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Abstract. A major challenge for Medical Image Retrieval (MIR) is
the discovery of relationships between low-level image features (inten-
sity, gradient, texture, etc.) and high-level semantics such as modal-
ity, anatomy or pathology. Convolutional Neural Networks (CNNs) have
been shown to have an inherent ability to automatically extract hier-
archical representations from raw data. Their successful application in
a variety of generalised imaging tasks suggests great potential for MIR.
However, a major hurdle to their deployment in the medical domain is
the relative lack of robust training corpora when compared to general
imaging benchmarks such as ImageNET and CIFAR. In this paper, we
present the adaptation of CNNs to the medical clustering task at Image-
CLEF 2015.
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1 Introduction

This paper documents the Biomedical Engineering and Technology (BMET)
team from the University of Sydney’s submissions for the ImageCLEF 2015 [1]
Medical clustering task [2].

The objective of our experiments was to evaluate the effectiveness of Convo-
lutional Neural Networks (CNNs) for this task. In particular, we propose a deep
learning framework that learns high-level representations of anatomical elements
contained in each image and uses these to cluster the images.

2 Background

Convolutional Neural Networks, a type of deep learning algorithm, have been
used to produce state-of-the-art results for a variety of machine learning tasks
such as image recognition, acoustic recognition and natural language processing



since 2012 [3-5]. CNNs share the common features of all deep learning algo-
rithms: stacked layers of neuronal subunits that learn hierarchical representa-
tions (allowing the data to be understood at various levels of abstraction, in
isolation or combination [3]), the ability to perform unsupervised pre-training
on unlabeled data and efficient parallelization on multiple core GPUs which can
result in improvements of up to 5000% over CPU-only implementations [5].

A more subtle implication of deep learning is that it can automatically extract
features from raw data [3-5]. Typically, a key factor in the success of typical
machine learning algorithms is extracting salient features from the raw data.
Taking image recognition as an example, a feature set such as edges or SIFT [6]
would be extracted from the raw data and it is these new features per se or
in combination with the original raw data that would be fed into the machine
learning algorithm. While some aspects of the process can be automated or
implemented with well known algorithms, a major drawback is that it generally
requires expert domain knowledge to define which features should be used and
evaluate their success.

Deep learning algorithms, however, are able to directly utilise raw data in-
stead of hand-crafted features. By feeding the data sequentially through many
successive layers of subunits, the higher levels of the system are able to under-
stand the data in terms of successively abstract representations [3].

Medical Image Retrieval (MIR) tasks, such as the tests devised for Image-
CLEF, require learning precisely these kinds of highly abstract representations,
i.e. image modality or the anatomical semantics of the image. However, to the
best of our knowledge it is not currently a well established method in this domain.
This is due to not only the inherent challenges of medical images[7], but also
because state-of-the-art deep learning results are typically obtained using huge
sets of labelled training data* on tasks that are arguably less subtle. As a justifi-
cation for these claims, consider that the ImageNET general object recognition
task corpora consists of millions of robustly labelled images and was created with
the assistance of crowdsourcing via Amazon Mechanical Turk [9]. On the other
hand, medical imaging datasets require careful labelling by domain experts, of-
ten specialists in a particular area [7,10-12] and as a result are generally much
smaller.

Large training sets are a current necessity of very deep systems because they
contain many millions of internal parameters that must be estimated from the
data. Too little data can result in the the higher-level neurons’ activation being
the result of salient features of the training set and not reflecting the high-level
representations. If this ’overfitting’ occurs then the system’s ability to generalise
on new data is severely impaired [13].

In addition to the issues regarding the volume of data required, it must be
mentioned that while deep learning can automatically perform excellent feature
extraction, this comes at the significant cost of the larger number of hyperpa-
rameters that must be evaluated in order to find an optimal system [14]. For

4 Krizhevsky et. al. [8] used approximately 1.2 million labelled examples for their
breakthrough result in ImageNET in 2012.



example, compared to a commonly used machine learning algorithm such as the
Support Vector Machine (SVM) that has a basic hyperparameter search space
with dimensions of choice of kernel, regularization constant and kernel hyper-
parameter, even the simplest implementation of a CNN requires fundamental
choices about the number and type of layers, filter size and number of filters
per layer, and the learning rate. More advanced implementations include fac-
tors such as unit activation function and the use of dropout. While there are
guidelines for these choices in the literature [14], the difficulty of even a small
parameter search is compounded by the increased computational requirements
of training the system.

3 Methods

3.1 Image Preprocessing

A requirement of our classifiers was uniformly sized input vectors, however, there
was some variation in the training data size. The sizes of the images were at least
1600px in one dimension and then between 1600 and 2348px in the other. In order
to use consistently sized images and not lose any crucial information, we created
a new square image with the dimensions of the largest dimension of the original
image, filling any empty space with black pixels.

