
Proceedings of the

2nd International Workshop on Mining Urban Data

Emerging Learning Paradigms and
Applications for Smart Cities

 Editors

Ioannis Katakis, National and Kapodistrian University of Athens

Francois Schnitzler, Technion

Thomas Liebig, TU Dortmund

Dimitrios Gunopulos, National and Kapodistrian University of Athens

Katharina Morik, TU Dortmund

Gennady Andrienko, Fraunhofer IAIS and City University London

Shie Mannor, Technion

List of Authors

Bacon, Pierre-Luc (page 11)
Baskiotis, Nicolas (page 85)
Boulicaut, Jean-François (page 63)
Boutsis, Ioannis (page 53)
Chidlovskii, Boris (page 17)
Coates, Becca (page 80)
Contardo, Gabriella (page 85)
Denoyer, Ludovic (page 85)
Feick, Rob (page 80)
Ferri, Cèsar (page 72)
Funke, Stefan (pages 27, 90)
Fürnkranz, Johannes (page 44)
Gal, Avigdor (page 88)
Gunopulos, Dimitrios (pages 53, 97)
Jackson, Thomas W. (page 80)
Janhunen, Tomi (page 65)
Janssen, Frederik (page 44)
Julián, Cristina I. Font (page 72)
Kalogeraki, Vana (pages 53, 97)
Katakis, Ioannis (pages 7, 53)
Kaytoue, Mehdi (page 63)
Larios, Nikolaos (page 97)
Lawrence, Haydn (page 80)
Lehtiniemi, Tuukka (page 65)
Liebig, Thomas (pages 7, 36, 90)
Mandelbaum, Avishai (page 88)
Mathioudakis, Michael (page 65)
Mitatakis, Christos (page 97)

Morik, Katharina (page 36)
Ochando, Francisco Contreras (page 72)
Ochando, Lidia Contreras (page 72)
Othman, Walied (page 90)
Panagiotou, Nikolaos (page 53)
Parviainen, Pekka (page 65)
Pineau, Joelle (page 11)
Plantevit, Marc (page 63)
Pölitz, Christian (page 95)
Ristoski, Petar (page 44)
Robardet, Céline (page 63)
Robertson, Colin (page 80)
Sanders, Peter (page 90)
Schirrmeister, Robin (page 27)
Schnitzler, François (pages 7, 88)
Schulz, Axel (page 44)
Senderovich, Arik (page 88)
Shankardass, Ketan (page 80)
Shaughnessy, Krystelle (page 80)
Stolpe, Marco (page 36)
Storandt, Sabine (pages 27, 90)
Sykora, Martin (page 80)
Weidlich, Matthias (page 88)
Zacheilas, Nikos (page 53)
Ziat, Ali (page 85)
Zimmermann, Albrecht (page 63)
Žliobaitė, Indrė (page 65)
Zygouras, Nikolas (page 53)

3

4

Contents

2nd International Workshop on Mining Urban Data (Preface) 7
Ioannis Katakis, François Schnitzler, Thomas Liebig

Analyzing Open Data from the City of Montreal 11
Joelle Pineau and Pierre-Luc Bacon

Improved Trip Planning by Learning from Travelers’ Choices 17
Boris Chidlovskii

Automatic Extrapolation of Missing Road Network Data in OpenStreetMap . . . 27
Stefan Funke, Robin Schirrmeister and Sabine Storandt

Distributed Traffic Flow Prediction with Label Proportions: From in-Network
towards High Performance Computation with MPI 36
Thomas Liebig, Marco Stolpe and Katharina Morik

Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts 44
Axel Schulz, Petar Ristoski, Johannes Fürnkranz and Frederik Janssen

Towards detection of faulty traffic sensors in real-time 53
Nikolas Zygouras, Nikolaos Panagiotou, Nikos Zacheilas, Ioannis Boutsis, Vana Kaloger-
aki, Ioannis Katakis and Dimitrios Gunopulos

Profiling users of the Velo‘v bike sharing system 63
Albrecht Zimmermann, Mehdi Kaytoue, Marc Plantevit, Céline Robardet and Jean-François
Boulicaut

Accessibility by public transport predicts residential real estate prices: a case
study in Helsinki region . 65
Indrė Žliobaitė, Michael Mathioudakis, Tuukka Lehtiniemi, Pekka Parviainen and Tomi
Janhunen

Airvlc: An application for real-time forecasting urban air pollution 72
Lidia Contreras Ochando, Cristina I. Font Julián, Francisco Contreras Ochando and
Cèsar Ferri

5

6 CONTENTS

Stresscapes: Validating Linkages between Place and Stress Expression on Social
Media . 80
Martin Sykora, Colin Robertson, Ketan Shankardass, Rob Feick, Krystelle Shaughnessy,
Becca Coates, Haydn Lawrence and Thomas W. Jackson

Car-traffic forecasting: A representation learning approach 85
Ali Ziat, Gabriella Contardo, Nicolas Baskiotis and Ludovic Denoyer

On Predicting Traveling Times in Scheduled Transportation (Extended Abstract) 88
Avigdor Gal, Avishai Mandelbaum, François Schnitzler, Arik Senderovich and Matthias
Weidlich

Report from Dagstuhl: SocioPaths - Multimodal Door-to-Door Route planning
via Social Paths . 90
Thomas Liebig, Sabine Storandt, Peter Sanders, Walied Othman and Stefan Funke

Modelling Time and Location in Topic Models 95
Christian Pölitz

Evaluating distance measures for trajectories in the mobile setting 97
Nikolaos Larios, Christos Mitatakis, Vana Kalogeraki and Dimitrios Gunopulos

nd

7

8

9

10

Analyzing Open Data from the City of Montreal

Joelle Pineau JPINEAU@CS.MCGILL.CA

McGill University, Montreal, CANADA

Pierre-Luc Bacon PBACON@CS.MCGILL.CA

McGill University, Montreal, CANADA

Abstract

There is a significant effort towards moving

much of the data from the city of Montreal into

an Open Data format. In this short paper, we

report on a recent initiative to analyze this data

using machine learning techniques in the con-

text of a graduate course project. We review the

approach, summarize accomplishments, and pro-

vide several recommendations for improving the

impact from such efforts.

1. Introduction

Many cities worldwide have started to devote significant

efforts and resources to publicly releasing data relating to

their operations and situations. There is an opportunity

for machine learning practitioners to use this data to an-

swer several questions of interest for citizens, administra-

tors, businesses, and researchers.

A course project was assigned in the context of a graduate

course of Applied Machine Learning at McGill University.

The stated goal of the project was to use open data from the

city of Montreal’s website to identify an interesting predic-

tion question that can be tackled using machine learning

methods, and solve the problem using appropriate machine

learning algorithms and methodology. Previously, students

had received 2 months of instructions on machine learning

methods 1. The course involved 65 students at various lev-

els of their studies, from advanced undergraduate to Mas-

ters and PhD, 1 course in structure and 2 graduate teach-

ing assistants. Course participants came from a diverse

set of backgrounds, including computer science, electrical,

mechanical and biomedical engineering, mathematics and

1The course syllabus:
http://www.cs.mcgill.ca/˜jpineau/comp598/

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

statistics, epidemiology, neuroscience, environmental sci-

ence. They worked in teams of 3 for this project.

