
Learning to Answer Biomedical Factoid & List
Questions: OAQA at BioASQ 3B

Zi Yang, Niloy Gupta, Xiangyu Sun, Di Xu, Chi Zhang, and Eric Nyberg

Language Technologies Institute, School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{ziy,ehn}@cs.cmu.edu

Abstract. This paper describes the CMU OAQA system evaluated in the
BioASQ 3B Question Answering track. We first present a three-layered archi-
tecture, and then describe the components integrated for exact answer generation
and retrieval. Using over 400 factoid and list questions from past BioASQ 1B and
2B tasks as background knowledge, we focus on how to learn to answer questions
using a gold standard dataset of question-answer pairs, using supervised models
for answer type prediction and candidate answer scoring. On the three test sets
where the system was evaluated (3, 4, and 5), the official evaluation results have
shown that the system achieves an MRR of .1615, .5155, .2727 for factoid ques-
tions, and an F-measure of .0969, .3168, .1875 for list questions, respectively;
five of these scores were the highest reported among all participating systems.

Keywords: biomedical question answering; learning to answer questions; type
coercion; answer scoring; answer ranking

1 Introduction

A number of shared tasks have been organized to evaluate the performance of biomed-
ical question answering (QA) systems. For example, TREC Genomics QA [4] focused
on genomics questions for a subdomain of biomedical research, and made available a
relatively small set of factoid and list questions (a total of 64 questions from two years).
Recently, the CLEF QA4MRE task [11] organized a pilot track on multiple choice
QA for questions related to Alzheimer’s disease. Compared to these shared tasks, the
BioASQ challenge [13] covers a wider range of biomedical subdomains, and releases
a larger topic set with much more detailed gold standard data, including relevant docu-
ments, snippets, concepts, triples and both exact and ideal answers.

This paper reports results for the last three batches of BioASQ phase 3B, and fo-
cuses on factoid and list QA for Phase B and Phase A. We describe both the sys-
tem architecture and individual components. First, we adapted a leveraged a UIMA1-
based three-layered architecture that was previously developed for biomedical QA
tasks (TREC Genomics-style questions [16] and CLEF QA4MRE-style questions [10])
for the BioASQ challenge; the architecture consists of a generic component layer
(BaseQA), a biomedical component layer (BioQA) and a BioASQ-specific component

1 https://uima.apache.org/



layer. Using the development set, we also investigated whether it is possible to design
and train supervised models to answer factoid and list questions, without the use of
manually-constructed rules or predefined templates. We utilized supervised models to
merge answer scores obtained from various sources, a technique utilized by some sys-
tems in past years [14, 9], and to predict likely answer type(s) from among the 133
semantic types in the UMLS Semantic Network.

Our hypothesis, described in the OAQA technical report [2] and motivated by re-
cent success in building and optimizing a TREC Genomics-style QA system, is that
informatics challenges like BioASQ are best met through careful design of a flexible
and extensible architecture, coupled with continuous, incremental experimentation and
optimization over various combinations of existing state-of-the-art components, rather
than relying on a single “magic” component or single component combination. We
leveraged an existing framework [16], integrated commonly adopted components (e.g.
MetaMap2, ClearNLP3, etc.) and extracted features for statistical machine learning.
Over the 70 days of intensive development between April 2 to Jun 10, our experiment
database has recorded 717 experiments. Among 669 successful experiments, there were
167 executing the training pipeline (177.5 topics per run on average), 422 executing the
testing pipeline (24.1 topics per run on average) and 80 “dummy” runs used to cache
service results (284.5 topics per run on average). The official evaluation results indicate
that the system achieves MRR scores of .1615, .5155, and .2727 for factoid questions,
and F-measure score of .0969, .3168, and .1875 for list questions; five of these results
are the highest scores reported among all participating systems. The architecture frame-
works and most of the components are currently available as open-source downloads,
and we are planning to release the remaining components that are used in the system as
open source software in the near future.

The goal of this working note is to describe the overall architecture and the compo-
nents that are necessary in order to rebuild the system and reproduce the results from
the open-source software.

2 Architecture

The three-layered architecture uses the UIMA ECD/CSE framework4 [3, 16], which
extends the UIMA framework with a YAML5-based language which supports formal,
declarative descriptors for the space of system and component configurations to be ex-
plored during the optimization step. The CSE framework also provides evaluation APIs,
experimental result persistence, and customized execution control flow to support auto-
matic performance evaluation and optimization via scalable web services (UIMA-AS).

The first layer BaseQA6 is designed for domain-independent QA components,
and includes the basic input/output definition of a QA pipeline, intermediate data
objects (such as answer type, question type, relevant passages, relevant concepts,

2 http://metamap.nlm.nih.gov/
3 https://github.com/clir/clearnlp/
4 https://github.com/oaqa/cse-framework/
5 http://yaml.org/
6 https://github.com/oaqa/baseqa/



etc.), QA evaluation components, and data processing components (e.g. LingPipe7

and Apache OpenNLP8 wrappers, Lucene9-based passage retrieval component, Lib-
Linear10 wrapper, and models applicable to generic English questions). Although the
BioASQ task focuses on the biomedical domain, it is the first shared task on QA
to combine four types of questions and evaluate both exact and ideal answers along
with other relevant elements (e.g. triples), so many aspects of the existing BaseQA
framework were extended to accommodate BioASQ application development. We
modified the intermediate object and input/output object definition (UIMA type sys-
tem) according to the task requirements. For example, we added two new attributes
Begin/EndSection to each Passage type, and changed the Begin/EndPosition at-
tributes to Begin/EndPositionInSection. We also provided a BioASQ-compatible
JSON format reader and writer at the BaseQA level, which we believe can be widely
used in various QA tasks beyond BioASQ. We also implemented evaluation methods
according to the specific BioASQ evaluation requirements.