Even prior to training the CNN, we were aware that the computational re-
quirements were quite demanding and this would be exacerbated by using large
images. With that in mind, we resized the images to 256x256px to reduce compu-
tational overhead. Good results have been reported in the literature for complex
tasks with 48x48px images [15] and Krizhevsky et. al. [8] achieved state-of-the
art general object recognition with 256x256px images (technically, the system
had an input of 224x224px, but these were subimages of the original 256x256px
images).

After resizing the images were 256x256x3px, the third dimension describing
the three colour channels. The images supplied were in actual fact gray scale, i.e.
all colour channels were equal-valued, so we simply sliced the array preserving
only the 'red’ channel.

We chose to train a single run of four models using 100% of the training data
with no parameter optimization and use the ImageCLEF results as the test.

3.2 Convolutional Neural Network

The task requires multi-label classification across four anatomical classes, with
a null set indicating that the data is a true-negative image taken with the same
camera, but not of the human body. To facilitate this output from our experi-
ments we constructed 4x1 vs. All CNN models.

The architecture for the CNN used for our experimentation was based on a
simplified version of Yann LeCun et. al.’s [16] LeNet-5°. This basic CNN is ca-
pable of correctly classifying the MNIST handwritten digit database with 1.7%

® http://deeplearning.net/tutorial/lenet.html



test error. We modified the input to account for larger images and output a
different number of classifications. The network consists of two convolutional
pooling layers, with one fully connected hidden layer. The features that are out-
put by the hidden layer are used for binary classification by a logistic regression
classifier. The architecture of the system is shown in Figure 1.

Image Preprocessing
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Fig. 1. The architecture of CNN used for the experiments

The specifications of the convolutional-pooling layers are detailed in Table 1.

Table 1. Details of Convolutional Pooling Layers

H Hyperparameter Layer0) Layerl H

Number of Filters 20 50
Size of Filters 15x15px 15x15px
Max Pooling 2x2 2x2

Stride 1 1

Other hyperparameters for the CNN are detailed in Table 2.



Table 2. Other details for CNN

H Hyperparameter ValueH
Number of Units in Fully Connected Layer 500
Batch Size 20
Learning Rate 0.005
Training Epochs 100

As mentioned earlier the CNN requires a great deal of computational resource
to run. We initially began training the four models on a CPU-only solution and
despite it being a very powerful machine®, it took approximately 90 minutes to
train a model for a single epoch (albeit, training four models simultaneously).
Fortunately, we were given an opportunity to run these models on a system with
two Nvidia K20 GPUs. Even training the four models simultaneously (two per
GPU), it only took approximately 11 minutes to train a model for a single epoch
— an 8-fold speedup. We planned to submit a single run, having trained each of
the four classifiers for 100 epochs. This process would have taken over a week on
a CPU-only system, instead it took less than a day on the GPU server.

4 Results

The test results for our submission as supplied by ImageCLEF are displayed in
Table 4.

Table 3. Test results as supplied by ImageCLEF.

HExact Match Any Match Hamming SimilarityH
H 49.7% 59.6% 84.9% H

4.1 CNN-Learnt Features

The CNNs were able to extract improved representations from raw data with-
out the requirement for domain knowledge. This was done without any hyper-
paramater tuning suggesting that there are further improvements that could be
made. This is an important result both for this task and for MIR generally as it
suggests that there is potential in using CNN or other deep learning strategies
as a 'black box’, whereby we will be able to achieve excellent machine learning
performance without the need of expert-designed feature extraction or domain
knowledge.

5 Azure Standard A4 VM: 8-core 2.1GHz CPU, 14GB RAM



5 Perspectives for Future Work

We believe that that these results can be significantly improved upon by making
use of a variety of techniques. Primarily we would want to continue to explore
training the CNNs using GPUs, because as we have demonstrated, the perfor-
mance increase is non-trival and allows us to expand our hyperparamter and
architecture search. Rectified Linear Units (ReLUs), as opposed the Tanh units
used in our network are also known to improve training performance [17,18].

Although this network is very capable of learning quality representations
of the MNIST dataset, it is both less deep and less dense than networks used
to achieve state-of-the-art results in more sophisticated tasks [8]. For instance,
Krizhevsky et. al. [8] used a network with 2 convolutional-max pooling layers, 3
convolutional layers and 3 fully connected layers, all of which were more neuron-
dense that ours, to achieve their result in ImageNET 2012. Improved training
performance will allow us to implement a larger and deeper network along these
lines.

Larger and deeper networks introduce issues with overfitting, but we believe
this can be controlled using well-tried techniques such as dropout [8, 13, 19], data
augmentation [8,20] and unsupervised pretraining [21, 22].
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