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Abstract. In this working notes report/paper, we describe the details of two submis-

sions for CLEF 2015 eHealth challenge for Task 1a, with details of methods and tools 

developed for automatic speech recognition of NICTA synthetic nursing handover 

dataset. The first method involves a novel zero-resource approach based on unsuper-

vised acoustic only modeling of speech involving word discovery, and the second 

method is based on combination of acoustic, language, grammar and dictionary models, 

using well known open source speech recognition toolkit from CMU, the CMU 

Sphinx[7]. The experimental evaluation of the two methods was done on Challenge 

dataset (NICTA synthetic nursing handover dataset).  

1 Introduction 

Fluent information flow is important in any information-intensive area of decision 

making, but critical in healthcare. Clinicians are responsible for making decisions 

with even life-and-death impact on their patients’ lives. The flow is defined as links, 

channels, contact, or communication to a pertinent person or people in the organisa-

tion [1, 2, 3].  In Australian healthcare, failures in this flow are associated with over 

one tenth of preventable adverse events [1, 2, 3].  Failures in the flow are tangible in 

clinical handover, that is, when a clinician is transferring professional responsibility 

and accountability, for example, at shift change [3]. Regardless of verbal handover 

being accurate and comprehensive, anything from two-thirds to all of this information 

is lost after three to five shifts if no notes are taken or they are taken by hand [1, 2, 3]. 

Nursing ‘handover’ in the clinical context involves the transfer of information, pro-

fessional responsibility and accountability for patient quality care and safety from one 

clinical team to another either temporarily or permanently [4]. With changes in  work-

ing hours and shifts of clinical teams (doctors, nurses and registrars in health care 

system), and an increasing demand for flexible work practices, the need for mecha-

nisms to support effective and efficient handover processes for transferring infor-

mation, responsibility, accountability and patient safety has become recognised as 

increasingly important for the delivery of high quality health care [5]. Clinical hando-

ver has been identified as a high risk scenario for patient safety with dangers of dis-

continuity of care, medical errors, adverse events and the potential for legal claims of 

malpractice[5].  
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In general, implementation of ICTs in health care, to improve quality and safety has 

achieved mixed results. While some studies have demonstrated significant benefits 

and improvements in patient care, others have either met with mixed success or failed 

to generate their forecasted benefits [6].  Given strong advocacy through guidelines 

[7] and the vast amount of resources and funding which have been allocated for im-

plementation of electronic solutions to health care, there is an urgent need to generate 

a better understanding of the effect of the implementation of ICTs in health care.  One 

of the reason for such mixed and suboptimal outcomes could be due to complexity of 

clinical handover processes, characterized with  highly unstructured information 

flows(free text from nursing handover notes or those transcribed from speech recog-

nisers, for example), and inability of existing technologies and tools in making sense 

of  such ill structured or unstructured data. This could be due to limitations of existing 

speech recognition technologies for instance, which act as front ends in automatic 

transcription of bed side clinical notes to text, and their vulnerability to noisy clinical 

environments and sensitivity to accent and dialect variations, leading to errors getting 

cascaded in subsequent stages of information extraction. CLEF eHealth Challenge 

Task 1a focused on addressing the short comings of existing clinical speech recogni-

tion systems by providing an open source challenge data set developed by authors in 

[3], and provided an opportunity for researchers and practitioners by soliciting sub-

missions on suitable approaches and methods to this challenge task.  

 

In this paper, we present two methods we have developed and submitted to this chal-

lenge (CLEF eHealth 2015 evaluation challenge task (Task 1a)). The details of each 

method used and outcomes from the experimental trials are described in detail in next 

few Sections.  

2 Method I : Zero Resource Unsupervised Acoustic Modelling 

(Team UC_submission 1) 

For this method (Team UC_submission 1), we used a novel approach based on zero 

resource unsupervised acoustic modelling technique. Zero resource speech technolo-

gies operate without the expert provided linguistic knowledge that standard recogni-

tion systems rely on—transcribed speech, language models, and pronunciation dic-

tionaries. They are motivated by biologically inspired infant learning modes, and are 

suitable for less resourced contexts. As the challenge dataset comprised of non-native 

English language speaker recordings, with abbreviations and terms from clinical set-

tings, traditional resources for training in terms of phonetic transcriptions, dictionaries 

and grammars for this context are scarce, and speech recognizer cannot perform well 

in this scenario. A robust zero-resource system must instead discover this linguistic 

knowledge from speech audio automatically.  