1.1. Context and project instructions

According to instructions, participants were not restricted

to using only the data from the city of Montreal website,

though needed to use some of it. In particular, when appro-

priate, students were encouraged to incorporate data from

other sources (e.g. equivalent data from other cities), or

collect additional data (e.g. a new test set) to deepen their

investigation.

The choice of prediction task and dataset to use was open.

The goal was to pick a prediction question that is rele-

vant and important to the citizens or administrators of the

city. Particular attention was given to designing a predic-

tion task that was well suited to the choice of dataset; and

vice versa, picking the right data for tackling the chosen

prediction question. The choice of algorithms and software

systems was left open, including allowing use of existing

machine learning toolboxes. The emphasis was on proper

scientific methodology for computational analysis of urban

data, rather than on the implementation of machine learn-

ing algorithms.

1.2. Characteristics of the city of Montreal dataset

The city of Montreal’s Open Data resource2 currently con-

tains 177 datasets, organized under different themes, as

listed in Table 1. Some datasets are re-listed under several

themes, for example a dataset on the location and dimen-

sions of community gardens appears under both the Envi-

ronment and Housing and urban planning.

Several of these datasets include descriptive data, for ex-

ample the list of municipal buildings in a particular bor-

ough, with their respective addresses, or a document de-

scribing the yearly accomplishments in terms of universal

accessibility of buildings (municipal and others). In many

2The data can be accessed here:
http://donnees.ville.montreal.qc.ca/

11

Analyzing Open Data from the City of Montreal

Table 1. Themes and number of datasets from the City of Mon-

treal open data website.

Theme Number of datasets

Organization and administration 54
Sports, leisure, culture and development 43
Infrastructures 28
Environment 27
Housing and urban planning 21
Financial resources 19
Election and referendum 17
Information management 16
Public safety and security 13
Communication and public relations 12
Material resources and services 9
Buildings and land 8
Economic development 7
Human resources 3
Legal affairs 2
Property assessment 1

respects, the data is not systematically or uniformly avail-

able: the list of municipal buildings is available for only

one of the 19 boroughs of the city. The data is available in

several formats (PDF, TXT, XLS, ODT, CSV, DOC, XML,

KML, KMZ, GML, SHP, DXF, JSON, 3DM, ZIP), though

each dataset is provided in a (small) subset of these formats.

2. Overview of projects and results

A total of 22 projects were completed, across a range of

topics. Project titles are listed in Table 2. The primary

challenge for most teams was to identify a dataset that con-

tained enough data to perform a substantial machine learn-

ing analysis. This proved harder than expected, and thus

several teams converged on using similar datasets from the

set of 177 available. The most popular datasets pertained

to the usage of the Bixi bike-sharing service, and data on

the location of bicycling accidents. In some cases, partic-

ipants complemented the available data with similar data

from other cities, for example a project doing a compar-

ative analysis of bicycle accidents in Montreal and New

York.

A second challenge for many teams was to identify an ap-

propriate prediction question, which was both feasible (i.e.

sufficient available data) and interesting (i.e. with impact

for citizens or administrators of the city). In some cases,

the prediction question arose naturally out of the data, for

example predicting the loan rate of library books. On the

other hand, some participants were particularly creative

with their choice of task. Good examples of this were

found in the analysis of city images, which included a

project aiming at the automatic colouring of historical im-

Table 2. List of projects

Real estate

Montreal Real Estate Pricing

Prediction of Real Estate Property Prices in Montreal

Location, Location, Location!

Transportation

Estimating Traffic Levels in Montreal using Computer Vision
and Machine Learning Techniques

Predicting STM Bus Intervals Using Vehicles, Bicycles and
Pedestrian Traffic Data

Predicting Method of Transportation

Biking Lane Usage Prediction

BIXI Montreal

Modeling imbalance in Bike Share Networks

Predicting Bike Counts for BIXI Stations in Montreal

Prediction Problems on Bike Accident and Usage Data in Mon-
treal

Prediction of Bicycle Accidents in Montreal

Prediction of Bike Accidents, a Comparison of New York and
Montreal

Load Forecasting for Smart City with Possible Electrical Vehicle
Penetration

Reconstruction/analysis of city images

Where am I? Predicting Montreal Neighbourhoods from Google
Street View Images

Patch-Wide Classification of Historical Aerial Images of the Is-
land of Montreal

Reviving Old Montreal

Object Recognition of Historical Datasets

Food safety

Smart System for Restaurant Rating

Predicting Severe Food Safety Violations in Toronto, Ontario

Library usage

Predicting Montreal Library Book Loans

Book Recommender Systems for Montreal Libraries

ages (originally taken in black&white).

The choice of machine learning method to solve the chosen

task was left open to the participants. In most cases, they

needed to tackle the full pipeline, from feature extraction,

to training the learner, to setting up a valid evaluation pro-

tocol. Many teams used common software libraries (e.g.

scikit-learn (Pedregosa et al., 2011)) to assist with some

portion of the work.

We now highlight a few of the projects.

2.1. Sample project: Prediction of real estate property

prices in Montreal

This project aimed to predict the price of houses in Mon-

treal. A total of 25,000 records were extracted from on-

line listings of real estate brokers. Complementary infras-

tructure and geographical information for each listing was

acquired from additional open data sources from the city

of Montreal and Statistics Canada. Pre-processing was ap-

12

Analyzing Open Data from the City of Montreal

plied, for example removing properties with an asking price

less than $10,000. Principal components analysis was used

to project the feature space to a lower-dimensional space.

Several machine learning algorithms were considered: lin-

ear regression, support vector regression, k-nearest neigh-

bours, and random forest regression. Algorithms were im-

plemented using the scikit-learn package (Pedregosa et al.,

2011). The most promising results were obtained by an en-

semble of k-nearest neighbour and random forest, achiev-

ing a prediction error on par with previous literature on sim-

ilar datasets for other cities. In the case where the asking

price of a house is included, prediction error of the selling

price can be further reduced. Such a tool could be used by

citizens to get a more accurate estimate of a property’s mar-

ket value. It may also be used by municipalities to assess

property value for tax purposes. Finally, it may be used to

inform economic indices.

2.2. Sample project: Biking lane usage prediction

This project aimed to predict the number of cyclists pass-

ing through different streets in Montreal on a given day.

The analysis focused on ten different streets, and learned

from daily counts obtained from sensors installed on the

streets, over a period of dates between 2009 and 2013, with

a total of 1722 records. Several features were considered,

including the day of the week, weather, air quality index,

price of gas, special events (festivals, football and hockey

games), for a total of 47 features. This complementary

data was extracted from various online sources. Several

machine learning algorithms were considered: linear re-

gression, k-nearest neighbours, boosted decision trees, and

support vector regression. Prediction performance was as-

sessed using the mean absolute error, as well as the ratio

between the mean squared error for a given method and

the mean squared error of a baseline (dummy) predictor.

The boosted decision trees yielded the best performance. A

complementary analysis of the feature impact using Lasso

regression suggested that the day of the week was one of

the most important features, possibly because the bicycle

usage varies greatly between weekdays and weekends.

