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Abstract. This paper describes UAIC1’s system built for participating in the 

Scalable Concept Image Annotation challenge 2015. We submitted runs both 

for Subtask 1 (Image Concept detection and localisation) and for Subtask 2 

(Generation of Textual Descriptions of Images). For the first subtask we created 

an ontology with relations between concepts and their synonyms, hyponyms 

and hypernyms and also with relations between concepts and related words. For 

the second subtask, we created a resource that contains triplets (concept1, verb, 

concept2), where concepts are from the list of concepts provided by the 

organizers and verb is a relation between concepts. With this resource we build 

sentences in which concept1 is subject, verb is predicate and concept2 is 

complement. 
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1   Introduction 

In 2015, UAIC group participated again in CLEF labs [1] in few ImageCLEF tasks 

[2] and in this way we continued our previous participation from 2013 when we 

participated in Plant Identification task [3]. Like in the 2014 campaign, the Scalable 

Concept Image Annotation challenge (from Image CLEF 2015 - Image Annotation2) 

task in 2015aims to develop systems that receive as input an image and produce as 

output a prediction of which concepts are present in that image, selected from a 

predefined list of concepts. In addition, this year the participants must describe 

images, localize the different concepts in the images and generate a description of the 

scene. This year the task was composed by two subtasks using a data source with 

500,000 web page items. For each item we have a corresponding web page, an image 

and the keywords extracted from the web page. The participants must annotate and 

localize concepts and/or generate sentence descriptions for all 500,000 items. More 

details about challenge from 2015 are in [4] and details about challenge from 2014 are 

in [5].  
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In 2014, three teams [6, 7 and 8] based their system on Convolutional Neural 

Networks (CNN) pre-trained using ImageNet [9].Also, most of the teams proposed 

approaches based on classifiers that need to be learned [6] or based on classification 

with constructed ontologies [10]. 

The rest of the paper is structured as follows: Section 2 details the general 

architecture of our system, Section 3 presents the results and an error analysis, while 

the last Section discusses the conclusions. 

2   System components 

In 2015, UAIC submitted runs both for concept identification (Subtask 1) and for 

generation of a description of the scene (Subtask 2). For that, we built a system, 

consisting in modules specialized for text processing and visual processing. 

2.1   Subtask 1 - Textual processing 

2.1.1 Google Translate 

This module calls the Google Translation service3 and it uses a file which contains the 

most frequent words in English and a cache file with already translated words. This 

cache file contains pairs of words in a foreign language and their translation in 

English. 

Thus, for translating a current word from the initial file, we consider the following 

cases: 

• Case 1: If the current word is in the file with most used words in English 

then the program uses this English form and then it skips to the new word 

from the initial file. If the new word isn’t in this file then we search for it in 

the cache file (Case 2). 

• Case 2: If the current word is in the cache with translated words we take the 

translated form and we skip to the new word from initial file. If not, we call 

the translation service (Case 3). 

• Case 3: Before calling the translation service, we identify the language of the 

word and then we translate this word from the identified language in English. 

 

Example: 

Other language:… portada 1104 toronto 1080 por 1029 vuelve 
990 sorprender 987 cada 974 escenario 970 pisa 961 concierto 933 

… 
 

English: … home 1104 toronto 1080 by 1029back 990 surprise 

987 each 974 scenario 970 pisa 961 concert 933 … 

 

                                                           
3 Google Translation service: https://cloud.google.com/translate/docs 



The file with English words contains around 50.000 words and the file with cache 

contains 343.121 pairs like (initial_word, translated_word) (until last submission). 

From what we see, the files were accessed an average of 400 times per minute. 

2.1.2 Stop-words Elimination 

This component receives a file with 500,000 lines and tries to remove every stop-

word from every line with its associated number which represents its frequency. We 

consider additional elimination of classical stop-words (the, from, it, he, be, is, 

has,…) and the elimination of all words with one or two characters. The number of 

classical stop-words was 667. 

 

For example, for input line: 
000bRjJGbnndqJxV 100 timepiece 7988 the 4823 time 3252 or 3100 

of 2664 that 2169 thesaurus 1595 for 1578 device 1569 timepieces 

1513 its 1397 measuring 1286 instrument 1285 clock 1268 wheel 

1232 from…. 

