninstantiated LCC dialogue.
Following the example described in the introduction, if
the reader agent wants to download an ebook, it first
obtains the protocol, shown in figure 1, needed for the
interaction with the library, and then it tries to map the
termsdownload , library , want , ask , accept ,
document , unavailable contained in the clause
about the rolereader .

At the beginning of this process, there are few
mapped terms and it is difficult to classify the dia-
logue properly, and more than one context can classify
it. When all the uninstantiated dialogue is mapped, the
number of terms inW reduces the number of contexts
that can classify the dialogue.

Then, as the interaction proceeds, the number of
terms inW increases, further reducing the number of
contexts that can classify the dialogue.

The selected contexts are used to filter the generated
hypotheses set: if some terms in the set never appear
in the contexts, then it is possible to exclude these hy-
potheses, adding evidence for the remaining hypothe-
ses.

Therefore, exploiting the received protocol, the sys-
tem is already able, at the start of a conversation, to fo-
cus on a reduced set of terms that are more likely than
others to show up during the conversation, and this fo-
cus increases with the conversation.

When a dialogue is finished, the internal termsW
used in it are stored and added to a context. The first
dialogue ever to be performed by the agent creates the
first context. The terms inW are inserted in the context
that classifies them better. If no context classifies them
well enough, then a new context is created.

4.2 Past mapping experience

Another possible pattern to identify is that some exter-
nal terms, independently from the ontology that defines
them, have always the same semantic relations with the
same terms in the agent’s ontology. Each stored map-
ping is coupled with a confidence level: the more often
a particular mapping is proved, the higher its confidence
is.

4.2.1 Definition

The set of previous mappingsΛ contains a tupleλi for
each mapping proved in the past, composed by three
elements:

λi = 〈b, sm, na〉
b is the hypothesis verified in the past,sm is the cumu-
lative confidence of the hypothesis being true, andna is
the number of time the term mapped in the hypothesis
has appeared in dialogues. The cumulative confidence
is always related to the number of appearances of the
term: if a term has appeared very rarely, the system
cannot rely much on the past mapping.

4.2.2 Use

When the system must select hypotheses for an external
term, it can look in past mappings for the term: it then
keeps the hypotheses implied by the past mappings, and
discards the others.

For instance, during a certain iteration in the map-
ping process, given the generated hypothesesΩ =
{t v w2, t v w3, t v w4}, the past mappingsΛ =
{〈t v w5, 4, 5〉}, and the ontology in figure 3, the strat-
egy should discard botht v w3 andt v w4 and keep
t v w2 as the past mappingt v w5 implies it.

Mappings established for a particular external ontol-
ogy, and received as feedback from the framework, are
stored for future use. When mappings are encountered
repeatedly, the confidencesm in the past mappingλi is
increased by the confidence in the bridge, whilena is
incremented by one in all the stored bridges relative to
the same external term.

There is no issue about inconsistency, as conflicting
past mappings are used only as suggestions about the
order in which the hypotheses should be checked: con-
flicting hypotheses are tolerated by collecting evidence
in favour or against them.

5 Related work

The QOM project (Quick Ontology Mapping), de-
scribed in [1], addresses the problem of trading qual-
ity for efficiency, in a partially similar way. As in this
framework, the possible mapping candidates are filtered
using different strategies in order to reduce the time
spent computing similarities between unrelated terms.

However, it is oriented toward mapping whole on-
tologies: there is no concern about the contexts of inter-
actions, and the filters are only based on the ontologies
themselves (hierarchy, node labels, etc).

6 Conclusion

In this paper we presented a framework to allow agents
in open, non deterministic networks, to interact with
other agents that do not share the same ontology. In
the framework, only the portion of ontologies relevant
to the interaction are mapped: the system searches the
relation between terms encountered in the dialogue and
terms defined in its own ontology. The efficiency of
this search is improved exploiting the structure of the
ontologies and the statistical patterns threaded in the di-
alogues.

Although at an early stage, with many details still to
be resolved, the approach seems promising, especially
coupled with the protocol architecture.

References

[1] Marc Ehrig and Steffen Staab. Qom - quick on-
tology mapping. InInternational Semantic Web
Conference, pages 683–697, 2004.

[2] Fausto Giunchiglia. Contextual reasoning. Tech-
nical report, IRST, Istituto per la Ricerca Scien-
tifica e Tecnologica, 1992.

[3] Fausto Giunchiglia. A context-based framework
for mental representation. Technical Report 9807-
02, IRST Istituto per la ricerca scientifica e tecno-
logica, july 1998.

[4] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai
Yatskevich. S-match: an algorithm and an imple-
mentation of semantic match. InIn Proceeding
of the European Semantic Web Symposium, pages
61–75, 2004.

[5] A. Hameed, A. Preece, and D. Sleeman.Ontology
Reconciliation, pages 231– 250. Springer Verlag,
Germany, 02 2003.

[6] Yannis Kalfoglou and Marco Schorlemmer. On-
tology mapping: the state of the art.Knowledge
Engineering Review, 2003.

[7] Silva Nuno and Joao Rocha. Mafra - an ontol-
ogy mapping framework for the semantic web. In
Proc. of the 13th European Conf. on Knowledge,
1999.

[8] D. Robertson. Multi-agent coordination as dis-
tributed logic programming. InInternational
Conference on Logic Programming, Sant-Malo,
France, 2004.

[9] David Robertson. A lightweight coordination cal-
culus for agent systems. 2004.

[10] Yager. Advances in the Dempster-Shafer Theory
of Evidence. John Wiley, New York, 1994.