The system for this approach consists of acoustic feature extraction and seg-

mentation module, clustering module and word discovery module. Here, the acoustic 

similarities between multiple acoustic tokens of the same words or word like seg-

ments are exploited to perform recognition. Although, the performance of this method 



currently falls short of capabilities of the performance benchmarks provided by the 

challenge, the value of this algorithm is its potential to serve as a computational mod-

el in two research directions. First, this method may lead to a speech recognition ap-

proach that is fundamentally liberated from the extensive resources needed to perform 

automatic speech recognition, in terms of language models and pronunciation diction-

aries. Second, it can lead to an approach for computational modelling of language 

acquisition that takes actual speech signal and is able to discover words as “evolving” 

properties from raw input.  

The motivation behind using this approach for discovering words from the raw speech 

signal is drawn from evolving speech recognition capabilities of babies and young 

infants, who can detect words from continuous speech. Psycholinguistic research [10, 

11, 12, 13, 14] shows that babies can use the statistical correspondence of sound se-

quences as a cue for word segmentation.  Also, the techniques that learn to decode 

speech without an upfront specified lexicon and phone models are interesting for 

recognizing speech outside of the vocabulary (OOV), such as in clinical domain, 

where there are several words with clinical meanings and abbreviations. For these 

scenarios - use of existing resources such as language models and pronunciation dic-

tionaries will be a mismatch, and might radically reduce the speech recognizer per-

formance. Hence, it is of considerable interest to investigate recognition approaches 

that circumvent the need for a priori defined lexicon. 

The focus for this method hence was to discover the words and word-like speech 

fragment by combining raw speech signals, and additional abstract representations of 

this speech signal that can model statistical co-occurrence information, by extracting 

repetitive structure within the speech fragment. For this we exploit two types of 

evolving patterns in the speech, the statistical properties of repetitive structure within 

the speech modality to hypothesize speech fragments or segments and their labelling, 

and cross-modal associations between the speech segments to hypothesize words, 

which can evolve when more and more input has been processed to represent the 

word correctly. The method consists of three modules,  and instead of employing any 

phonetic recognizers to transcribe speech fragments in terms of phone sequences, we 

do a bootstrap aggregation with abstract representations to improve the speech tran-

scriber performance.  

As the speech signal gets transformed from one module to the next, it gets 

more symbolic in nature. The first module consists of automatic feature extraction, 

followed by a data driven boundary segmentation of speech segments at sentence 

level. The output of this module is a set of feature vectors and hypothesized speech 

segment boundaries. Module 2 is a clustering module, which reads the sentence fea-

ture vector segments and performs a k-means clustering, and gives label sequence for 

each segment. The third and final module implements the word discovery algorithm, 

using the sentence and hypothesized labels, and abstract tags representing presence of 

a word in that utterance. 

2.1 Module 1: Feature Extraction and Boundary Segmentation Module 

In this module, audio file is down sampled to 16 kHz, and each speech frame is ob-

tained by windowing the speech signal with 32 milliseconds windows (e.g. 512 sam-



ple points for 16 kHz files) with 25 % percent overlap between consecutive frames. 

Cepstral mean substraction is then performed to normalize the frames, different 

acoustic features  are extracted, including mel frequency cepstral coefficients 

(MFFCs), log energy, delta and delta-delta features. A total of 39 features are extract-

ed from each frame comprising 12 MFCCs,  1 log-energy, 12 delta, and 12 delta-delta  

features [10, 11]. The distance between two frames,  f1 and f2 was obtained by  
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where |𝑡 indicates transpose of the feature vector. 

 

A high similarity or correlation corresponds to a small distance ‘d’ and vice versa.  