 

after using this component we obtained: 

 
000bRjJGbnndqJxV 58 timepiece 7988 time 3252 thesaurus 1595 

device 1569 measuring 1286 instrument 1285 clock 1268 wheel 1232 

… 

 

In the end, from a total of 43.448.058 words in the input file, 16.802.111 stop 

words were eliminated. From 2 files summing up 457.1 Mb we obtained one file with 

299 Mb. 

2.1.3 Concept Identification 

At this step, we start to build an ontology with relations between the initial 250 

concepts and related words to them. For that we used the WordNet4 [11] and we 

extracted in average around three synonyms and an average of five words that are 

somehow related to the concepts (automatically extracted from WordNet (hyponyms 

or hypernyms) and manually verified by human annotators or manually added by 

human annotators). 

For example, for a concept we have the following information: 
 

Concept: bicycle 

Synonyms: bike cycle, two-wheeler, mountain bike, ten-speed, 

racing bike, recumbent fixie, penny-farthing, ordinary 

velocipede 

Lexical family: park garden, tree, flower, wood, grass, path, 

kid, child, sport, sun, marathon, equipment, outfit, protection, 

street, saddle, handle bar 

                                                           
4 WordNet: http://wordnetweb.princeton.edu/perl/webwn 



With this file we execute on the processed file with 500.000 lines (after steps 2.1.1 

and 2.1.2) a module which identifies related concepts for every line. For that, for each 

word, we try to find a way to connect it to concepts. That implies searching for it in 

the list of concepts (case 1) or in list of synonyms (case 2) or in list related to lexical 

family (case 3). If a match is found, the word is replaced with its related concept and 

placed in the output file along with its initial number (case 1 and case 2) or with a 

lower value (case 3).All words that could not be associated with any concept have 

been eliminated along with their number. 

At the next step we sum the frequencies for the same concept and we put in the 

output only one value, with a unique appearance of this concept ID and with the 

individual sum value. Next, we normalize all the values on lines and we replace the 

individual sum value for every concept with a percentage value obtained after we 

calculate a global sum with all individual sum values.  

For example, an input line looks like: 
 

timepieces 81 timepiece 7988 time 3252 thesaurus 1595 device 

1569 measuring 1286 instrument 1285 clock 1268 wheel 1232 noun 

1170 balance 1162 legend 1105 dictionary 1095 … 

 

This is how the same line of data looks like at output: 

 
n03046257 0.527 n04555897 0.1802 n02866578 0.0769 n03249569 

0.063 n04574999 0.0604 n06410904 0.0147 … 

 

Additional, to this we built a file with relations between concepts and in case that 

one concept is present, we consider also the related concepts with a smaller 

percentage. For example, we consider a relation between “ear” and eye (because they 

are both body parts), and if we identify in an image the concept “eye” with score 

0.0941, we consider also the concept “ear” but with a lower score equal with 0.0001. 

Although both the input file and the output file for this module are very close in size, 

they differ a lot due to the lack of concept-related words on some lines of the initial 

file.  

Because, it would have taken us 400 minutes to parse all 500.000 line of data 

single-threaded but our program takes around 45 second per 50.000 lines because we 

decided to work with 10 execution threads. We need some additional time for the 

reconstruction of the final file with 500.000 data, but in the end we reduced the 

execution time from 400 minutes to about 15 minutes. All programs were run on an 8-

core i7 Intel processor. 



2.2   Subtask 1 - Visual Processing 

2.2.1 Face recognition 

After downloading all pictures from the URL file using a script, we ran the JJIL5 for 

face recognition on all of them. The information we got from this part was merged 

with the information obtained by the textual processing component and converted in 

the output form. 

 

 

Fig. 1. An example of image that contains faces 

For example for image from Fig. 1, the output after we use the JJIL API is: 
 

n05538625 0.5:165x180+220+273,0.5:155x167+439+227 

 

It’s worth mentioning that in around 10% of images faces were detected (in 48.000 

images), though only 75% of images where put through the face recognition JJIL API 

(375.000 files) since only this many links were valid. 

For example from the following line from the input file: 
 

n03046257 0.7206 n02782093 0.1077 n02866578 0.1071 

n04199027 0.0374 …. 