In the second layer (BioQA), we implemented biomedical resources that can be
used in any biomedical QA task (outside the context of BioASQ), including UMLS
Terminology Services (UTS) 11-based synonym expansion component, a MetaMap an-
notation component, etc. For the components that are included in the BaseQA layer, we
also created a descriptor for the component at the BioQA level by overriding the model
value with a path to the specific model tailored for biomedical domain, where applica-
ble. For example, the ClearNLP wrapper, which is provided at the BaseQA level with
the default general-en model specified in the descriptor, has a new descriptor for the
bioinformatics-en model, trained on the CRAFT treebank, defined at the BioQA
level. Although the training and testing processes are performed on the BioASQ devel-
opment set, the derived models can also be used for other biomedical questions, so we
also place the models and training components in the BioQA layer.

A few BioASQ-specific components were integrated in the third design layer; for
example, GoPubMed services are only hosted for the purpose of the BioASQ chal-
lenge. The introduction of this task-specific layer will facilitate easy replacement of
proprietary and restricted components when we adapt the system to other biomedical
QA tasks or deploy the system as a real-world application. The end-to-end training and
testing pipelines are also defined in this layer. The test descriptor used for Batch 5 in
Phase B is shown in Listings 1.1 to 1.3. Similar to the resource-wrapper providers
which we introduced for the TREC Genomics QA task [16], we also created a caching
layer, using Redis12, for all outgoing GoPubMed service requests, along with a Java
client for accessing either the official GoPubMed server or the caching server, specified
by a properties file13, which helps to reduce the workload of the official server and
reduce experiment run-time when multiple developers are evaluating their components.

7 http://alias-i.com/lingpipe/index.html
8 https://opennlp.apache.org/
9 https://lucene.apache.org/

10 http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
11 https://uts.nlm.nih.gov/home.html
12 http://redis.io/
13 https://github.com/ziy/bioasq-gopubmed-client/



3 Factoid & List Question Answering for Phase B

Factoid and list QA tasks have similar topic distributions and linguistic structures, and
each exact answer also uses a similar language representation. Accordingly we designed
two supervised models that are shared by both question types: answer type prediction
(described in Sect. 3.1) and candidate answer scoring (described in Sect. 3.3), which al-
lows us to best leverage the training data. In addition, we introduce approaches for can-
didate answer generation in Sect. 3.2. In comparison to factoid questions, list questions
require the system to return a list of exact answers, of the same type, which requires an
answer pruning component for list question answering only, which is described in Sect.
3.4. The overall pipeline diagram is illustrated in Fig. 1 in Appendix.

3.1 Question and Answer Type Prediction

Previous work has studied how to define rules to extract a lexical answer type (or LAT)
from questions to predict the answer type, e.g. IBM’s Watson system [5]. Classifica-
tion based approaches have been proposed to predict answer type from the question
using syntactic and/or semantic features. Preparation of training data involves defining
an answer type taxonomy manually or by leveraging existing ontologies (e.g. MUC),
collecting training questions (e.g. TREC QA question set) and annotating gold standard
answer type(s) [6, 8]. Weissenborn et al. [14] also define patterns for LAT extraction for
BioASQ questions, and leverage the UMLS Semantic Network and map the LATs to
the ontological hierarchy to obtain one of the UMLS semantic types as an “expected an-
swer type”, which is used for type coercion checking. We took advantage of these ideas
and further incorporated the Q/A pairs in the BioASQ data set for training a multi-class
answer type classifier that predicts candidate answer type(s).

Answer Type Definition. We introduce two additional question types: CHOICE and
QUANTITY in addition to the UMLS semantic types. CHOICE questions are those that
have candidate answers expressed explicitly in the question, e.g. “Is Rheumatoid Arthri-
tis more common in men or women?”. We treat CHOICE questions as a special case be-
cause the candidate answers can be directly extracted from the question, and no further
answer type prediction is needed. Since there exist an unlimited number of quantita-
tive values which cannot be all covered in the UMLS semantic network, we add the
QUANTITY type to complement the existing qnco (Quantitative Concept) type.

Answer Type Extraction. To identify the gold standard labels for the existing Q/A
pairs used for training, we apply UTS to retrieve the semantic types for each gold stan-
dard exact answer, where we first use the exact search type, and if no results are re-
turned, we further relax the search type to words. Since UTS may return more than one
concept type for each input concept, and each training question may contain more than
one gold standard answer variant (these may be synonyms or answer concepts for list
questions), the gold standard answer type is assigned as the most frequent concept type.
If multiple concept types have the same number of occurrences for all gold standard
answer variants, we keep all of them as the gold standard labels for the question.

