
Using Textual and Visual Processing in Scalable Concept

Image Annotation Challenge

Alexandru Calfa, Dragoș Silion, Andreea Cristina Bursuc, Cornel Paul Acatrinei,

Răzvan Iulian Lupu, Alexandru Eduard Cozma, Cristian Pădurariu, Adrian Iftene

UAIC: Faculty of Computer Science, “Alexandru Ioan Cuza” University, Romania

{alexandru.calfa, dragos.silion, andreea.bursuc, paul.acatrinei, razvan.lupu, eduard.cozma,

cristian.padurariu, adiftene}@info.uaic.ro

Abstract. This paper describes UAIC1’s system built for participating in the

Scalable Concept Image Annotation challenge 2015. We submitted runs both

for Subtask 1 (Image Concept detection and localisation) and for Subtask 2

(Generation of Textual Descriptions of Images). For the first subtask we created

an ontology with relations between concepts and their synonyms, hyponyms

and hypernyms and also with relations between concepts and related words. For

the second subtask, we created a resource that contains triplets (concept1, verb,

concept2), where concepts are from the list of concepts provided by the

organizers and verb is a relation between concepts. With this resource we build

sentences in which concept1 is subject, verb is predicate and concept2 is

complement.

Keywords: Text processing, Visual Processing, Text Generation.

1 Introduction

In 2015, UAIC group participated again in CLEF labs [1] in few ImageCLEF tasks

[2] and in this way we continued our previous participation from 2013 when we

participated in Plant Identification task [3]. Like in the 2014 campaign, the Scalable

Concept Image Annotation challenge (from Image CLEF 2015 - Image Annotation2)

task in 2015aims to develop systems that receive as input an image and produce as

output a prediction of which concepts are present in that image, selected from a

predefined list of concepts. In addition, this year the participants must describe

images, localize the different concepts in the images and generate a description of the

scene. This year the task was composed by two subtasks using a data source with

500,000 web page items. For each item we have a corresponding web page, an image

and the keywords extracted from the web page. The participants must annotate and

localize concepts and/or generate sentence descriptions for all 500,000 items. More

details about challenge from 2015 are in [4] and details about challenge from 2014 are

in [5].

1University “Alexandru Ioan Cuza” of Iasi, Romania
2ImageCLEF 2015 – Image Annotation: http://www.imageclef.org/2015/annotation

In 2014, three teams [6, 7 and 8] based their system on Convolutional Neural

Networks (CNN) pre-trained using ImageNet [9].Also, most of the teams proposed

approaches based on classifiers that need to be learned [6] or based on classification

with constructed ontologies [10].

The rest of the paper is structured as follows: Section 2 details the general

architecture of our system, Section 3 presents the results and an error analysis, while

the last Section discusses the conclusions.

2 System components

In 2015, UAIC submitted runs both for concept identification (Subtask 1) and for

generation of a description of the scene (Subtask 2). For that, we built a system,

consisting in modules specialized for text processing and visual processing.

2.1 Subtask 1 - Textual processing

2.1.1 Google Translate

This module calls the Google Translation service3 and it uses a file which contains the

most frequent words in English and a cache file with already translated words. This

cache file contains pairs of words in a foreign language and their translation in

English.

Thus, for translating a current word from the initial file, we consider the following

cases:

• Case 1: If the current word is in the file with most used words in English

then the program uses this English form and then it skips to the new word

from the initial file. If the new word isn’t in this file then we search for it in

the cache file (Case 2).

• Case 2: If the current word is in the cache with translated words we take the

translated form and we skip to the new word from initial file. If not, we call

the translation service (Case 3).

• Case 3: Before calling the translation service, we identify the language of the

word and then we translate this word from the identified language in English.

Example:

Other language:… portada 1104 toronto 1080 por 1029 vuelve
990 sorprender 987 cada 974 escenario 970 pisa 961 concierto 933

…

English: … home 1104 toronto 1080 by 1029back 990 surprise

987 each 974 scenario 970 pisa 961 concert 933 …

3 Google Translation service: https://cloud.google.com/translate/docs

The file with English words contains around 50.000 words and the file with cache

contains 343.121 pairs like (initial_word, translated_word) (until last submission).