3. Discussion

In this section we discuss several opportunities and chal-

lenges that arose during the project.

3.1. Opportunities

From app design to data science. Many early open data

efforts from large cities have focused on releasing descrip-

tive data, amenable to app design, often used in the context

of hackaton events. While such activities continue to be

exciting and worthwhile endeavours, we believe that many

communities have much to gain from also considering an

open data strategy that leads to the release of urban data

suitable for machine learning analysis. To meet this goal,

the teams designing the open data platforms and controlling

the information flow may need to acquire expertise about

the goals and challenges of machine learning, in order to

offer appropriate datasets. Computer scientists and statis-

ticians have a role to play in informing these teams about

the benefits that machine learning can bring to our society,

and in providing convincing examples of cases where ma-

chine learning has enhanced the quality of life of citizens,

and productivity of organizations.

Use of urban data to enhance transportation models.

Several of the projects targeted the use of the city of Mon-

treal data to predict various aspects of urban transporta-

tion, from the usage of the bike sharing service, to the ex-

pected timing of buses and automobiles. We observe that

those datasets yielded some of the most interesting analy-

sis because they were more extensive than other datasets, in

terms of number of data points. The projects completed to

date targeted specific aspects of the transportation network

in isolation of others, however there is significant poten-

tial to combine such results into a coherent model of urban

transportation, and eventually to use this model to evalu-

ate different transportation strategies (e.g. adding bicycle

lanes, changing bus routes, etc.)

Use of machine learning to enhance delivery of goods

and services. Several of the projects attempted to use the

available data to predict usage of various services, from the

above-mentioned Bixi bike sharing service, to the borrow-

ing of library books. Such analysis can be useful to make

more efficient use of available municipal resources. How-

ever these cases pose particular challenges because the ob-

served demand often depends on the availability of goods

or services. So for example, one will not observe any de-

mand for a particular book if that book was not available

at the library. Similarly, it is difficult to accurately predict

the real demand for the shared Bixis at a particular loca-

tion once that station has no more bicycles available, and

it is difficult to accurately predict demand at a new loca-

tion. Some of the technical recommendations below relate

to this aspect.

Use of machine learning to enhance human perception

of urban data. One of the most original projects targeted

the automatic re-coloration of old grey-scale images of the

city. While the results so far were not fully satisfying, there

is potential, as the methods improve, to use this technol-

ogy to allow people to gain a new perspective on historical

material. Some of the other projects relating to analysis

of images have similar potential to enhance human under-

standing of the urban landscape, past or present.

Use of urban data as complementary data. A fre-

quent use of the city of Montreal open data in the projects

13

Analyzing Open Data from the City of Montreal

listed above was as a supplement to other more extensive

datasets. An example of this are the three projects pertain-

ing to Real estate, where a large amount of data was first re-

trieved from real estate brokerage websites, and then com-

plemented (via geo-location features) with city of Mon-

treal data on local municipal infrastructure. Additional sup-

plementary information was also considered, from sources

such as Statistics Canada (for sociodemographic indica-

tors), the YellowPages (for location of grocery stores, med-

ical clinics, yoga studios, etc.) and public transit authorities

(for bus and subway access locations).

3.2. Teaching challenges

Methods beyond the curriculum. Several of the projects

required students to tackle machine learning methods that

were beyond the basic course curriculum. The lectures for

the course were not designed with the final project in mind,

but rather to provided good coverage of basic algorithms

and methods for applied machine learning in general. For-

tunately, online resources are plentiful, and most students

were able to acquire the necessary material in areas perti-

nent to their topic. In many cases however, understanding

of that material seemed to be very superficial, and more op-

portunity for one-on-one learning would have improved the

quality of the analysis.

Managing multiple projects. One of the familiar chal-

lenges with open-topic course projects is the load it creates

in terms of supervision. The instructor and teaching assis-

tants must have the time to provide individualized advice to

each project team. We observed the most intense needs dur-

ing the project definition phase, with some teams requiring

up to 3-4 half-hour long meetings to properly define their

scope and aims.

Scope of conclusions. We observed two challenges per-

taining to the interpretation of the results. First, as with any

data analysis, the urge can be strong to interpret the results

in ways that are not warranted by the methodology used.

For example, reporting results indicating that old aerial im-

ages of the city can be classified in terms of usage type

(farmland, forest, residential, water) with 80% accuracy,

but failing to state that the accuracy is in fact much lower

for farmland and forests, but higher for water and residen-

tial areas. Second, while quantitative results are typically

the preferred metric of performance, it is often the qual-

itative results that speak most to the human imagination.

There is a tendency to pick a few select qualitative results

to “tell a story”; this can be a powerful way of showing

results, but it can easily be used to mis-characterize the

expected performance of a system across the full range of

events.

Presentation format. Two components were used for eval-

uation: an in-class 3-minute spotlight talk and a written re-

port. The spotlight talks were preferred over long talks due

to the number of projects. It proved difficult to provide ac-

curate detailed evaluations from such short presentations,

and so most of the feedback was qualitative. The spotlights

talks were held roughly 2 weeks before the final report was

due, and thus focused more on the problem definition and

methods, with few results. The final report was formatted

as a research paper, max. 8 pages in length, and provided

a more accurate account of the project accomplishments.

In previous years, a poster session was held, instead of the

spotlights and written report. This format offers more op-

portunity for interaction between participants. The option

was not retained this year due to scheduling constraints.

3.3. Practical challenges

Language of dataset. Most of the data available for the

city of Montreal is in French. Few of the resources have

been translated. Even in the case of quantitative data, the

lack of English-language description posed an important

problem for some of the young researchers.

Design of the prediction task. When working with pre-

viously used supervised machine learning benchmarks, the

target problem (i.e. output variable) of interest has already

been identified. When working with new datasets, it can be

challenging to identify the right target variable. For exam-

ple in the case of the projects pertaining to transportation,

it may at first seem useful to predict the number or loca-

tion of bicycle accidents within the city. However these

events are relatively rare, and dealing with rare events is of-

ten challenging from a statistical and algorithmic perspec-

tive (especially in small datasets). An alternative may be

to predict the number of close encounters between cyclists

and vehicles, which are less rare, but such data is not typ-

ically available. Alternately, predicting the flow of larger

vehicles (cars, buses, trucks) may be more fruitful, since it

can be reliably estimated, and can be used within a larger

predictive model on urban transportation.

Lack of parallel datasets. Comparative analyses (between

years, between neighbourhoods) can yield rich informa-

tion. This can only be tackled if data from parallel settings

is available. The well-known Boston housing dataset (Har-

rison & Rubinfeld, 1978) was used as a comparison for

some of the projects pertaining to real estate. In general, it

is useful to keep this in mind when planning for additional

releases of urban open data.

3.4. Machine learning challenges

Small data. The typical ICML attendee may be tempted

to believe that all the interesting tasks for machine learn-

ing deal with so-called big-data. Yet several important

problems occur in the small data setting. The challenges

in this case are different, possibly less computational and

14

Analyzing Open Data from the City of Montreal

more statistical. There remains many opportunities to con-

nect to the big-data community through the use of auxiliary

datasets.