We identified 82 out of the 406 questions which do not have a single gold standard
answer variant for which UTS can provide a semantic type. There are three major rea-
sons for this phenomenon. First, some answer concepts are not included in the UMLS



Table 1. Answer Type Prediction Features

No. Feature
1 the lemma form of each token
2 if the question begins with “do” or “be”
3 if the question contains a token “or”
4 if the question contains a quantity question phrase
5 the semantic type of each concept
6 a ⟨semantic type, dependency label⟩ pair, where we use the dependency label of the head

token in the concept bearing phrase as the second element
7 also a ⟨semantic type, dependency label⟩ pair, where we use the dependency label of the

head of the head token in the concept bearing phrase as the second element
8 the lemma form of the first child of the root in the parse tree that is a noun and has a

dependency relation of dep

semantic network. For example, the question “Which histone marks are deposited by
Set7?” has two answers: “H4K20 monomethylation” and “H3K4 monomethylation”,
both of which cannot be mapped to a single semantic type. Second, some gold standard
exact answers do not strictly follow the representation format. For example, the question
“Which enzyme is deficient in Krabbe disease?” has a gold standard answer “Galacto-
cerebrosidase is an enzyme that is deficient in . . . ” In fact, “Galactocerebrosidase” alone
should be the gold standard exact answer. Third, some questions (e.g. “Which is the
most important prognosis sub-classification in Chronic Lymphocytic Leukemia?”, with
a gold standard answer “The mutational status of the IGHV genes.”) have an answer
which is not a simple biomedical entity, and thus cannot be mapped to a single concept
type. Finally, we obtained gold standard labels for the 324 remaining questions.

Feature Extraction. We first apply the ClearNLP parser to annotate the tokens, part
of speech tags, and dependency relations for the question (corresponding to Lines 21
– 26 of Listing 1.1 in the Appendix) . We use three approaches to identify the concept
mentions in the question. We first use the MetaMap service to identify the concepts
and use UTS to retrieve variant names for each concept (Lines 27 – 29). Only the first
concept mapping with the confidence score returned from the service is used for each
question. We also use a statistics-based LingPipe named entity recognizer (NER) (Lines
30 – 32), where the label of the named entity that is assigned by LingPipe NER is used
as the semantic type of the concept. We then consider all noun phrases in the question
as candidate concepts. Therefore, we employ the OpenNLP chunker to detect all noun
phrases (NPs) and prepositional phrases (PPs) from each question, and extract all NPs
and all NP-PP-NP occurrences (Lines 33 – 38). We then extract a number of linguistic
and semantic features from the tokens and concepts, as detailed in Table 1.

Classification. We use Logistic Regression from the LibLinear tool [1] to train a
multi-class classifier, and use 10-fold cross prediction to predict a list of up to five
most likely semantic labels for each question in the training set, which is used in the
downstream training process (Lines 42 – 44). The model can correctly identify answer
types for most high-frequency sentence patterns, such as “which genes”, but it may fail
for low-frequency question patterns, where UTS may not be able to resolve ambiguous
cases (e.g. AUS is identified as a country name without the context).



3.2 Candidate Answer Generation

We first use the same set of token and concept identification tools used for the question
(described in Sec. 3.1) to annotate all the relevant snippets provided as input for Phase
B (corresponding to Lines 51 – 65 of Listing 1.1). We then integrate four components to
generate candidate answers (corresponding to Lines 69 – 71, and the component level
descriptor is presented in Listing 1.2).

Concepts as Candidate Answers. We create a candidate answer using each con-
cept identified by one of three concept identification approaches described in Sect. 3.1
(corresponding to Line 6 of Listing 1.2). In Batch 3, we also filtered out any concept
mention that is exactly a stopword, a token or phrase in the question, or a concept that
is also annotated in the question. We used a stopword list that combines the most 5,000
frequent English words and the list of Entrez (PubMed) stopwords.

CHOICE Questions (Line 4). We first identify the “or” token in the question, and
then identify its head token, which is most likely the first option in the list of candidate
answers. Next, we find all the children of the first option token in the parse tree that have
a dependency relation of conj, which are considered to be alternative options. We see
this approach works well on most CHOICE questions, but still has problems in a few
special cases. First, if two options have different prefixes but the same suffix, the suffix
may be discarded in the first option, e.g. “Is the long non- coding RNA malat-1 up or
downregulated in cancer?”. Another issue is that the head tokens can be semantically
incomplete, such that a phrase which covers the head token should be used instead for
the options; we expand the candidate answer using a minimal concept mention that
covers the candidate answer occurrence (Line 7).

QUANTITY Questions. We identify all the tokens that have a POS tag of CD in all rel-
evant snippets (Line 5). This approach can reliably produce a complete set of quantita-
tive mentions. However, it does not give us a way to semantically interpret the extracted
numbers. For example, it could correctly identify “20,687”, “ 24,500”, etc. as candidate
numbers, but does not have the ability to “summarize” the numbers and produce a single
answer, e.g. “Between 20,000 and 25,000” as required. Similar to CHOICE questions,
another limitation is that this method can only identify a single token as a candidate an-
swer (e.g. “3.0”) where semantically complete phrase (e.g. “3.0 mm”) is preferred. We
apply the same approach used for CHOICE questions to include the CD-bearing phrase
as the candidate answer (Line 7).

3.3 Candidate Answer Scoring

We predict a confidence score for each candidate answer (corresponding to Lines 75
– 77 of Listing 1.1, and the component level descriptor is presented in Listing 1.3). In
Batch 3, we use a simple multiplication method to combine the type coercion score and
the occurrence count.