From what we see, the files were accessed an average of 400 times per minute.

2.1.2 Stop-words Elimination

This component receives a file with 500,000 lines and tries to remove every stop-

word from every line with its associated number which represents its frequency. We

consider additional elimination of classical stop-words (the, from, it, he, be, is,

has,…) and the elimination of all words with one or two characters. The number of

classical stop-words was 667.

For example, for input line:
000bRjJGbnndqJxV 100 timepiece 7988 the 4823 time 3252 or 3100

of 2664 that 2169 thesaurus 1595 for 1578 device 1569 timepieces

1513 its 1397 measuring 1286 instrument 1285 clock 1268 wheel

1232 from….

after using this component we obtained:

000bRjJGbnndqJxV 58 timepiece 7988 time 3252 thesaurus 1595

device 1569 measuring 1286 instrument 1285 clock 1268 wheel 1232

…

In the end, from a total of 43.448.058 words in the input file, 16.802.111 stop

words were eliminated. From 2 files summing up 457.1 Mb we obtained one file with

299 Mb.

2.1.3 Concept Identification

At this step, we start to build an ontology with relations between the initial 250

concepts and related words to them. For that we used the WordNet4 [11] and we

extracted in average around three synonyms and an average of five words that are

somehow related to the concepts (automatically extracted from WordNet (hyponyms

or hypernyms) and manually verified by human annotators or manually added by

human annotators).

For example, for a concept we have the following information:

Concept: bicycle

Synonyms: bike cycle, two-wheeler, mountain bike, ten-speed,

racing bike, recumbent fixie, penny-farthing, ordinary

velocipede

Lexical family: park garden, tree, flower, wood, grass, path,

kid, child, sport, sun, marathon, equipment, outfit, protection,

street, saddle, handle bar

4 WordNet: http://wordnetweb.princeton.edu/perl/webwn

With this file we execute on the processed file with 500.000 lines (after steps 2.1.1

and 2.1.2) a module which identifies related concepts for every line. For that, for each

word, we try to find a way to connect it to concepts. That implies searching for it in

the list of concepts (case 1) or in list of synonyms (case 2) or in list related to lexical

family (case 3). If a match is found, the word is replaced with its related concept and

placed in the output file along with its initial number (case 1 and case 2) or with a

lower value (case 3).All words that could not be associated with any concept have

been eliminated along with their number.

At the next step we sum the frequencies for the same concept and we put in the

output only one value, with a unique appearance of this concept ID and with the

individual sum value. Next, we normalize all the values on lines and we replace the

individual sum value for every concept with a percentage value obtained after we

calculate a global sum with all individual sum values.

For example, an input line looks like:

timepieces 81 timepiece 7988 time 3252 thesaurus 1595 device

1569 measuring 1286 instrument 1285 clock 1268 wheel 1232 noun

1170 balance 1162 legend 1105 dictionary 1095 …

This is how the same line of data looks like at output:

n03046257 0.527 n04555897 0.1802 n02866578 0.0769 n03249569

0.063 n04574999 0.0604 n06410904 0.0147 …

Additional, to this we built a file with relations between concepts and in case that

one concept is present, we consider also the related concepts with a smaller

percentage. For example, we consider a relation between “ear” and eye (because they

are both body parts), and if we identify in an image the concept “eye” with score

0.0941, we consider also the concept “ear” but with a lower score equal with 0.0001.

Although both the input file and the output file for this module are very close in size,

they differ a lot due to the lack of concept-related words on some lines of the initial

file.

Because, it would have taken us 400 minutes to parse all 500.000 line of data

single-threaded but our program takes around 45 second per 50.000 lines because we

decided to work with 10 execution threads. We need some additional time for the

reconstruction of the final file with 500.000 data, but in the end we reduced the

execution time from 400 minutes to about 15 minutes. All programs were run on an 8-

core i7 Intel processor.

2.2 Subtask 1 - Visual Processing

2.2.1 Face recognition

After downloading all pictures from the URL file using a script, we ran the JJIL5 for

face recognition on all of them. The information we got from this part was merged

with the information obtained by the textual processing component and converted in

the output form.