 

This is how the corresponding output looks: 
 

1 000bRjJGbnndqJxV n03046257 0.7:128x126+0+0 n02782093 

0.1:128x126+0+0 n02866578 0.1:128x126+0+0 n04199027 … 

                                                           
5 JJIL Face Recognition: http://www.richardnichols.net/2011/01/java-facial-recognition-haar-

cascade-with-jjil-guide/ 



Downloading about 25.000 images took around 4 hours and after that, detecting 

faces in those images took another 2 hours. All programs were run on a single Thread 

on multiple computers to reduce the overall time. 

2.2.2 Body parts identification 

Based on results obtained at 2.2.1 and on image size (width and height), we tried to 

approximate the position of the face features using basic human proportions. If the 

resulting bounding boxes where inside the image then we used them as they were. 

However if one of them was exiting the image boundaries we would cut the outside 

part or, if necessary, removed them totally. We used this process for eyes, nose, lips, 

head, legs and feet. 

2.2.3 Subtask 2 – Text Generation 

For Subtask 2 we built a matrix with relations between concepts. In fact we built 

triplets in form (concept1, verb, concept2), where concepts are from concepts provided 

by the organizers and verb is a relation between concepts. With this resource we build 

sentences in which concept1 is subject, verb is predicate and concept2 is complement. 

For example, in our matrix are the following types of triplets: 

• body_part – wearing – accessories; 

• animal – drinking – drink; 

• insect – in on – land vehicle; 

• animal – near – man made object;  

• animal – playing – sport_item_or_toy. 

The rate of success in creating sentences for the given images was greater for the 

clean track in comparison with noisy track. The program used was single threaded 

and took about 4 hours to complete all 500.000 data on a dual core processor. 

This is how lines of input data looks like: 
 

1. 000bRjJGbnndqJxV n03046257 n04555897 n02866578 n03249569 

n04574999 n06410904 n05600637 n02778669 n05564590 n03479952 

n06277280 n02958343  

2. 006fmXbGJW3UhmjI n03623556  

3. 00DIvt1Zik2Vo1yY n07739125 n05254795 n04100174 n02849154 

n03135532 n07848338 n05563770 n02801525 n09328904 n10287213 

n03479952 n07747607 n04197391 n05311054 n05598147 n04379243 

 

This is how the same lines of data looks like at output: 
 

1. 2 000bRjJGbnndqJxV The clock is near a ball, the drum is in a 

hallway and the wheel is near a clock. 

2. 2 006fmXbGJW3UhmjI Empty sentence. 

3. 2 00DIvt1Zik2Vo1yY The apple is on a table, the blanket is on 

a table and the cross is near a table. 

4. 2 00k_Jt7GwBTWPDIP The tower has a door, the pen is on a 

table and the radio is on a table. 



3   Results and Evaluation 

For the 2015 task, our team submitted 4 runs for Subtask 1 and 4 runs for Subtask 2. 

The description and duration for every run is presented in bellow Table. 

Table 1: Description of runs for Subtask 1 

 Description Duration 

Run 1 Based on basic textual processing, like stop-words 

elimination, lemmatization, using of ontology  

3 hours 

Run 2 Additional to Run 1 we used the Google Translation service 5 days 

Run 3 Additional to Run 2 we used visual processing for face 

recognition 

12 hours 

Run 4 Additional to Run 3, based on rectangle associated to face, 

we to add concepts related to body, arms, foots, etc. 

4 hours 

 

For Run 2, we used the Google Translation service6 and because we were limited to a 

number of requests per second, we inserted some delays between successive calls of 

the service. Also, we created a cache with already translated words and before calling 

the translation service we checked to see if we have the current word in our cache. If 

we did, we skipped the current word and we used the translation from cache. Because 

in the input file were millions of words, this component for translation runs more than 

5 days, and in the end we didn’t succeeded to translate all words from the initial file. 

For the Run 3 and Run 4 we used only the created cache and for this reason the 

duration is lower than that of Run 2. For Run 3 we run the face recognition 

component on all images, on a distributed architecture with 10 different threads and in 

the end we concatenated the results. For Run 4 we used the partial results from runs 2 

and 3 and for this reason it took less hours.  