In Batches 4 & 5, we define a feature space containing 11 groups of features, as
shown in Table 2, which extend the approach used by Weissenborn et al. [14], and use
Logistic Regression to learn the scoring function. We only use the questions with non-
zero recall for training, where we assign “1” to each candidate answer variant if it is
also contained in the gold standard answer set, and “0” otherwise. Since there are many



Table 2. Answer Scorers

Line Feature
5 Type coercion. For each candidate answer occurrence (CAO), the percentage of semantic

types that are also among the top-k (k = 1, 3, and 5) predicted answer types. To accumulate
the scores from multiple CAOs, we use “average”, “maximum”, “minimum”, “non-zero
ratio”, “one ratio”, and “boolean or”.

6 CAO count. We use the number of CAOs for each answer variant and we also count the
total number of tokens in all occurrences.

7 Name count. The number of distinct candidate answer names, which differs from CAO
count; if two CAOs have the same text string, only one will count.

8 Avg. covered token count. Averaged number of tokens in each CAO.
9 Stopword count. For each CAO, we calculate the stop word percentage. We use the same

stoplist as described in Section 3.2. We accumulate the scores from multiple CAOs using
“average”, “minimum”, “one ratio”, and “boolean or”.

10 Token overlap count. For each CAO, we calculate the percentage of tokens that overlap
with the question. We accumulate the scores from multiple CAOs using “average”, “non-
zero ratio”, and “boolean or”.

11 Concept overlap count. For each CAO, we calculate the percentage of covered concept
mentions that overlap with the question. We accumulate the scores from multiple CAOs
using “average”, “non-zero ratio”, and “boolean or”.

12 Token proximity. For each CAO, we calculate the averaged distance to the nearest occur-
rence of each question word in the relevant snippet. We set a window size of 10, and if any
question word falls out of the window, we use a fixed distance of 20. We also transform the
distance to its negation and inverse, and accumulate the scores from multiple CAOs using
“average”, “maximum”, “minimum”, and “non-zero ratio”.

13 Concept proximity. Similar to token proximity, we calculate the distance from each CAO
to each question concept mention in the relevant snippet.

14 LAT count. For each CAO, we calculate the percentage of tokens that overlap with a LAT
token (i.e. the 8th feature in Table 1). We accumulate the scores from multiple CAOs using
“average” and “non-zero ratio”.

15 Parse proximity. Similar to token proximity, we use the distance in the parse tree, which is
important for list questions, as answer bearing sentences may be in the form of “includes
A, B, C, . . . ”.

more negative instances than positive instances, we assign to each negative instance a

weight of #positive instances
#negative instances .

3.4 Answer Pruning

In Batch 3, we used the factoid QA pipeline to produce answers for list questions with-
out any pruning. In Batch 4, we used an absolute threshold to select only the answers
that have a confidence score, predicted by the candidate answer scoring model, above
threshold. Starting from Batch 5, instead of an absolute threshold for all questions, we
use a relative threshold to filter the answers that have a confidence score above a per-
centage of the highest predicted score for the question (corresponding to Line 78 – 80
of Listing 1.1). We tune the threshold on the development set.



4 Retrieval Approaches for Phase A

In this section, we describe the approaches that are used for retrieval tasks in Phase A.
The pipeline diagram for Phase A is illustrated in Fig. 2 in Appendix.

4.1 Document Retrieval

Our approach is similar to what we have proposed in the TREC 2014 Web Track [15],
with some modifications made for better performance and efficiency.

Offline Indexing of Medline Baseline Corpus. We used Lucene to index a Medline
baseline corpus using title, abstract and keywords fields, if available. We used the stan-
dard Lucene tokenizer combined with the Krovetz Stemmer, which is less aggressive
compared to the Porter Stemmer. This is an important step, because many biomedical
terms (in particular gene names) are not recognizable by stemmers, and the Porter stem-
mer is likely to truncate many of the words, causing increased confusion between the
stemmed biomedical terms and common terms during search time. We also kept the
stopwords in the index. The motivation is that since we only have the abstract text for
the document, removing stopwords may result in less accurate field length statistics,
thus affecting the performance of many language model based retrieval models.

Hierarchical Retrieval Architecture. The fact is that given a query, we have more
retrievable documents than we can perform a deeper analysis for. However, to ensure
better retrieval performance, in-depth analysis of the documents is necessary. Therefore,
a hierarchical retrieval architecture is introduced here to find a good balance between
performance and efficiency. In summary, each search task is processed by three stages:

1. Obtaining an affordable high recall candidate set. During the query time, we have
removed all stopwords from the query, as they provide no useful information and
will likely cause serious efficiency issues. We use the Dirichlet smoothing retrieval
model implemented in Lucene to conduct this search. In our implementation, we
consider only the top 10,000 ranked documents.

2. Precision oriented reranking. We incorporate the Negative Query Generation
(NQG) model [7], which utilizes a negative language model by assuming that all
documents in the corpus are non-relevant, thus making more accurate adjustments
to query term weights and relevance calculations. After re-ranking with NQG, we
can now further cut down the candidate set by considering only the top 100 docu-
ments in the ranked list.