Sparse, incomplete, noisy datasets. As with most real-

world datasets, a major problem with urban data remains

the poor quality and uniformity of the data published.

Often, the data is not curated by a person familiar with

machine learning methods. There exists many statistical

and machine learning methods to overcome problems of

data quality, such as expectation maximization (Demptster

et al., 1977), multiple imputation (Rubin, 1987). How-

ever the effective application of these approaches to com-

plex datasets generally requires a good understanding of

the methods (e.g. to construct a good model of imputation).

Feature coding for heterogenous data. Several projects

observed that the choice of coding method for the data had

a significant impact on the performance of their machine

learning algorithm. For example in the bike lane usage pre-

diction, an important feature was the day of the week. En-

coding this as 7 binary features reduced the error rate by

more than 5%, compared to using a single 7-valued cate-

gorical feature. Another similar effect was seen in the real

estate price prediction task, where a logarithmic function

was used to re-scale prices. Typically, the choice of en-

coding can be validated using standard methods for feature

selection.

Feature selection for complex data. For some domains,

the set of features that can be considered is very large, thus

an important problem is in selecting the right set of fea-

tures. Furthermore, it is often possible to enhance the fea-

ture set by incorporating supplementary data sources. It can

be difficult to select the sufficient and necessary set of fea-

tures for a given prediction task. Cross-validation methods

can be used to automatically compare different feature sets.

But this can be problematic in the case of small datasets

where only limited data is available for validation of the

feature set. An effective method in those cases is usually to

use domain knowledge and expert advice to narrow down

the candidate features to a manageable set (or small num-

ber of candidate sets). Another possible approach to tackle

this problem is to use data from another city to predict the

right set of features. Considering the case of Food Safety

analysis, while Montreal has released only 750 records of

food inspections (Montreal food data), San Francisco has

released 10,000 records (San Francisco food data). There-

fore one could optimize the choice of features using the San

Francisco data and then apply the model and learn a simple

prediction strategy on the Montreal data. More sophisti-

cated methods for transfer learning are also worth investi-

gating. Finally, it is worth pointing out that the choice of

features can be key not just for building a good predictor,

but also for building a good model for missing data impu-

tation.

Choice of machine learning algorithm. There is a ten-

dency among novice machine learning practitioners to

spend significant efforts on testing several machine learn-

ing algorithms, with the belief that the choice of algo-

rithm is the dominant factor in achieving good predic-

tion performance. Another tendency is to assume that

the most advanced methods will necessarily outperform

more naive methods. In practice, several algorithms may

perform equivalently, or simple methods may outperform

more complicated ones, for example when there is insuf-

ficient data to properly train a complex hypothesis space,

or the hyper-parameters are not properly optimized. Sim-

ilar to the choice of features, algorithms can be compared

using an appropriate cross-validation methodology.

Interpretability of results Methods such as linear regres-

sion, decision tree and naive bayes classifiers, are often pre-

ferred to more complex methods such as neural networks or

kernel methods, in the case where interpretability of the re-

sults is necessary. In some applications, the knowledge of

which features are most predictive of a particular outcome

(e.g. finding which municipal amenities are best predic-

tors of higher real estate prices) is of utmost interest. Sev-

eral newer models have been proposed that combine rich

hypothesis spaces with interpretability (Letham et al., To

appear).

From supervised learning to decision-making So far

we have been mostly concerned with supervised learning,

where the goal of the learner is to predict a given quan-

tity (the output) from observed variables (the input). In

some cases, the goal may be to use the analysis to change

a decision strategy. For example, by correctly predicting

which restaurants may be found in violation of the health

and safety laws, it may be possible to more efficiently de-

ploy food safety agents. It is important to be aware of the

fact that such a change in policy may result in a shift in

the observed data. In the case where one wants to optimize

the decision strategy, it may be more appropriate to phrase

the problem under the framework of reinforcement learn-

ing (Sutton & Barto, 1998).

Off-policy learning A related case for concern arises when

the data was acquired under a particular decision strategy,

and the results of the analysis are used to change that deci-

sion strategy; in such case it can be difficult to accurately

predict what will happen under the new decision policy.

This is known as the off-policy learning problem in the

machine learning literature (Sutton & Barto, 1998). Con-

sider for example analyzing the usage data from Montreal’s

Bixi bike sharing service, then using the predictions de-

rived from this analysis to determine which stations have

lower demand, and then reducing bicycle availability at

those stations. If those stations had low demand because

15

Analyzing Open Data from the City of Montreal

they were already subject to reduced availability, then the

further shift to reduces availability likely would not result

in more satisfied customers overall.

4. Conclusion

This paper presents a recent initiative to apply machine

learning techniques to analyze open data from the City

of Montreal data, conducted in the context of a graduate

course project. Several of the challenges and opportunities

identified are commonly known in the machine learning

community. Our goal in presenting this work is to illus-

trate how such challenges arise in the context of analyzing

urban data, and in doing so, facilitate collaboration with in-

terested parties from other communities. While the City of

Montreal was not involved in the elaboration of the course

project, we have since communicated results of the projects

with them. We have also received inquiries from officials

of other cities. There is clearly significant interest in the

outcomes of such initiatives.

Acknowledgements

Much of the credit for this paper goes to the students of

the Fall 2014 edition of the course COMP-598: Applied

Machine Learning, at McGill University. The first sam-

ple project on the prediction of real estate property prices

was realized by Nissan Pow, Emil Janulewicz, and Liu Liu.

The second sample project on the biking lane usage predic-

tion was realized by Robert Wenger, Haomin Zheng, and

Stefan Dimitrov. Several of the issues highlighted in the

discussion were extracted directly from those and other stu-

dents’ project reports. Additional thanks go to Angus Leigh

who acted as a teaching assistant for the course, jointly with

Pierre-Luc Bacon.

References

Demptster, A.P., Laird, N.M., and Rubin, D.B. Maximum

likelihood from incomplete data via the em algorithm.

Journal of the Royal Statistical Society, Series B, 39,

1977.

Harrison, D. and Rubinfeld, D.L. Hedonic housing prices

and the demand for clean air. Journal of Environmental

Economics and Management, 1978.

Letham, B., Rudin, C., McCormick, T., and Madigan,

D. Buildling interpretable classifiers with rules using

bayesian analysis. Annals of Applied Statistics, To ap-

pear.

Montreal food data. http://donnees.ville.montreal.qc.ca/

dataset/inspection-aliments-contrevenants.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-

napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.

Scikit-learn: machine learning in python. Journal of Ma-

chine Learning Research, 12, 2011.

Rubin, D.B. Multiple Imputation for Nonresponse in Sur-

veys. J. Wiley & Sons, 1987.

San Francisco food data. https://data.sfgov.org/health-and-

social- services/restaurant-scores/stya-26eb?

Sutton, Richard S. and Barto, Andrew G. Introduction to

Reinforcement Learning. MIT Press, Cambridge, MA,

USA, 1st edition, 1998. ISBN 0262193981.