Table 2: Description of runs for Subtask 2 Noisy track 

 Description Duration 

Run 5 Using file with triplets (concept1, verb, concept2), we 

build sentences based on first two concepts received as 

input 

75 minutes 

Run 6 Similar to Run 5, where we improve the number of 

triplets 

2.5 hours 

Run 7 Similar to Run 6, with an improved rule for selection of 

concepts 

2.5 hours 

Run 8 Similar to Run 7, with a new version for file with triplets 

and with new rules used in selection of most relevant 

concepts 

5 hours 

 

In the case of Subtask 2 noisy track, from run to run we completed our resource file 

with triplets of type (concept1, verb, concept2), and similar we add more new rules for 

selection of the most relevant concepts. Of course, the time duration for execution 
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increased from run to run. Similar with noisy track, we submitted five runs from R9 to 

R13 for Subtask 2 clean track. 

3.1   Evaluation for Subtask 1 

Table 3 below gives the results for the runs from Subtask 1 described above. More 

details are in [4]. 

Table 3: Results of UAIC’s runs from Subtask 1 

% Overlap with GT 

labels 

R1 R2 R3 R4 

50 % 0.020719 0.020009 0.021134 0.055917 

0 % 0.185071 0.185288 0.18522 0.265927 

As we can see from Table 3, the better run is the R4, where we use all created 

components (translation, stop-word elimination, concept identification, face 

recognition, body components identification, etc.). Also, in this run we used the final 

versions for our resources files with English words, with translated pairs, with 

concept synonyms, hyponyms and hypernyms, and related words. The most important 

component is component related to the identification of body parts (which is used 

only in R4). We can see how results for R1, R2 and R3 are much closed, but the 

results for R5 are more than twice as good. Because, between runs (R1 and R2), (R2 

and R3) and (R3 and R4), we improve continuous all our resources (resources for 

translation, ontology, list with stop-words, etc.) it is hard for us to say what was the 

impact of every step performed by us. 

3.2   Evaluation for Subtask 2 

Tables 4and 5 from below give the results for the runs from Subtask 2noisy track and 

Subtask 2 clean track described above. 

Table 4: Results of UAIC’s runs from Subtask 2 noisy track 

 R5 R6 R7 R8 

MEAN 0.0409 0.0389 0.0483 0.0813 

STDDEV 0.0310 0.0286 0.0389 0.0513 

MEDIAN 0.0309 0.0309 0.0331 0.0769 

MIN 0.0142 0.0142 0.0142 0.0142 

MAX 0.2954 0.2423 0.2954 0.3234 

Table 5: Results of UAIC’s runs from Subtask 2 Clean track 

 R9 R10 R11 R12 R13 

MEAN 0.1709 0.2055 0.2080 0.2093 0.2097 

STDDEV 0.0771 0.0589 0.0654 0.0661 0.0660 

MEDIAN 0.1762 0.2078 0.2082 0.2082 0.2085 



 R9 R10 R11 R12 R13 

MIN 0.0258 0.0290 0.0290 0.0290 0.0290 

MAX 0.7246 0.3850 0.7246 0.7246 0.7246 

We can see how from run to run the results are improved. For noisy track R8 is much 

better than R5, R6 and R7 which have almost similar values. For clean track results 

are more closed, but we can see how these results are much better than results from 

noisy task. This mean that the selection of most relevant concept is the hardest part 

and by this step will depend the final result of this track. Similar to runs R5 to R8 

were from run to run we improve our resource with triplets or our rules for building 

sentences, we obtained our runs from R9 to R13. For these runs we start from 

resources obtained for R8 and then from run to run we analyse our results and we 

changed our resources in order to obtain better results. 

4   Conclusions 

This paper presents the system developed by UAIC for the Scalable Concept Image 

Annotation Challenge from ImageCLEF 2015.This system contains components for 

Subtask 1 (Image Concept detection and localisation) and for Subtask 2 (Generation 

of Textual Descriptions of Images). 

For Subtask 1, the main components of the system are related to text processing 

(the translation of non-English words, stop-words elimination, and concept 

identification) and to visual processing (face recognition and body parts 

identification). From the presented results we can conclude that the most important 

component is component related to body parts identification which increased 

significantly our results. 

For Subtask 2, the main components are related to applying templates on selected 

concepts, based on a resource with triplets (concept1, verb, concept2). From what we 

see, the most important part is related to the selection of most important concepts, and 

from this reason the results for clean track are much better than results for noisy track. 

For the future, we aim to use more visual processing in order to identify more 

concepts from images. Also, on textual processing we want to reduce the time 

duration for translation, which was the most time consuming component. 
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