3. Deep document feature extraction and learning to rank (LETOR). We use ranker
scores (e.g. BM25, Jelinek-Mercer smoothing, Dirichlet smoothing, Indri two-stage
smoothing, NQG, etc), similarity scores (e.g. Jaccard coefficient and Dice coeffi-
cient, etc.), raw features (e.g. document length, vocabulary size, etc.), and cus-
tomized features (e.g. harmonic means of the ranker scores across all fields, the
distribution of the query terms across the documents, etc.). We simply score the
K documents with a pre-trained LETOR model which was optimized for Preci-
sion@10. Here, we are using Random Forest, an ensemble method known for ro-
bustness against overfitting.

The details of the proposed document retrieval approach can be found in our previ-
ous work [15].



Table 3. Snippet Retrieval Features

No. Feature
1 BM25: We index all the candidate snippets using Lucene, and then use a query that

contains not only words but also phrases and confidence scores of all the different query
concepts returned by the MetaMap service.

2 Skip-bigram: Based on the dependency relations generated from the dependency parser
for each question, we count the number of matched pairs and calculate the F-1 based
skip-bigram score.

3 Textual alignment: Surface similarity of a snippet and a question. We also consider the
relative order of the different words.

4 Some other question independent features, such as the length of the snippet.

4.2 Snippet Retrieval

The snippet retrieval module analyzes the 10 most relevant documents returned from
the upstream document retrieval component. We first identify the extent of a snippet
and then apply a LETOR approach for snippet retrieval.

Candidate Snippets Generation. The definition of “snippet” is the original piece
of text extracted from the document. In our initial study, we found that the distribution
of snippet length in the gold standard answers is similar to that of sentence length.
Therefore, we apply a sentence segmenter to split the snippets and define each sentence
as a snippet candidate.

Feature Extraction and LETOR. We define four types of features for LETOR in
Table 3, and also apply the logistic regression classifier for scoring.

4.3 Concept Retrieval

We first identify the text spans from each question and search these texts from various
GoPubMed concept services. Since only a single list of concepts is returned, we also
propose to merge and rank the concept lists returned from multiple sources.

Candidate Queryable Concept Generation. We use MetaMap to identify the
UMLS concepts from the question, and our results indicate a significant improvement
in recall. However, one of the major drawbacks of MetaMap is that it is poor at iden-
tifying gene and protein names. To overcome this issue, we use LingPipe NER with
the model trained on the GeneTag corpus to recognize gene names to enrich the re-
trieved metathesaurus concepts. We then use the combination of tokens retrieved from
the MetaMap service and the LingPipe NER to query various biomedical ontologies.

Concept Ranking and Merging. We create a ranking model that can rank the
search results from different ontologies. We use the federated search approach [12],
which trains a relevance mapping logistic function that maps the relevance scores of
each result from each ontology to a global relevance scale.

4.4 Triple Retrieval

Similar to concept retrieval, we rely on the BioASQ provided service to retrieve relevant
triples. Therefore, our goal is to construct an effective query string. Beyond the baseline



method that simply concatenates all the keywords from the concept retrieval result, we
made three improvements:

– Append “[obj]” and “[sub]” identifiers to each keyword in the query string.
– Enumerate all letter case possibilities for keywords: lower case, upper case, and

capitalized word.
– Add all words in the original question to the keyword set while excluding the stop

words and SQL reserved keywords.

The first improvement is to help the triple query server understand that most of our
keywords are used as objects or subjects. This finding is intuitive through observation;
since most of the words are nouns or adjectives, which are unlikely used as predicates in
triples. The second improvement is based on an observation from examination of gold
standard answers, where triple results indicate case-sensitivity during triple matching.
Therefore, we need to include all casing variants to ensure that keywords are matched
during triple retrieval. The third improvement ensures that we do not omit keywords
from the original question, to make the query more robust.

5 Results & Analysis

We summarize the official evaluation results of document and snippet retrieval in Phase
A and factoid and list QA in Phase B in Batches 3, 4, and 5 from the official evaluation
portal in Table 4.

Among all the systems that participated in Phase A evaluation, the performance of
our document retrieval pipeline is scored at the bottom of the first tier. The absolute
performance gaps between our pipeline and the system that is scored one place behind
ours in Batches 3, 4, and 5 are measured as .0915, .0225, and .0869 respectively in
terms of MAP, which are larger than those between our pipeline and the best performing
system (.0435, .0204, and .0466 respectively).

Due to a relatively steep learning curve for the developers who have not had much
experience with the system and the task, Phase A system used a different question analy-
sis pipeline from the Phase B system, which had no concept retrieval module integrated
and tested, which should expand each concept with synonyms. Therefore, we believe
document and snippet retrieval evaluated in Phase A can be further improved by consid-
ering synonyms expanded using UTS during query formulation. Moreover, the snippets
extracted by the latter snippet retrieval stage can be fed back to the search engine as an
expanded query to harvest more relevant information; reinforcement learning can thus
be utilized in this scenario.

For Phase B, we see that our system achieved five of six highest performance scores
among all participating systems for factoid and list question answering in Batches 3,
4, and 5. We notice that the performance in Batch 4 is higher than in other batches,
which we believe is because Batch 4 set contains more questions seeking for the types
of answers that have occurred more frequently in the training set, e.g. gene, disease, etc.

To further understand what causes the error and how we may improve the system,
we manually answer each factoid question in Batches 3, 4, and 5 using the gold standard
snippets provided for the input of Phase B, and compare with the output of our system



Table 4. Partial official evaluation result. Ranks among systems (as of the manuscript completion)
are shown in the parentheses.