16

Improved Trip Planning by Learning from Travelers’ Choices

Boris Chidlovskii BCHIDLOVSKII@XRCE.XEROX.COM

Xerox Research Center Europe, 6 chemin Maupertuis,38240 Meylan, France

Abstract

We analyze the work of urban trip planners and

the relevance of trips they recommend upon user

queries. We propose to improve the planner rec-

ommendations by learning from choices made

by travelers who use the transportation network

on the daily basis. We analyze individual travel-

ers’ trips and convert them into pair-wise prefer-

ences for traveling from a given origin to a des-

tination at a given time point. To address the

sparse and noisy character of raw trip data, we

model passenger preferences with a number of

smoothed time-dependent latent variables, which

are used to learn a ranking function for trips. This

function can be used to re-rank the top planner’s

recommendations. Results of tests for cities of

Nancy, France and Adelaide, Australia show a

considerable increase of the recommendation rel-

evance.

1. Introduction

Most cities and agglomerations around the world propose

their trip planners, in the form of a web or mobile appli-

cation. Upon a user travel request, they recommend trips

using a static library of roads and public transportation net-

work and services. Although these planners are increas-

ingly reliable in their knowledge of transportation network

and available services, they all share the same static-world

assumptions. In particular, they make a general assumption

of constancy and universality (Letchner et al., 2006), that

the optimal trip is independent of the time of day of the

actual journey and of the passengers’ preferences.

In reality, constancy and universality rarely hold. Most

urban travelers can verify that the best trip between work

and home at midnight is not necessarily the best choice to

make between the same locations at 8am. Similarly, differ-

ent passengers may choose different ways to travel between

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

the same origin and destination points.

While the personal knowledge plays an important role, in

many cases passengers simply have different preferences

about the trip planning. For example, one passenger may

avoid multiple changes, by extending the duration of her

journey by a few minutes, while another passenger simply

wants to arrive as quickly as possible to the destination.

When a user queries a planner for a journey from origin o

to destination d starting at time ts, there are often a large

number of trips satisfying the query. Planners are designed

to provide the k-top recommendations according to a set

of predefined criteria, such as the minimal transfer time,

the minimal number of changes, etc.. Their work is sim-

ilar to any information retrieval system, where the goal is

to place the most relevant documents among the k-top an-

swers. Therefore, it is highly desirable that a trip planner

behaves intelligently and suggests k-top trips which reflect

the real passengers’ preferences.

In this paper we closely analyze the cases of divergence be-

tween the planner recommendations and real choices made

by urban travelers. We collect two sets of individual trips

extracted from fare collection systems in cities of Nancy,

France and Adelaide, Australia (see Figure 1). We com-

pare these data to the city planners’ recommendations; and

in the of case of divergence, we propose a novel method to

rank the trips that better reflects the reality.

Figure 1. Trip planners of Nancy (left) and Adelaide (right).

Our method relies on two main contributions. First, we

consider any individual trip as a set of explicit preferences

made by the traveler during the trip. We use this set of

pairwise preferences to learn a ranking function of trips.

17

ICML MUD 2015

This function is then used on the top of the trip planner,

to re-rank the k-top recommendations. Second, we model

passenger preferences of choosing a specific service or a

change point in a way that reflects their dynamic nature. To

address the sparse and noisy character of the raw trip, we

model the user preferences by a set of dynamic latent vari-

ables. We estimate these variables by a smoothed dynamic

non-negative factorization of service and transit counts.

The remainder of this paper is organized as follows. In

Section 2 we briefly review the state of art in urban trip

planning. Section 3 introduces the trip ranking problem

by analyzing individual trips for Nancy city case. Learn-

ing to rank for trip planning is presented in Section 4.

Then Section 5 proposes to model user preferences by dy-

namic latent variables and develop an estimation method

by smoothed dynamic non-negative factorization of service

and transit counts. In Section 6, we report results of eval-

uation on trip re-ranking for two city datasets. Section 7

concludes the paper.

2. Prior Art

Trip planners. Public transport (PT) trip planners are de-

signed to provide information about available journeys in

the transport system. The application prompts a user to in-

put an origin o, a destination d and a departure time ts (or

arrival time tf), it then deploys a trip planning engine to

find a sequence of available PT services from o to d start-

ing at time ts (or ending at time tf).

Trip planners often retrieve multiple trips for a user query.

They typically use a variation of the time-dependent short-

est path algorithm to search a graph of nodes (representing

access points to the network) and edges (representing pos-

sible journeys between points) (Casey et al., 2014). Differ-

ent weightings such as distance, cost or accessibility are of-

ten associated with each edge and node. Search may be op-

timized on different criteria, for example, the fastest, least

changes or cheapest ones (Pelletier et al., 2009).

Planning high quality realistic trips remains difficult for

several reasons (McGinty & Smyth, 2000). First, avail-

able General Transit Feed Specification (GTFS) sources

rarely contain all information useful for constructing real-

istic plans. Second, the notion of ”service quality” is diffi-

cult to define and is likely to change from person to person.

Consequently, in real-world trip planning, the shortest trip

is rarely the best one for a given user.

Multiple efforts have been made to improve the trip plan-

ning (Lathia & Capra, 2011; Liebig et al., 2014; Mokhtari

et al., 2009; Trepanier et al., 2005; Yuan et al., 2011). Anal-

ysis of trip planner log files (Trepanier et al., 2005) can help

improve transit service by providing better knowledge on

transit users. Log files were useful for identifying new lo-

cations to be assessed for better understanding user behav-

iors, and for guiding updates of the PT information system.

Personalization of trip planning took into account user pref-

erences and tries to identify the best trips among a set of

possible answers. In (Mokhtari et al., 2009), the fuzzy set

theory was used to model complex user preferences. A ty-

pology of preferences was proposed to explicitly express

the preferences and integrate them in a query language.

Trip personalization by mining public transport data has

been addressed in (Lathia & Capra, 2011). It established a

relation between urban mobility and fare purchasing habits

in London public transport network (Seaborn et al., 2010),

and proposed personalized ticket recommendations based

on the estimated future travel patterns and matching travel-

ers to the best fare.

Integrating real time information in trip planners has been

another research trend. (Yuan et al., 2011) presented a

cloud-based system computing customized and practically

fast driving routes for an end user using (historical and real-

time) traffic conditions and driver behavior. GPS-equipped

taxicabs are used as mobile sensors constantly probing the

traffic rhythm of a city and taxi drivers’ intelligence in

choosing driving directions. The real time trip planning has

also been extended to multi-modality (Casey et al., 2014;

Seaborn et al., 2010). It used data from GPS-enabled vehi-

cles to produce more accurate plans in terms of time and

transit vehicles.It incorporates the delays into the transit

network at real-time to minimize the gap with respect to

the prediction model.

Learning to Rank. In document retrieval, to ranking doc-

uments based on their degrees of relevance to a query has

been the key question for decades. Much effort has been

placed on developing document ranking functions. Early

methods used a small number of document features (e.g.,

term frequency, inversed document frequency, and docu-

ment length), with an empirical tuning of the ranking func-

tion parameters. To avoid the manual tuning, the doc-

ument retrieval was proposed to be regarded as learning

to rank (Burges et al., 2005; 2006; Cao et al., 2006; Liu,

2011). Click-through data are used to deduce pair-wise

training data for learning ranking functions.