Fig. 1. An example of image that contains faces

For example for image from Fig. 1, the output after we use the JJIL API is:

n05538625 0.5:165x180+220+273,0.5:155x167+439+227

It’s worth mentioning that in around 10% of images faces were detected (in 48.000

images), though only 75% of images where put through the face recognition JJIL API

(375.000 files) since only this many links were valid.

For example from the following line from the input file:

n03046257 0.7206 n02782093 0.1077 n02866578 0.1071

n04199027 0.0374 ….

This is how the corresponding output looks:

1 000bRjJGbnndqJxV n03046257 0.7:128x126+0+0 n02782093

0.1:128x126+0+0 n02866578 0.1:128x126+0+0 n04199027 …

5 JJIL Face Recognition: http://www.richardnichols.net/2011/01/java-facial-recognition-haar-

cascade-with-jjil-guide/

Downloading about 25.000 images took around 4 hours and after that, detecting

faces in those images took another 2 hours. All programs were run on a single Thread

on multiple computers to reduce the overall time.

2.2.2 Body parts identification

Based on results obtained at 2.2.1 and on image size (width and height), we tried to

approximate the position of the face features using basic human proportions. If the

resulting bounding boxes where inside the image then we used them as they were.

However if one of them was exiting the image boundaries we would cut the outside

part or, if necessary, removed them totally. We used this process for eyes, nose, lips,

head, legs and feet.

2.2.3 Subtask 2 – Text Generation

For Subtask 2 we built a matrix with relations between concepts. In fact we built

triplets in form (concept1, verb, concept2), where concepts are from concepts provided

by the organizers and verb is a relation between concepts. With this resource we build

sentences in which concept1 is subject, verb is predicate and concept2 is complement.

For example, in our matrix are the following types of triplets:

• body_part – wearing – accessories;

• animal – drinking – drink;

• insect – in on – land vehicle;

• animal – near – man made object;

• animal – playing – sport_item_or_toy.

The rate of success in creating sentences for the given images was greater for the

clean track in comparison with noisy track. The program used was single threaded

and took about 4 hours to complete all 500.000 data on a dual core processor.

This is how lines of input data looks like:

1. 000bRjJGbnndqJxV n03046257 n04555897 n02866578 n03249569

n04574999 n06410904 n05600637 n02778669 n05564590 n03479952

n06277280 n02958343

2. 006fmXbGJW3UhmjI n03623556

3. 00DIvt1Zik2Vo1yY n07739125 n05254795 n04100174 n02849154

n03135532 n07848338 n05563770 n02801525 n09328904 n10287213

n03479952 n07747607 n04197391 n05311054 n05598147 n04379243

This is how the same lines of data looks like at output:

1. 2 000bRjJGbnndqJxV The clock is near a ball, the drum is in a

hallway and the wheel is near a clock.

2. 2 006fmXbGJW3UhmjI Empty sentence.

3. 2 00DIvt1Zik2Vo1yY The apple is on a table, the blanket is on

a table and the cross is near a table.

4. 2 00k_Jt7GwBTWPDIP The tower has a door, the pen is on a

table and the radio is on a table.

3 Results and Evaluation

For the 2015 task, our team submitted 4 runs for Subtask 1 and 4 runs for Subtask 2.

The description and duration for every run is presented in bellow Table.

Table 1: Description of runs for Subtask 1

 Description Duration

Run 1 Based on basic textual processing, like stop-words

elimination, lemmatization, using of ontology

3 hours

Run 2 Additional to Run 1 we used the Google Translation service 5 days

Run 3 Additional to Run 2 we used visual processing for face

recognition

12 hours

Run 4 Additional to Run 3, based on rectangle associated to face,

we to add concepts related to body, arms, foots, etc.

4 hours

For Run 2, we used the Google Translation service6 and because we were limited to a

number of requests per second, we inserted some delays between successive calls of

the service. Also, we created a cache with already translated words and before calling

the translation service we checked to see if we have the current word in our cache. If

we did, we skipped the current word and we used the translation from cache. Because

in the input file were millions of words, this component for translation runs more than

5 days, and in the end we didn’t succeeded to translate all words from the initial file.