Phase A: Document
Batch Precision Recall F-measure MAP GMAP
3rd .2310 (15) .3242 (15) .2311 (15) .1654 (15) .0136 (15)
4th .2144 (15) .3320 (15) .2263 (15) .1524 (15) .0081 (14)
5th .2130 (15) .4474 (15) .2605 (15) .1569 (15) .0267 (8)

Phase A: Snippet
Batch Precision Recall F-measure MAP GMAP
3rd .1133 (3) .1044 (5) .0891 (3) .0892 (1) .0013 (5)
4th .1418 (5) .1264 (10) .1153 (8) .0957 (5) .0027 (6)
5th .1472 (9) .1756 (9) .1391 (9) .1027 (9) .0040 (5)

Phase B: Exact Answers

Batch
Factoid List

Strict Acc. Lenient Acc. MRR Precision Recall F-measure
3rd .1154 (1) .2308 (1) .1615 (1) .0539 (8) .6933 (1) .0969 (7)
4th .4483 (1) .6207 (1) .5155 (1) .3836 (1) .3480 (1) .3168 (1)
5th .2273 (1) .3182 (1) .2727 (1) .1704 (1) .2573 (5) .1875 (1)

to label the error types (multiple types allowed) for each incorrectly answered question.
We list the error categories and give definition and examples to each category in Table
5, where we also show the occurrence of each error category in each test batch.

Based on the analysis, we believe a better concept identification model and concept
type prediction model will make the hugest impact to the overall performance improve-
ment. Moreover, we plan to conduct a thorough ablation study to estimate how much
each component or feature contributes to the overall performance, as soon as we have
the gold-standard outputs for the 3B dataset.

6 Conclusion

This paper describes the CMU OAQA system evaluated in the BioASQ 3B Question
Answering track. We first present a three-layered architecture, and then describe the
components that have been integrated into the participating system for exact answer
generation and retrieval. We also investigate how to learn to answer questions from such
a large gold standard biomedical QA dataset, using an answer type prediction model and
an answer scoring model. The official evaluation results show the effectiveness of the
proposed approach in factoid and list QA.

Further work is necessary to improve the retrieval components in Phase A. We are
also interested in investigating how to learn to answer yes/no questions and summary
questions from existing Q/A pairs. We plan to integrate the system into the BioQUADS
(biomedical decision support system) [17] to process biomedical complex decision pro-
cesses represented in natural language.



Table 5. Error categories and occurrences for factoid questions in test batches 3, 4, and 5.

Error category
Batch

3rd 4th 5th
Concept type identification/answer type prediction 9 8 8
The highest ranked answer has a different concept type from the answer type that question asks
for, which may be caused by a wrongly predicted answer type, an incorrect score combination
equation from the score prediction model, or the concept identification module.
Concept identification 4 4 2
Some answer variants are not identified as concepts or we can find little evidence from the rele-
vant snippets for the concept. For example, for the question“Neurostimulation of which nucleus
is used for treatment of dystonia?”, none of the components is able to identify “Bilateral globus
pallidus internus (GPi)” as a concept and further candidate answer variant.
Complex answer 2 2 5
The ideal answer is a complex phrase or sentence, rather than a single-entity concept, usually
in response to the questions containing “effect”, “role”, “function”, etc. For example, “execu-
tors/mediators of apoptosis” should be extracted to answer the question “What is the function of
capspases?”, but we only see “apoptosis” in the candidate answer list.
Mistakenly use question phrase as answer 3 2 2
Although we design a scorer in the ranking module to identify whether each candidate answer
co-occurs in the original question, which should lower the rank of those candidate answers, we
still see some question phrase variants are chosen as the top answer. For example, the ques-
tion “What is the effect of enamel matrix derivative on pulp regeneration” mentions a concept
“enamel matrix derivative”, but the system ranks its acronym “EMD” at the top.
Tokenization 2 4 0
Tokenization module may fail if the concept contains punctuation marks, e.g. parentheses, colon,
semicolon, etc, and/or numbers, as in the example “t(11;22)(q24:q12)”.
Definition question 2 0 1
The asker knows the terminology but asks for the definition, e.g. “What is Piebaldism?”, or
knows the properties and asks for terminology, e.g. “How are ultraconserved elements called
when they form clusters?”. We believe we need to introduce special question types and modules.
Question type 1 0 1
Identification of QUANTITY and CHOICE questions may fail in some cases. For example,
“Alpha-spectrin and beta-spectrin subunits form parallel or antiparallel heterodimers?” does not
use “Do” at the beginning. Another example is that “risk” is a QUANTITY indicator in the ques-
tion “What is the risk of developing acute myelogenous leukemia in Fanconi anemia?”
Snippets that have no information 0 0 2
Some snippets do not contain any answer variant. For example, “What is the main role of Ctf4 in
dna replication?” has a gold standard snippet “Ctf4 remains a central player in DNA replication”.
Relation concept identification 0 1 1
A relation concept refers to a verb or verbal adjective, e.g. “responsible” or “leading” that dis-
tinguishes the expected answer from other candidates that have the same concept type.
Syntactic function 0 1 1
The key to answer the question is embedded in the syntactic structures of the relevant snippets.
For example, in the snippet “Medicarpin, the major phytoalexin in alfalfa, ...”, no explicit relation
word is used between “Medicarpin” and “the major phytoalexin”, but the syntactic structure
clearly implies that the latter explains the former.