 

Next, by using sliding window, we search the segment boundaries, where the bounda-

ry is hypothesized if the distance function that measures the difference between the 

average of feature vectors before the boundary and after the boundary attains a local 

maximum above a certain threshold. We use a window of 2 frames to either side of 

the boundary. And, with log(E) as the weighing factor, the criterion for detecting the 

boundary is: 
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2.2 Module 2: Clustering Module 

This module takes as input, the segments from module 1, fits a Gaussian model to 

each segment, and clusters different segment models using k-means clustering algo-

rithm . In this clustering module, the distance between two segment models S1 and S2  

is defined similar to equation (1). For a better tractability, clustering of segment mod-

els is not applied to complete set, but first 10 utterances were first processed and in 

subsequent steps, more segments, in increments of 10 utterances were added and clus-

ters updated until all sentences/segments  in the data set were included. The output of 

this module is a set of unique labels assigned to each cluster. 

 

 

 

 

 



Table  1: Abstract Tags indicating the presence of a word in the utterance Each utterance 

is associated with abstract information that indicates the presence of a word, but not its 

acoustical representation or its position in the utterance. As an illustration, this table 

shows eight abstract tags, related to the occurrence of ’forty’, ’eight’, ‘years’, ‘old’, ‘bed’, 

‘investigation’, ‘monitoring’, ‘stable’ 

Sentence/utterance in 
the audio file Tag1 Tag2 Tag3 Tag4 Tag5 Tag6 

 
Tag7 

 
Tag8 

Mike hanley, 48 years old yes yes 
 

yes 
 

yes 
 

No 
 

no 
 

no 
 

no 

under Dr Johnson, bed 3 no no 
 

no 
 

no 
 

Yes 
 

no 
 

no 
 

no 

came in for investigation no no no no No yes no no 

On regular nitros no no no no No no no no 

obs are all stable no no no no No no no   yes 

monitored accordingly no no no no No no yes   no 

 

2.3 Module 3: Word Discovery Module 

This module is for word discovery, and works by taking as input the wave files, in 

combination with the sequence of labels from the clustering module, and abstract 

tags, shown in Table 1.  The word discovery algorithm for this module involves a 

DTW (Dynamic Time Warping) algorithm, where the likelihood of two utterance 

sharing a common word is estimated using a DTW on two label sequences, with the 

assumption that the audio segment plus abstract tags are available as a list (Table 1).  

The word discovery algorithm works as follows. 

1. New utterance is selected 

a. Two empty sets Amatch and Ano_match are initialized.  

b. The new utterance is compared with all previously observed utter-

ances using DTW algorithm on all corresponding label sequences.  

c. On the best path found by DTW, best-matching sub sequence is 

found. 

d. If both utterances share the same abstract tag, then this best-

matching sub sequence is put in Amatch, otherwise in Ano_match.  

2. All items in these sets are sorted according to their occurrence, 

3. From the Amatch, N-best utterances are selected,  that do not occur in Ano_match. 

4. Repeat from Step 1 again. 

The advantage of this simple word discovery algorithm is, that it is able to bootstrap 

from the speech signal itself without using any predefined lexical knowledge or phone 

models. As the word discovery module consists of a cascade of intertwined stages,  

the evolution of correct word discovery improves incrementally with more data, better 

label sequence information from clustering module and availability of abstract tags 



indicating the presence of a word.  The same distance measure is used in both module 

2 and module 3, and the same DTW principle is used to define distances between 

segments and to represent the symbol hypothesis of shared word like speech seg-

ments.  

Some interesting points that should be noted for this method are that the 

number of clusters in the k-means module turns out to be approximately equal to the 

number of phones that can be identified in the speech material, and acquisition of 

phones precedes the acquisition of words. The phone-like units are hypothesized in a 

data-driven way, whereas words are hypothesized in an hierarchical manner. With 

additional abstract information provided in the word discovery module, including 

some paralinguistic cues, such as prosody, accent, gender and culture information, 

word detection accuracy can be considerably improved.  