In learning to rank, a number of categories are given and a

total order is assumed to exist over the categories. Labeled

instances are provided, and each instance is represented by

a feature vector, and each label denotes a rank. Existing

methods can be categorized as point-wise, pair-wise and

list-wise (Liu, 2011). In point-wise methods, each instance

with its rank is used as an independent training example.

The goal of learning is to correctly map instances into in-

tervals. In pair-wise methods, each instance pair is used as

a training example and the goal of training is to correctly

18

ICML MUD 2015

find the differences between ranks of instance pairs, and

ranking is transformed into pairwise classification or pair-

wise regression (Herbrich et al., 2000). This model formal-

izes learning to rank as learning for classification on pairs

of instances and can deploy any classification method. In

list-wise methods, the loss function is defined on a ranked

list with respect to a query (Xia et al., 2008).

3. Individual trips analysis

We consider a public transportation system that offers a

number of services (buses, trams, trains, etc.) to urban

travelers. Any individual passenger trip J represents a se-

quence of PT services and changes between the services.

Service legs of J form a sequence SJ = {l1, . . . , ln}, n ≥
1, where leg li is a tuple (si, bi, ai, t

b
i , t

a
i), si is a service

identifier (a bus number, for ex.); bi and ai are boarding

and alighting stops, tbi and tai are boarding and alighting

timestamps. Trip is direct if n = 1, and transit otherwise.

A transit trip includes n − 1 changes which refer to wait-

ing and/or walking between the services. The sequence of

changes is defined as CJ = {c1, . . . , cn−1}, n ≥ 1, where

ci is uniquely defined by two successive service legs li and

li+1, as ci = (ai, bi+1, t
a
i , t

b
i+1).

We make the following association between individual trips

and trip recommendations. We consider a trip J as an ex-

plicit answer to an implicit travel query Q = (o = b1, d =
en, ts = tb1) or Q = (o = b1, d = an, tf = tan).

Figure 2. a) Minimal travel time vs average travel time. b) Trip

uncertainty.

We analyze sets of individual trips collected from the auto-

mated fare collection systems (Mezghani, 2008) installed

in Nancy, France and Adelaide, Australia; we mined these

data to understand how passengers’ choices differ from the

planner recommendations.

For every pair of locations (o, d) in a network, we extract

all real trips from o to d and analyze their travel time dis-

tribution. Figure 2.a shows the distribution of the minimal

versus the average travel time for every (o, d) pair in Nancy.

The high density zone suggests that the average travel time

is far longer than the minimal time which is conventionally

assumed by the planners.

Trip datasets expose a very large variety of paths for any

(o,d) pair; the maximum number of different paths ob-

served is 46 for Nancy and 37 for Adelaide; the average

number of paths between two locations is 2.71 and 3.12,

respectively. We measure the uncertainty of choosing one

or another path from an origin o to a destination d, by using

the Kullback-Leibler divergence KL(q||p) of the trip dis-

tribution q from the uniform distribution p. The higher KL

values indicate the higher certainty and a clear domination

of one trip over others. Figure 2.b plots the KL divergence

values for all (o,d) pairs in Nancy using the log-log scale.

Again, the high density zone suggests that a large part of

(o,d) pairs is dominated not by one but by 2 to 5 different

paths of high frequency.

Figure 3. a) 5-top trips for one (origin, destination) pair in Nancy.

b) The travel time and trip count distributions for top 5 trips.

It is important to recall that travelling preferences change

during the day. Figure 3.a shows 5-top transit trips for an

example (o, d) location pair in Nancy. Figure 3.b shows the

travel time and average trip counts for 5-top trips for this

example. All 5 trips are transit ones with one change. The

figure reveals how the user preferences vary during the day.

The trip planner recommends the trip shown in red for the

fastest trip query. First, this recommended trip is not the

fastest nor the most frequent one. Second, the trip shown

in green is the most frequent during the lunch, despite it is

far from being fast.

Figure 4 gives a more general picture. It shows 240 most

frequent (o,d) pairs in Nancy. For each pair, Figure 4.a uses

the different colors to show changing user preferences. The

most frequent trip is colored in dark blue. Second, third,

forth and fifth preferences are shown in blue, green, orange

and brown colors, respectively. Trips are sorted by the dis-

tance between the origin and destination (see Figure 4.b).

Short trips expose a higher variability than longer ones. As

the figure shows, the second choices are more visible (blue

19

ICML MUD 2015

color) during the morning rush hours. Figure 4.c shows

the trip planner recommendations for the same pairs. The

recommendations are static and do not reflect the user pref-

erences.

Figure 4. a) Changing user preferences for most frequent (o,d)

pairs in Nancy. b) Trip distances. c) Trip recommendations by the

planner.

We conclude this section by Figure 5 which shows how the

user preferences vary between the PT services. It presents

the total passenger counts for all Nancy change points, at

8am, 1pm and 6pm.

Figure 5. Change counts in Nancy at 8am, 1pm and 6pm.

4. Learning to rank trips

When a passenger travels from an origin o to a destination

d at time ts, she implicitly prefers the trip J she takes to

all other trips J ′,J ′ 6= J . Our approach is to transform

this implicit feedback into an explicit set of pair-wise trip

preferences and to learn the ranking function f from them.

Algorithm 1 below uses the trip planner and a set T of indi-

vidual passengers’ trips. For any trip J ∈ T matching the

query Q = (o, d, ts), the algorithm retrieves the k-top can-

didates for Q and retains thatJ has been preferred to any of

these candidates, except J itself if it happens to be in this

set. Real trip J matches a recommended trip J ′, if it has

the same number of legs and following the same sequence

of services. If SJ = {l1, . . . , ln} and SJ ′ = {l′1, . . . , l
′
n},

then J matches J ′ iff si = s′i ∧ bi = b′i ∧ ai = a′i, for all

i = 1, . . . , n.

Algorithm 1 Rank learning algorithm.

Require: Collection T of passenger trips J = (S, C)
Require: Trip planner P with k-top recommendations

1: S = ∅ ; set of pairwise preferences

2: for each J ∈ T do

3: Form a query Q = (o = b1, d = an, ts = tb1)
4: Query the planner P with query Q

5: Retrieve k-top trips as a list L

6: for each J ′ ∈ L,J ′ 6= J do

7: Add (Q,x(J) ≻ x(J ′)) to S

8: end for

9: end for

10: Learn the ranking model f from S

Ensure: f

Once the ranking function f is learned, it can be used to im-

prove the relevance of trip planner recommendations acord-

ing to the re-ranking scenario. The trip planner does not

change the way it works. And for a new user query Q,

the trip planner first generates k-top candidate trips. Then

these candidates are re-ranking using the function f .

To learn a ranking function f , Algorithm 1 requires every

trip J be described by a feature vector x(J). In the fol-

lowing sections, we first describe a method for learning the

ranking function f and then how to extract relevant and dy-

namic features from individual trips.