Acknowledgments. We thank Qianru Zhu and Avner Maiberg for their involvement
in the early stages. We also thank Ying Li, Xing Yang, Venus So, James Cai and the
other team members at Roche Innovation Center New York for their continued support
of OAQA and biomedical question answering research and development.

References

1. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for large
linear classification. J. Mach. Learn. Res. 9(Aug), 1871–1874 (2008)

2. Ferrucci, D., Nyberg, E., Allan, J., Barker, K., Brown, E., Chu-Carroll, J., Ciccolo, A.,
Duboue, P., Fan, J., Gondek, D., et al.: Towards the open advancement of question answering
systems. Tech. Rep. RC24789 (W0904-093), IBM Research Division (2009)

3. Garduno, E., Yang, Z., Maiberg, A., McCormack, C., Fang, Y., Nyberg, E.: Cse framework: A
uima-based distributed system for configuration space exploration. In: UIMA@GSCL’2013.
pp. 14–17 (2013)

4. Hersh, W., Voorhees, E.: Trec genomics special issue overview. Inf. Retr. 12(1), 1–15 (2009)
5. Lally, A., Prager, J.M., McCord, M.C., Boguraev, B., Patwardhan, S., Fan, J., Fodor, P.,

Chu-Carroll, J.: Question analysis: How watson reads a clue. IBM J. Res. Dev. 56(3.4), 2–1
(2012)

6. Li, X., Roth, D.: Learning question classifiers. In: ACL’2002. pp. 1–7 (2002)
7. Lv, Y., Zhai, C.: Query likelihood with negative query generation. In: CIKM’2012. pp. 1799–

1803 (2012)
8. Nyberg, E., Mitamura, T., Callan, J., Carbonell, J., Frederking, R., Collins-Thompson, K.,

Hiyakumoto, L., Huang, Y., Huttenhower, C., Judy, S., et al.: The javelin question-answering
system at trec 2003: A multi-strategy approach with dynamic planning. In: TREC’2003
(2003)

9. Papanikolaou, Y., Dimitriadis, D., Tsoumakas, G., Laliotis, M., Markantonatos, N., Vla-
havas, I.: Ensemble approaches for large-scale multi-label classification and question an-
swering in biomedicine. In: CLEF’2014 (Working Notes). pp. 1348–1360 (2014)

10. Patel, A., Yang, Z., Nyberg, E., Mitamura, T.: Building an optimal question answering sys-
tem automatically using configuration space exploration (cse) for qa4mre 2013 tasks. In:
CLEF’2013 (Working Notes (2013)

11. Peñas, A., Hovy, E.H., Forner, P., Rodrigo, Á., Sutcliffe, R.F.E., Sporleder, C., Forascu, C.,
Benajiba, Y., Osenova, P.: Overview of qa4mre at clef 2012: Question answering for machine
reading evaluation. In: CLEF’2012 (Working Note) (2012)

12. Si, L., Callan, J.: Modeling search engine effectiveness for federated search. In: SIGIR’2005.
pp. 83–90 (2005)

13. Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M.R., Weis-
senborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., et al.: An overview of the bioasq
large-scale biomedical semantic indexing and question answering competition. BMC Bioin-
formatics 16(1), 138 (2015)

14. Weissenborn, D., Tsatsaronis, G., Schroeder, M.: Answering factoid questions in the biomed-
ical domain. In: BioASQ’2013 (2013)

15. Xu, D., Callan, J.: Towards a simple and efficient web search framework (2014)
16. Yang, Z., Garduno, E., Fang, Y., Maiberg, A., McCormack, C., Nyberg, E.: Building optimal

information systems automatically: Configuration space exploration for biomedical informa-
tion systems. In: CIKM’2013. pp. 1421–1430 (2013)

17. Yang, Z., Li, Y., Cai, J., Nyberg, E.: Quads: Question answering for decision support. In:
SIGIR’2014. pp. 375–384 (2014)



Appendix

Input question

Question parsing

Question concept
identification

Lexical answer
type extraction

Answer type
prediction

Relevant snippets

Snippet parsing

Snippet concept
identification

Concept retrieval

Concept merging

Candidate answer
variant generation

Candidate answer
variant merging

Answer scoring
and ranking

Answer pruning Exact answer

NLP providers
– ClearNLP (bioinformatics

model)
– ClearNLP (medical model)

Concept identification
providers

– MetaMap†

– LingPipe NER (Genia)
– OpenNLP chunker

Concept retrieval providers
– UMLS terminology service†

Classifier providers
– LibLinear logistic regression

Candidate answer variant
generators

– Choice question
– Quantity question
– Concept
– CAV covering concept
– Yes/No

Answer scorers
– Type coercion
– CAO count
– Name count
– Avg covered token

count
– Stopword count
– Token overlap

count

– Concept overlap
count

– Token proximity
– Concept proximity
– LAT overlap count
– Parse proximity

Fig. 1. Phase B pipeline diagram. † represents a provider that requires accessing external Web
services.