Algorithms for different modules for this method (method I) were imple-

mented in Matlab, ported to C++ using mex compiler, and a GUI tool was built to test 

different utterances from the challenge data set.  A software prototype for this method 

was built, and is shown in Figure 1. The experimental evaluation of this method using 

challenge dataset, consisting of 100 audio files for training and another 100 files for 

testing provided by CLEF challenge task1 is discussed in Section 4.  

 

 
 

Fig. 1. Clinical Speech to Text Recognizer Software Tool 

3 Method II: Using CMU Sphinx Toolkit (Team 

UC_Submission  2) 

For this method we used well known existing system based on CMU Sphinx Speech 

Recognition toolkit [8], which is an open source repository of tools jointly designed 

by Carnegie Mellon University, Sun Microsystems Laboratories and Mitsubishi Elec-

tric Research Laboratories. It is designed differently from earlier versions of Sphinx 

systems in terms of modularity, flexibility and algorithmic aspects. Some of the im-



provements from the earlier versions include newer search strategies, wide range of 

grammar and language models, and different types of acoustic models and feature 

streams. Due to several algorithmic innovations included in the system design it is 

possible to incorporate multiple sources in an elegant manner. Further, the system is 

modular, and is available in different versions, such as Sphinx4, Sphinx5, Pocket 

Sphinx and Pocket Sphinx for Android. While Sphinx4 version is entirely developed 

on the Java™ platform and is highly portable, flexible, and easier to use with multi-

threading, the Pocket Sphinx is migrated from legacy C code with appropriate wrap-

pers. 

The speech recognition is performed in Sphinx 4 using a combination of HMM-based 

acoustic models and appropriate language and grammar models. Due to modularity of 

Sphinx architecture, it is possible to change the language model from a statistical N-

gram language model to a context free grammar (CFG) or a stochastic CFG by modi-

fying only one component of the system, namely the linguist. Likewise, it is possible 

to run the system using continuous, semi-continuous or discrete state output distribu-

tions by appropriate modification of the acoustic scorer. Further, information from 

multiple information streams can be incorporated and combined at any level, i.e., 

state, phoneme, word or grammar, and search module can also be switched between 

depth-first and breadth-first search strategies [8]. Figure 2 shows the overall architec-

ture of the CMU Sphinx decoder. 

 

 

Fig. 2. CMU Sphinx Decoder Architecture [8] 



As shown in Figure 2, the front-end module parameterizes the speech signal, and 

sends the extracted features to the decoder block. The decoder block consists of 

search manager module, linguist module and acoustic scorer module, and decoding is 

performed by co-ordination of these three blocks. The details of each module is de-

scribed briefly here. 

 

3.1 Front End Module 

Figure 3 shows the detailed representation of the front-end module, which consists of 

several communicating blocks, each with an input and an output. The input of each 

block is linked to the output of its predecessor, and probes it to find out if the incom-

ing information is speech data or control signal. The purpose of control signal here is 

to indicate the beginning or end of speech, or data dropped or some other problem. If 

the incoming data is speech, it is processed and the output is buffered, waiting for the 

successor block to request it. This design has several advantages, as it allows the out-

put of any of the blocks to be tapped, actual input to the system to be any of the in-

termediate blocks, not just the first block. Due to this arrangement, it is possible to 

plugin not only speech signals, but also spectra, cepstra or other kinds of auditory 

representations for running the system.  

 

 

Fig. 3. CMU Sphinx Front End Module [8] 

The system is capable of running in different modes, including continuously from a 

stream of speech, and fully end pointed, where the system performs explicit end 

pointing, determining both beginning and ending end points of a speech segment au-

tomatically. The algorithm for the endpoint detection is based on comparison of ener-

gy level to three threshold levels, where two out of these three are used to determine 

start of speech, and one for the end of speech. Also, the starting and/or ending of 

speech from the incoming audio is detected by end pointer, and the end pointer en-

sures that the decoder does not waste any time by processing non-speech segments, 

by sending only speech segments to the decoder, and discarding any non-speech seg-

ments. 



3.2 Decoder Block 

There are three modules in the decoder block: search manager, linguist, and acoustic 

scorer, as described below. 

