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Abstract

This work presents a method for multi-organ segmentation
in whole-body CT images based on a multi-atlas approach.
A robust and efficient feature-based registration technique
is developed which uses sparse organ specific features that
are learnt based on their ability to register different organ
types accurately. The best fitted feature points are used in
RANSAC to estimate an affine transformation, followed by
a thin plate spline refinement. This yields an accurate and
reliable nonrigid transformation for each organ, which is in-
dependent of initialization and hence does not suffer from
the local minima problem. Further, this is accomplished at a
fraction of the time required by intensity-based methods. The
technique is embedded into a standard multi-atlas framework
using label transfer and fusion, followed by a random forest
classifier which produces the data term for the final graph cut
segmentation. For a majority of the classes our approach out-
performs the competitors at the VISCERAL Anatomy Grand
Challenge on segmentation at ISBI 2015.

1 Introduction

Segmentation is a key problem in medical image analysis, and may be used for numerous appli-
cations in medical research and clinical care. In this paper, a pipeline for the segmentation of
whole-body CT images into 20 different organs is presented. The approach is based on multi-atlas
segmentation, see [KSK+10, HKA+10, WSD+13] and the references therein, an approach which
is known to produce state-of-the-art results for several segmentation tasks. The method requires
pair-wise registrations from a set of atlas images to the unknown target image.
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Figure 1: Two CT slices of a target (left) and atlas (right) with corresponding features after RANSAC for
Lumbar Vertebra 1.

In principle, there are two different approaches to image registration, feature-based and intensity-
based registration, see the surveys [KBG+11, SDP13]. Intensity-based methods are capable of
producing accurate registrations but are sensitive to initialization and often slow. Feature-based
methods are usually faster, but may risk failing due to many outlier correspondences between
the images. Our approach is an adapted feature-based method that utilizes the speed of general
feature-based methods while trying to eliminate the risk of establishing incorrect point-to-point
correspondences between the images by identifying reliable feature points. We show that reliable
organ localization can be computed using (i) robust optimization techniques and (ii) learned feature
correspondences.

2 Proposed Solution

Our system segments each organ independently of each other using a multi-atlas approach. The
pipeline has three steps:

1. Feature-based registration with RANSAC.

2. Label fusion with a random forest classifier.

3. Graph cut segmentation with a Potts model.

These steps will now be described in more detail.

1. Feature-based registration with RANSAC. In order to register an atlas image to the
target, a feature-based approach is used. Sparse features are extracted according to Svärm et
al. [SEKO15], which uses a method similar to SIFT for feature detection and SURF for feature
description. Typically around 8,000–10,000 features are extracted from a 512×512×800 CT image,
which takes less than 30s. Correspondences are obtained by matching a subset of the features in the
atlas image to the features in the target. The matching is done with a symmetric neighbor approach,
where each descriptor is matched to its nearest neighbor. The organ-specific subset of atlas features
is determined as a pre-processing step in the following way. For each atlas image and organ, golden
transformations are established to the other atlas images using the ground truth segmentations.
Then, based on these transformations, one can check which features in the atlas image of interest
that are most accurate, and rank the features accordingly. We have found empirically that using the
top 300 best features for each organ provides robust and reliable registration. Standard RANSAC



Figure 2: Example registration of Lumbar Vertebra 1. Left: the atlas ground truth mask. Middle: the TPS
warped target mask. Right: The masks overlaid in the same coordinate system.

with the truncated `2 as cost function is used in order to remove outliers. The optimization is run
500, 000 iterations and the truncation threshold was set to 30 mm. See Figure 1 for an example.

Finally, a coordinate transformation from the atlas to the target image is computed by applying
thin plate splines (TPS) to the remaining correspondences, and thereafter used in order to transfer
the labels of the atlas to the target image. The thin plate spline method proposed in [CR00] was
used. One registration takes less than 10s in total. See Figure 2 for an example.

For several of the organs, the registrations are refined with a standard intensity-based method.
More specifically, we used NiftyReg [ORS+01] which takes around 100–200s per registration.

2. Label fusion with a random forest classifier. The pairwise feature-based registrations
give us a rough idea where the organ is located. In order to fuse the transferred labels, one can
compute an average voxel map, denoted P . Hence, for voxel i, the map P (i) gives a number between
0 and 1 which can (intuitively) be interpreted as the probability of voxel i belonging to the organ.
For example, if half of the atlas images say that voxel i should be organ, then P (i) = 0.5.