Listing 1.1. ECD main descriptor for test batch
5 in Phase B

1 # execute
2 # mvn exec:exec -Dconfig=bioasq.

test
3 # to test the pipeline
4

5 configuration:
6 name: test
7 author: ziy
8

9 persistence-provider:
10 inherit: baseqa.persistence.

local-sqlite-persistence-provider
11

12 collection-reader:

13 inherit: baseqa.collection.json.
json-collection-reader

14 dataset: BIOASQ-QA
15 file:
16 - /input/3b-5-b.json
17 type: [factoid, list, yesno, summary]
18 decorators: |
19 - inherit: bioasq.gs.

bioasq-qa-gs-decorator
20 persistence-provider: |
21 inherit: baseqa.persistence.

local-sqlite-persistence-provider
22

23 pipeline:
24 - inherit: ecd.phase
25 options: |
26 - inherit: bioqa.quesanal.

parse-clearnlp-bioinformatics



Input question

Question parsing

Question concept
identification

Abstract query
generation

Document retrieval

Snippet extraction

Snippet retrieval

Concept retrievalTriple retrieval

Relevant triples Relevant concepts

Relevant documents

Relevant snippets

NLP providers
– LingPipe (Genia)

Concept identification providers
– LingPipe NER (Genia)

Retrieval providers
– BioASQ GoPubMed services⋆

– Lucene-based PubMed abstract search
– Lucene-based in-memory snippet search

Fig. 2. Phase A pipeline diagram. ⋆ represents a provider that requires accessing BioASQ Web
services.

27 - inherit: ecd.phase
28 options: |
29 - inherit: bioqa.quesanal.

concept-metamap
30 - inherit: ecd.phase
31 options: |
32 - inherit: bioqa.quesanal.

concept-lingpipe-genia
33 - inherit: ecd.phase
34 options: |
35 - inherit: baseqa.quesanal.

concept-opennlp-np
36 - inherit: ecd.phase
37 options: |
38 - inherit: baseqa.quesanal.

concept-opennlp-npppnp
39 - inherit: ecd.phase
40 options: |
41 - inherit: baseqa.quesanal.

lexical-answer-type
42 - inherit: ecd.phase
43 options: |
44 - inherit: bioqa.quesanal.at.

predict-liblinear
45 - inherit: ecd.phase
46 options: |
47 - inherit: baseqa.retrieval.

passage-to-view
48 - inherit: ecd.phase
49 options: |

50 - inherit: bioqa.retrieval.
passage-parse-clearnlp-bioinformatics

51 - inherit: ecd.phase
52 options: |
53 - inherit: bioqa.retrieval.

passage-concept-metamap
54 - inherit: ecd.phase
55 options: |
56 - inherit: bioqa.retrieval.

passage-concept-lingpipe-genia
57 - inherit: ecd.phase
58 options: |
59 - inherit: baseqa.retrieval.

passage-concept-opennlp-np
60 - inherit: ecd.phase
61 options: |
62 - inherit: baseqa.retrieval.

passage-concept-opennlp-npppnp
63 - inherit: ecd.phase
64 options: |
65 - inherit: bioqa.retrieval.

concept-search-uts
66 - inherit: ecd.phase
67 options: |
68 - inherit: baseqa.retrieval.

concept-merge
69 - inherit: ecd.phase
70 options: |
71 - inherit: bioqa.answer.generate
72 - inherit: ecd.phase
73 options: |



74 - inherit: baseqa.answer.modify
75 - inherit: ecd.phase
76 options: |
77 - inherit: bioqa.answer.

score-predict-liblinear
78 - inherit: ecd.phase
79 options: |
80 - inherit: baseqa.answer.pruner
81

82 post-process:
83 # answer evaluation
84 - inherit: baseqa.eval.base
85 calculator: |
86 inherit: bioasq.eval.calculator.

answer-eval-calculator
87 evaluatee-provider: |
88 inherit: baseqa.eval.evaluatee.

answer-evaluatee-provider
89 persistence-provider: |
90 inherit: baseqa.eval.persistence.

jdbc-eval-persistence-provider
91 # report
92 - inherit: report.csv-report-generator
93 builders: |
94 - inherit: baseqa.report.

accumulated-measurements-report-component

95 # submission
96 - inherit: bioasq.collection.json.

json-cas-consumer

Listing 1.2. ECD component descriptor of
bioqa.answer.generate

1 class: edu.cmu.lti.oaqa.baseqa.answer.
CavGenerationManager

2

3 generators: |
4 - inherit: baseqa.answer.generators.

choice

5 - inherit: baseqa.answer.generators.
quantity

6 - inherit: bioqa.answer.generators.
concept

7 - inherit: baseqa.answer.generators.
cav-covering-concept

8 - inherit: baseqa.answer.generators.
yesno

Listing 1.3. ECD component descriptor of
bioqa.answer.score-predict-liblinear

1 inherit: baseqa.answer.score-predict
2

3 classifier: ’inherit: bioqa.answer.
score-classifier-liblinear’

4 scorers: |
5 - inherit: baseqa.answer.scorers.

type-coercion
6 - inherit: baseqa.answer.scorers.

cao-count
7 - inherit: baseqa.answer.scorers.

name-count
8 - inherit: baseqa.answer.scorers.

avg-covered-token-count
9 - inherit: bioqa.answer.scorers.

stopword-count
10 - inherit: baseqa.answer.scorers.

token-overlap-count
11 - inherit: baseqa.answer.scorers.

concept-overlap-count
12 - inherit: baseqa.answer.scorers.

token-proximity
13 - inherit: baseqa.answer.scorers.

concept-proximity
14 - inherit: baseqa.answer.scorers.

lat-overlap-count
15 - inherit: baseqa.answer.scorers.

parse-proximity