For the Run 3 and Run 4 we used only the created cache and for this reason the

duration is lower than that of Run 2. For Run 3 we run the face recognition

component on all images, on a distributed architecture with 10 different threads and in

the end we concatenated the results. For Run 4 we used the partial results from runs 2

and 3 and for this reason it took less hours.

Table 2: Description of runs for Subtask 2 Noisy track

 Description Duration

Run 5 Using file with triplets (concept1, verb, concept2), we

build sentences based on first two concepts received as

input

75 minutes

Run 6 Similar to Run 5, where we improve the number of

triplets

2.5 hours

Run 7 Similar to Run 6, with an improved rule for selection of

concepts

2.5 hours

Run 8 Similar to Run 7, with a new version for file with triplets

and with new rules used in selection of most relevant

concepts

5 hours

In the case of Subtask 2 noisy track, from run to run we completed our resource file

with triplets of type (concept1, verb, concept2), and similar we add more new rules for

selection of the most relevant concepts. Of course, the time duration for execution

6 Google Translation service: https://cloud.google.com/translate/docs

increased from run to run. Similar with noisy track, we submitted five runs from R9 to

R13 for Subtask 2 clean track.

3.1 Evaluation for Subtask 1

Table 3 below gives the results for the runs from Subtask 1 described above. More

details are in [4].

Table 3: Results of UAIC’s runs from Subtask 1

% Overlap with GT

labels

R1 R2 R3 R4

50 % 0.020719 0.020009 0.021134 0.055917

0 % 0.185071 0.185288 0.18522 0.265927

As we can see from Table 3, the better run is the R4, where we use all created

components (translation, stop-word elimination, concept identification, face

recognition, body components identification, etc.). Also, in this run we used the final

versions for our resources files with English words, with translated pairs, with

concept synonyms, hyponyms and hypernyms, and related words. The most important

component is component related to the identification of body parts (which is used

only in R4). We can see how results for R1, R2 and R3 are much closed, but the

results for R5 are more than twice as good. Because, between runs (R1 and R2), (R2

and R3) and (R3 and R4), we improve continuous all our resources (resources for

translation, ontology, list with stop-words, etc.) it is hard for us to say what was the

impact of every step performed by us.

3.2 Evaluation for Subtask 2

Tables 4and 5 from below give the results for the runs from Subtask 2noisy track and

Subtask 2 clean track described above.

Table 4: Results of UAIC’s runs from Subtask 2 noisy track

 R5 R6 R7 R8

MEAN 0.0409 0.0389 0.0483 0.0813

STDDEV 0.0310 0.0286 0.0389 0.0513

MEDIAN 0.0309 0.0309 0.0331 0.0769

MIN 0.0142 0.0142 0.0142 0.0142

MAX 0.2954 0.2423 0.2954 0.3234

Table 5: Results of UAIC’s runs from Subtask 2 Clean track

 R9 R10 R11 R12 R13

MEAN 0.1709 0.2055 0.2080 0.2093 0.2097

STDDEV 0.0771 0.0589 0.0654 0.0661 0.0660

MEDIAN 0.1762 0.2078 0.2082 0.2082 0.2085

 R9 R10 R11 R12 R13

MIN 0.0258 0.0290 0.0290 0.0290 0.0290

MAX 0.7246 0.3850 0.7246 0.7246 0.7246

We can see how from run to run the results are improved. For noisy track R8 is much

better than R5, R6 and R7 which have almost similar values. For clean track results

are more closed, but we can see how these results are much better than results from

noisy task. This mean that the selection of most relevant concept is the hardest part

and by this step will depend the final result of this track. Similar to runs R5 to R8

were from run to run we improve our resource with triplets or our rules for building

sentences, we obtained our runs from R9 to R13. For these runs we start from

resources obtained for R8 and then from run to run we analyse our results and we

changed our resources in order to obtain better results.

4 Conclusions

This paper presents the system developed by UAIC for the Scalable Concept Image

Annotation Challenge from ImageCLEF 2015.This system contains components for

Subtask 1 (Image Concept detection and localisation) and for Subtask 2 (Generation

of Textual Descriptions of Images).