3.2.1 Search Manager 

The search manager constructs and searches a tree of possibilities for the best hypoth-

esis, by using the information from the linguist. Also, the communication with the 

acoustic scorer to obtain the acoustic scores for incoming data is done by the search 

manager. A token tree is used by the search manager [9], to represent the information 

about the search and complete history of all active paths a given point. Each token in 

the token tree contains the overall acoustic and language scores of the path, the refer-

ence to SentenceHMM reference, an identifier to the input feature frame, and the 

previous token reference, facilitating backtracing. The search manager is able to fully 

categorize a token to its senone, context-dependent phonetic unit, pronunciation, word 

and grammar state with the Sentence HMM reference. A set of active tokens is main-

tained in the active list in the search algorithm, to represent the tips of active search 

branches. During search phase, each input feature frame is scored against the acoustic 

models associated with each token in the active list, and pruning of low scoring 

branches is done. After pruning, the active list is updated by the search manager, us-

ing the successive SentenceHMM states of the tokens. New implementations that can 

provide alternate methods of storing and pruning of the active list can be easily creat-

ed. The active list available as part of the final recognition results, can then be used by 

applications to inspect the highest scoring paths, and construct N-Best lists. 

 

The next important mechanism in the search manager is searching through the token 

tree and the sentenceHMM, which is performed in two different ways: depth-first or 

breadth-first. Depth-first search is analogous to conventional stack decoding, where 

there is a time-sequential expansion of most promising tokens, and hence the paths 

from the root of the token tree to currently active tokens can be of varying lengths. 

However, for the breadth-first search, there is a synchronous expansion of all active 

tokens, resulting in equally long paths from the root of the tree to the currently active 

tokens.  Further, breadth-first search is performed using the standard Viterbi algo-

rithm, in which during search process, competing units (phoneme, word, grammar 

etch) are each represented by a directed acyclic graph (DAG). As can be seen in Fig-

ure 4, each DAG has a source and a sink, with Figure 4a showing the two-node DAGs 

for two competing phonemes AX and AXR, and a more complicated association rep-

resented by DAGs for the competing word units CAT and RAT, as in Figure 4b. For 

Viterbi decoding mechanism, the winner is decided by scoring each competing unit 

using the probability of the single best path, and the unit with the best-path score 

wins. For instance, if the phonemes AX and AXR have probabilities on the edges as 

(0.9, 0.02, 0.01) and (0.2, 0.7, 0.6) respectively, then the scores would be 0.9 and 0.7 

and the AX would be the winner. However, if sum of the probabilities instead of the 

maximum is used for scoring, then the phoneme AXR would be the winner.  



 

. 

 

 

 

Fig. 4. Search Manager DAG module [8] 

3.2.2 Linguist 

The purpose of linguist is to translate the linguistic constraints provided to the sys-

tem into an internal data construct, called the grammar, which search manager uses it 

for search. Typical linguistic constraints are provided in the form of context free 

grammars, N-gram language models, finite state machines etc. The directed acyclic 

graph ( DAG ) representation is also used for grammar, with each node representing a 

set of words, that may be spoken at a particular time 

 

Linguistic constraints are typically provided in the form of context free grammars, 

N-gram language models, finite state machines etc. The grammar is also represented 

with directed graph, with each node representing a set of words that may be spoken at 

a particular time. The associated language and acoustic probabilities are shown by 



arcs for connecting nodes, which predict the likelihood of transmitting from one node 

to another.  

 

Due to pluggable nature of CMU Sphinx, it is possible to load new grammars with 

several grammar loaders which can load different external grammar formats and gen-

erate internal grammar structure. This grammar is then compiled into a Sen-

tenceHMM, which is basically a directed state graph, with each state in the graph 

represented a unit of speech. Then, a series of word states are extracted by decompo-

sition of grammar nodes, with each node representing a word state. Next, a series of 

pronunciation states are obtained by decomposition of word states, with pronuncia-

tions extracted from a dictionary maintained by the linguist. And then, each pronunci-

ation state is decomposed into a set of unit states, where these units may represent 

phonemes, diphones, and these could be specific to contexts of arbitrary length. Final-

ly, each phoneme/diphone unit is then further decomposed into a sequence of HMM 

states. Each unit is then further decomposed to its sequence of HMM states. The Sen-

tence-HMM construct thus comprises all of these states which are connected by arcs 

that have language, acoustic and insertion probabilities associated with them. 