4.1. Gradient Boosting Rank

We used individual trips to form a set pairwise preferences,

a ranking function f can be learned from. For each in-

dividual trip J ∈ T , we generate a set of labeled data

(xi,1, yi,1), . . . , (xi,mi
, yi,mi

), i = 1, . . . , |T |, which are

preference pairs of feature vectors. If xi,j has a higher

rank than xi,k (yi,j > yi,k), then xi,j ≻ xi,k is a pref-

erence pair, which means that xi,j is ahead of xi,k. The

preference pairs can be viewed as instances and labels in a

new classification problem, where xi,j ≻ xi,k is a positive

instance.

Any classification method can be used to train a classifier

f(x) which is then used for ranking. Trips are assigned

scores by f(x) and sorted by the scores. Learning a good

20

ICML MUD 2015

ranking model is realized by training of a model for pair-

wise classification. The loss function in learning is pairwise

because it is defined on a pair of feature vectors.

The pairwise approach is adopted in many methods, includ-

ing Ranking SVM (Herbrich et al., 2000), RankBoost (Fre-

und et al., 2003), RankNet (Burges et al., 2005), IR

SVM (Tsai et al., 2007), GBRank (Zheng et al., 2007),

LambdaRank (Burges et al., 2006), and others. In the fol-

lowing we adopt GBRank as one of popular pairwise meth-

ods currently used.

GBRank takes preference pairs as training data,

{x1
i ,x

2
i },x

1
i ≻ x

2
i , i = 1, . . . , N . and uses the para-

metric pairwise loss function

L(f) =
1

2

N∑

i=1

(max{0, τ − (f(x1
i)− f(x2

i)})
2,

where f(x) is the ranking function and τ is a parameter,

0 < τ ≤ 1. The loss is 0 if f(x1
i) is larger than f(x2

i) + τ ,

otherwise, the incurred loss is 1

2
(f(x2

i)− f(x1
i) + τ)2.

To optimize the loss function with respect to the training in-

stances, the Functional Gradient Decent is deployed. Treat-

ing all f(x1
i), f(x

2
i), i = 1, . . . , N as variables; the gradi-

ent of L(f) is computed with respect to the training in-

stances as follows

−max{0, f(x2
i)− f(x1

i) + τ},max{0, f(x2
i)− f(x1

i) + τ},
i = 1, . . . , N.

If f(x1
i) − f(x2

i) ≥ τ , the corresponding loss is zero, and

there is no need to change the ranking function. If f(x1
i)−

f(x2
i) < τ , the loss is non-zero, and the ranking function

is updated using the Gradient Descent:

fk(x) = fk−1(x)− ν∆L(fk(x)),

where fk(x) and fk−1(x) denote the values of f(x) at k-th

and (k−1)-th iterations, respectively, ν is the learning rate.

At the k-th iteration of the learning, GBRank collects

all the pairs with non-zero losses {(x1
i , fk−1(x

2
1) +

τ), (x2
i , fk−1(x

1
i) − τ)} and employs Gradient Boosting

Tree (Friedman, 2000) to learn a regression model gk(x)
that can make prediction on the regression data. The

learned model gk(x) is then linearly combined with the

existing model fk−1(x) to create a new model fk(x) as

follows

fk(x) =
kfk−1(x) + βkgk(x)

k + 1
,

with βk as a shrinkage factor (Zheng et al., 2007).

5. Trip feature extraction

We now describe each real trip J by a set of relevant and

dynamic features x(J). There may exist explicit and im-

plicit factors which influence the passenger choice. Pas-

sengers make their choices in the function of location and

time.

We mention two groups of trip features. First, global fea-

tures describe the whole trip; they are the travel time, the

number of changes, the usage of specific types of transport

(bus, train, tram, etc.), multi-modality, etc. Second, much

more relevant and specific are local features that describe

each service leg and change that compose a given trip. For

each PT service, we may extract the estimated means and

variance of the speed when using this line at this time pe-

riod, the average delay with respect to the schedule. For

each change point, we can estimate the walking distance if

any, the closeness to a commercial zone or transportation

hub, etc.

Unfortunately, raw features of services and change counts

are generally sparse, noisy and prone to many errors. Main

reasons for errors are due to incorrect setup of ticket valida-

tion machines, lack of alignment between ticket validation

machines and GPS localization, and card misuse by travel-

ers.

So we intend to extract such latent features from sparse and

noisy counts that be able to represent user preferences and

their dynamic character.

We split all trips J ∈ T in two collections of service and

change observations, As = {li|li ∈ SJ ,J ∈ T } and

Ac = {ci|ci ∈ CJ ,J ∈ T }. In the following we as-

sume for brevity working with a set of observations A; it

may indicate service or change observations, or their sum.

If we split all observations in A in T time periods,

so we obtain a sequence of count matrices At, t =
1, . . . , T,At ∈ R

p×p
+ at time period t, where aij is the

service or change count during the period t. and p is the

number of stops.

The full diagram of latent feature extraction for individual

trips and learning the ranking function is given in Figure 6.

5.1. Collapsed matrices

We first consider the static case when T is 1 and all obser-

vations from A are collapsed in one matrix A.

Both service and change data are sparse non-negative

counts, and we can use the non-negative matrix factor-

ization (NNMF) as a method giving a great low-rank ro-

bust interpretation of data (Lee & Seung, 2001). They can

be efficiently computed by formulating the penalized opti-

mization problem and using modern gradient-descent algo-

rithms (Hoyer, 2004).

Matrix A is approximated with a product ot two low-rank

matrices that is estimated through the following minimiza-

21

ICML MUD 2015

Figure 6. Preference features and re-ranking function learning.

tion

minU≥0,V≥0||A−UV
T ||2F ,

where U and V are n × K non-negative matrices. The

rank or dimension of the approximation K corresponds to

the number of latent factors; it is chosen to obtain a good

data fit and interpretability, where U give latent factors for

origin stops and V does for destination stops.

The factorized matrices are obtained by minimizing an ob-

jective function that consists of a goodness of fit term and

a roughness penalty

minU≥0,V≥0||A−UV
T ||2F + λ(||U||1 + ||V||1), (1)

where the parameter λ ≥ 0 indicates the penalty strength;

a larger penalty encourages sparser matrices U and V.

Adding penalties to NMF is a common strategy since they

not only improve interpretability, but often improve numer-

ical stability of the estimation.

5.2. Smoothed Dynamic NNMF

In the general case T > 1, we have a sequence of matrices

{At}
T
t=1 for time periods t = 1, . . . , T . To produce a se-

quence of low-rank matrix factorizations {Ut,Vt}
T
t=1, we

can extend the factorization in (1) to the case T > 1 by in-

dependent factorization of T matrices {At}. However, we

additionally impose a smoothness constraint on both Ut

and Vt, in order to force the latent factors to be similar to

the previous time periods, in both boardings and alightings.

The objective function then becomes

minUt≥0,Vt≥0||At −UtV
T
t ||

2
F

+µ
∑T

t=2
(||Ut −Ut−1||

F
2 + ||Vt −Vt−1||

F
2)

+λ(
∑T

t=1
||Ut||1 + ||Vt||1),

(2)

where parameters λ, µ are set by the user. The objective

function imposes smoothing Ut and Vt on two successive

time periods, but it can be generalized to a larger window.