The map P largely ignores the local appearance around the target organ and in order to improve
the accuracy of the estimate, the map P along with a few other features is used to train a random
forest classifier. We use Sherwood [CSK11] to train and evaluate large random forest instances
efficiently. Given a target volume I and the map P , we begin by smoothing both using a Gaussian
kernel with standard deviation σ = 1, resulting in two new volumes denoted Is and Ps. Using cross
validation we also determine a threshold level, τ , for P and construct a distance map D, where
each voxel in D equals the (signed) distance to the boundary surface of the binary volume P > τ ,
that is, the map P thresholded at τ . For each volume I we thus obtain 5 features per voxel i: I(i),
Is(i), P (i), Ps(i) and Pt(i). The output of the classifier produces yet another map, denoted Pr,
which is a refined estimate of the location of the organ. As previously, Pr can be interpreted as the
probability for each voxel belonging to the organ of interest. See Figure 3 for an example.

3. Graph cut segmentation with a Potts model. The random forest classifier generates a
new estimate Pr(i) for each voxel i, but each decision in the classifier is taken independently of the
output of the neighboring voxels of i. This has a tendency of producing noisy boundary estimates
and therefore we will regularize the solution by using a standard Potts model. The final solution
can then by computed with graph-cuts.
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Figure 3: Example of the resulting probability estimates and segmentation of the spleen for one CT
slice; in each image the ground truth (GT) is indicated. Left: the initial probability, P . Middle:
the probability given by random forest, Pr. Right: the resulting segmentation x?
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using Pr overlaid on the original image.

The Potts model penalizes neighboring voxels if they take different labels. Let xi be a Boolean
indicator variable for voxel i, i.e., xi ∈ {0, 1}. Then, for two neighboring voxels xi and xj , the cost
should be zero if xi = xj and λ otherwise, where λ is a positive scalar. This cost can compactly be
written as λxi(1− xj). Further, the data cost for voxel i is set to take value 1/2− Pr(i) if xi = 1
and zero otherwise. This favors voxels with probabilities in the interval [0.5, 1] to be foreground
and voxels with [0, 0.5] to be background.

In summary the final segmentation, x?, is given by the solution to the optimization problem:

x? = argmin
x∈{0,1}n

n∑
i=1

xi

(1

2
− Pr(i)

)
+ λ

n∑
i=1

∑
j∈N (i)

µijxi(1− xj), (1)

where λ is a regularization weight and µij compensates for anisotropic resolution. For all organs
we use a 6-connected neighborhood N . In order to save memory and speed-up calculations we
only process a volume around the zero level of the distance map D with a 20 voxels margin. The
function in (1) is submodular and is minimized efficiently using the graph-cut implementation of
[JSH12].

3 Experimental Results

All the tuning parameters in our system have been set by leave-one out cross validation on the
first 15 of the 20 whole-body CT images available in the VISCERAL challenge. The 5 remaining
images have been used to validate the performance of the random forest classifier and the graph-cut
segmentation. In the training phase, the first 15 images have served as the atlas set, while in the
final version all 20 images are utilized in the atlas.

Our system has been evaluated on a test set of 10 whole-body CT images by the organizers of
the VISCERAL Anatomy Grand Challenge at ISBI 2015. Note that this test set is only available
to the organizers. The final results are given in Table 1 together with the best competitors to date:
• CMIV - “Center for Medical Image Science and Visualization, Linköping University”,
• HES-SO - “University of Applied Sciences Western Switzerland” and
• SIAT - “Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences”.



Organ Our CMIV HES-SO SIAT

Left Kidney 0.934 0.896 0.784 -
Right Kidney 0.915 0.796 0.790 -
Spleen 0.870 0.910 0.703 0.874
Liver 0.921 0.936 0.866 0.923
Left Lung 0.972 0.961 0.972 0.952
Right Lung 0.975 0.970 0.975 0.957
Unirary Bladder 0.763 0.713 0.698 -
Muscle Body of Left Rectus Abdominis 0.746 - 0.551 -
Muscle Body of Right Rectus Abdominis 0.679 - 0.519 -
Lumbar Vertebra 1 0.775 - 0.718 -
Thyroid 0.424 - 0.549 -
Pancreas 0.383 - 0.408 -
Left Psoas Major Muscle 0.861 0.828 0.806 -
Right Psoas Major Muscle 0.847 0.817 0.787 -
Gallbladder 0.190 - 0.276 -
Sternum 0.847 - 0.761 -
Aorta 0.830 - 0.753 -
Trachea 0.931 - 0.92 -
Left Adrenal Gland 0.282 - 0.373 -
Right Adrenal Gland 0.220 - 0.355 -

Average 0.718 - 0.678 -

Table 1: Final results measured in DICE metric for whole-body CT images. Our approach gives
the best results for 13 out of the 20 organs. Here ’-’ means that no segmentation was provided.

4 Conclusions

We have demonstrated that by using a feature-based approach to multi-atlas segmentation, it
is possible to reliably locate and segment organs in whole-body CT images with state-of-the-art
results. Still, there is room for improvement. For example, there is no guarantee that the system
produces a valid organ shape. We are currently working on ways to directly incorporate such
shape priors in the framework. Further, the speed of the system can be improved, for example, by
circumventing the need to perform 20 pairwise registrations for every new target image [ANEK15].
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