 

The linguist module as such, defines the contents of the SenthenceHMM construct 

very well. However, it is possible to improve the search results by altering the topolo-

gy of the SentenceHMM, the memory footprint, the perplexity, speed and the recogni-

tion accuracy. Due to pluggable nature of CMU Sphinx, it is possible to use different 

SentenceHMM compilations without changing other aspects of the search. 

Although the contents of a SentenceHMM are well defined by the linguist, there 

are a number of strategies that can be used in constructing the SentenceHMM that 

affect the search. By altering the topology of the SentenceHMM, the memory foot-

print, perplexity, speed and recognition accuracy can be affected. The pluggable na-

ture of CMU Sphinx allows different SentenceHMM compilation methods to be used 

without changing other aspects of the search. For large grammars, since Sen-

tenceHMM can grow to be quite large, we use a mechanism that allows dynamic con-

truction of SentenceHMM, where it is possible to discard the SentenceHMM when no 

longer needed. These features allow support for very large grammars as is normally 

required for general dictation recognition tasks. 

3.2.3 Acoustic Scorer Module 

The next module is the acoustic scorer module which computes the state output prob-

ability or density values for the various states, for any given input vector using Gauss-

ian scoring procedures. The search module obtains these scores from the acoustic 

scorer whenever it needs, and hence the acoustic scorer also communicates with the 

front-end module to obtain the features for which the scores need to be computed. All 

the information pertaining to the state output densities is retained by the scorer, and 

hence the search manager module is ignorant of whether scoring is done with contin-

uous, semi-continuous or discrete HMMs. The speeding up of the scoring procedure 

is performed by heuristic algorithms locally within the search module, where such 



heuristics can benefit from additional information derived from the search module. 

The details of experimental evaluation for method I, is described in Section 4. 

4 Experimental Evaluation and Discussion  

In this section we report results on CLEF 2015 challenge dataset, which is the NICTA 

synthetic nursing handover dataset provided by challenge organizers.  We segmented 

each audio file to sentence level and down sampled it to 16kHz before feeding it to 

both the methods (Method I and Method II). Same approach involving sentence level 

segmentation and down sampling was done for  both train and test subsets, where the 

test subset comprised 100 different audio recordings from the same speaker. As per 

the requirements of the challenge for CLEF EHealth Task 1a, the evaluation of per-

formance has to be done with NIST scoring toolkit [9], the submissions involved the 

scoring toolkit results, in terms of different performance measures including detection 

of correct words, insertions, deletions, substitutions and incorrect words for both 

training subset and test subset.  

 

For method 2, we could not finish the evaluation before deadline for submission, and 

we submitted partial and incomplete results. However, we completed the experiments 

by the due date for working notes submission and Table 2 shows the performance of 

system in for both submissions. 

 

Table  2: Evaluation of Method I /Method 2 against the benchmark performance results  

 
 

Since this is still work in progress, we envisage the performance of the system, par-

ticularly method I,  can be improved by appropriate choice of models, model parame-

ters, acoustic features and abstract labels, which is currently being pursued. For meth-

od 2 (UC_2_test/UC_2_train), we could not include the results in the original submis-

sion. However, as can be seen in Table 2, the average word detection accuracy on test 



on the test set was 77.7 %, and on training set, it was 74.03%, comparable to bench-

mark results provided by the challenge. 

5 Conclusion:  

In this working notes/paper, we present the details of methods used for our two sub-

missions to CLEF eHealth Challenge Task 1a, on clinical speech recognition. First 

method involve the proposal of novel zero resource word discovery algorithm, where-

as the 2
nd

 method uses well known open source CMU Sphinx speech recognition 

toolkit. Further investigations are in progress to improve the performance of each of 

these approaches. 
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