For Subtask 1, the main components of the system are related to text processing

(the translation of non-English words, stop-words elimination, and concept

identification) and to visual processing (face recognition and body parts

identification). From the presented results we can conclude that the most important

component is component related to body parts identification which increased

significantly our results.

For Subtask 2, the main components are related to applying templates on selected

concepts, based on a resource with triplets (concept1, verb, concept2). From what we

see, the most important part is related to the selection of most important concepts, and

from this reason the results for clean track are much better than results for noisy track.

For the future, we aim to use more visual processing in order to identify more

concepts from images. Also, on textual processing we want to reduce the time

duration for translation, which was the most time consuming component.

Acknowledgement. The research presented in this paper was funded by the project

MUCKE (Multimedia and User Credibility Knowledge Extraction), number 2

CHIST-ERA/01.10.2012. Special thanks go to all colleagues from the Faculty of

Computer Science, second year, group A1, who were involved in this project.

References

1. Cappellato, L., Ferro, N., Jones, G., and San Juan, E. (editors). CLEF 2015 Labs and

Workshops, Notebook Papers. CEUR Workshop Proceedings (CEUR-WS.org), Vol. 1391.

(2015)

2. Villegas, M., Muller, H., Gilbert, A., Piras, L., Wang, J., Mikolajczyk, K., Seco de

Herrera, A. G., Bromuri, S., Amin, M. A., Mohammed, M. K., Acar, B., Uskudarli, S.,

Marvasti, N., B., Aldana, J. F. and Garcia, M. R. General Overview of ImageCLEF at the

CLEF 2015 Labs. Springer International Publishing, Lecture Notes in Computer Science.

(2015)

3. Șerban, C., Sirițeanu, A., Gheorghiu, C., Iftene, A., Alboaie, L., Breabăn, M. Combining

image retrieval, metadata processing and naive Bayes classification at Plant Identification

2013. Notebook Paper for the CLEF 2013 LABs Workshop - ImageCLEF - Plant

Identification, 23-26 September, Valencia, Spain. (2013)

4. Gilbert, A., Piras, L., Wang, J., Yan, F., Dellandrea, E., Gaizauskas, R., Villegas, M.,

Mikolajczyk, K.: Overview of the ImageCLEF 2015 Scalable Image Annotation,

Localization and Sentence Generation task. In CLEF2015 Working Notes – CEUR

Workshop Proceedings, Publisher CEUR-WS.org, ISSN: 1613-0073.Toulouse, France,

September 8-11. (2015)

5. Villegas, M., Paredes, R.: Overview of the ImageCLEF 2014 Scalable Concept Image

Annotation Task. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes.

(2014)

6. Kanehira, A., Hidaka, M., Mukuta, Y., Tsuchiya, Y., Mano, T., Harada, T.: MIL at

ImageCLEF 2014: Scalable System for Image Annotation. In CLEF 2014 Evaluation Labs

and Workshop, Online Working Notes. Sheffield, UK, September 15-18. (2014)

7. Vanegas, J.A., Arevalo, J., Otálora, S., Páez, F., Pérez-Rubiano, S.A., González, F. A.:

MindLab at ImageCLEF 2014: Scalable Concept Image Annotation. In CLEF 2014

Evaluation Labs and Workshop, Online Working Notes. Sheffield, UK, September 15-18.

(2014)

8. Xu, X., Shimada, A., ichiro Taniguchi, R.: MLIA at ImageCLEF 2014 Scalable Concept

Image Annotation Challenge. In: CLEF 2014 Evaluation Labs and Workshop, Online

Working Notes. Sheffield, UK, September 15-18. (2014)

9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large scale

hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on. pp. 248–255. June. (2009), doi:10.1109/CVPR.2009.5206848

10. Reshma, I.A., Ullah, M.Z., Aono, M.: KDEVIR at ImageCLEF 2014 Scalable Concept

Image Annotation Task: Ontology based Automatic Image Annotation. In CLEF 2014

Evaluation Labs and Workshop, Online Working Notes. Sheffield, UK, September 15-18.

(2014)

11. Fellbaum, C.: WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press.

(1998)