To estimate matrices Ut and Vt, we use an extended

version of the multiplicative updating algorithm for

NNMF (Gillis & Glineur, 2012; Lee & Seung, 2001;

Mankad & Michailidis, 2013), based an adaptive gradient

descent.

Temporal extensions of matrix factorization techniques

have been studied in (Elsas & Dumais, 2010; Mankad &

Michailidis, 2013; Saha & Sindhwani, 2012; Sun et al.,

2014). (Elsas & Dumais, 2010) analyzed the temporal dy-

namics of Web document content. To improve the rele-

vance ranking, it developed a probabilistic document rank-

ing algorithm that allows differential weighting of terms

based on their temporal characteristics. (Sun et al., 2014)

addressed recommendation systems with significant tem-

poral dynamics; it developed the collaborative Kalman fil-

ter which extends probabilistic matrix factorization in time

through a state-space model. Community detection in time-

evolving graphs is analyzed in (Mankad & Michailidis,

2013). The latent structure of overlapping communities is

discovered through the sequential matrix factorization.

To solve (2), we follow (Mankad & Michailidis, 2013) and

consider the Lagrangian as follows

L = ||At −UtV
T
t ||

2
F+

+µ
∑T

t=2
(||Ut −Ut−1||

F
2 + ||Vt −Vt−1||

F
2)

+
∑T

t=1
(λ(||Ut||1 + ||Vt||1) + Tr(ΦUt) + Tr(ΨVt)),

(3)

where Φ,Ψ are Lagrange multipliers. The method works

as an adaptive gradient descent converging to a local mini-

mum. Kuhn-Tucker (KKT) optimality guarantees the nec-

essary conditions for convergence [44]. The KKT optimal-

ity conditions are obtained by setting ∂L
∂Ut

= 0; ∂L
∂Vt

=
0, t = 1, . . . , T. It can be shown that the KKT optimality

conditions are obtained by

Φt = −2AtVt + 2UtV
T
t Vt − 2µ(Ut−1 −Ut) + 2λ,

Ψt = −2A
T
t Ut + 2VtU

T
t Ut − 2µ(Vt−1 −Vt) + 2λ,

(4)

which after matrix algebra manipulations lead to the multi-

plicative updating rules presented in Algorithm 2.

The convergence of the multiplicative updating algorithm

is often reported slow. In practice we obtain meaningful

factorizations after a handful of iterations, which we tend

to explain by the sparseness of input matrices At. In the

future, when working with the dense data, faster meth-

ods like active set version of the alternating non-negative

least squares (ANLS) algorithm (Kim & Park, 2008) will

be more appropriate.

22

ICML MUD 2015

Algorithm 2 Dynamic Smoothing NNMF algorithm.

Require: Matrices At, t = 1, . . . , T , constants λ ,µ

1: Initialize Ut,Vt as dense, positive random matrices

2: repeat

3: for t = 1,. . . ,T do

4: Ut ← Ut(UtV
T
t Vt + λAUt)

−1(AtVt +
µUt−1)

5: Vt ← Vt(VtU
T
t Ut + λAVt)

−1(AT
t Ut +

µVt−1)
6: end for

7: until Convergence

Ensure: Ut,Vt, t = 1, . . . , T

5.3. Dynamic trip features

Algorithm 2 finds sparse factorized matrices for a se-

quence of input matrices At, t = 1, . . . , T . We first ap-

ply the algorithm to sequences of service matrices As
t and

change matrices Ac
t , extracted from the full trip collection.

We thus obtain smoothed factorized matrices Us
t ,V

s
t , and

U
c
t ,V

c
t , t = 1, . . . , T for services and changes, respec-

tively. At time period t, a boarding stop b has latent factors

given by a corresponding row in U
s
t this row is denoted

U
s
t (b). For an alighting stop a, row V

s
t (a) gives the latent

factors at time t. We then apply the algorithm to the sum

matrices, A
f
t = A

c
t + A

s
t , t = 1, . . . , T . The smoothed

factorized matrices for A
f
t are denoted U

f
t ,V

f
t .

To generate a feature vector x for a trip J , we may use

its decomposition into service legs and changes, J =
(S, C). The vector x(J) is then composed of a general

feature vector xg and four latent components, x(J) =
{xg,x

s
b,x

s
a,x

c
b,x

c
b}, where

• x
s
b , xs

a are latent feature vectors averaged over the trip

boarding and alighting places, respectively,

x
s
b =

1

n

n∑

i=1

U
s
tb
i

(bi);x
s
a =

1

n

n∑

i=1

V
s
ta
i

(ai);

• x
c
b, x

c
a are latent feature vectors averaged over the

change places (alighting and boarding), respectively,

x
c
b =

1

n− 1

n−1∑

i=1

U
c
tb
i

(bi);x
c
a =

1

n− 1

n−1∑

i=1

V
c
ta
i

(ai).

In the case of sum latent matrices U
f
t ,V

f
t , x(J) is com-

posed of a general feature vector xg and two latent compo-

nents, x(J) = {xg,x
f
b ,x

f
a} obtained from U

f
t and V

f
t .

6. Evaluation

To test our method for learning a ranking function from

individual trips, we processed 5.2M individual trips col-

lected in Nancy, France during 3 months in 2012. Nancy

PT network includes 1129 nodes/stops and offers 107 bus

and tram services to travelers. We also processed 12.5M

trips from Adelaide, Australia collected during 2.5 months

in 2013. Adelaide network offers 312 bus and tram service

variations, and accounts for 3524 stops.

To evaluate the impact of modeling user preferences

from actual trips, we selected 240 most frequent origin-

destination pairs in Nancy (see Figure 4) and 160 most fre-

quent pairs in Adelaide.

When generating temporal sequences of count matrices, we

test two cases of T = 24 and T=48, when any matrix in-

cludes all passenger counts during one hour or 30 minutes.

Once a matrix sequence is generated, any matrix is ran-

domly split into 70% for training data and the remaining

30% for testing. All results below are means and variances

over 10 independent runs.

We retrieved the trip planner recommendations for Nancy1

and Adelaide2. We learn the ranking function and use it to

re-rank the trip recommendations, using different options

described in previous sections. To understand the effect of

raw count factorization, we consider several options. First,

we collapse matrices so disregarding the temporal aspect.

Second, we consider either the service A
s
t and change ma-

trices Ac
t separately, or sum them up A

f
t = A

s
t+A

c
t before

the factorization. Third, we study the effect of temporal

smoothing, when factorization is done either independent

or by smoothing over successive time periods. Finally, we

test different values K for the factorization.

In all experiments with GBRank (see Section 4.1), parame-

ter τ was set to τ = 0.3 and shrinkage factors βk to 0.8. For

smoothed dynamic NNMF, optimal values of µ and λ have

been determined by cross-validation. For evaluating the

results of ranking methods, we use a measure commonly

used in information retrieval, Normalized Discounted Cu-

mulative Gain (NDCG). We choose the perfect ranking’s

NDCG score 1 which is the error rate of the 1-top recom-

mendation.

Table 6 reports the evaluation results for 12 different meth-

ods and compares them to the trip planner baseline for both

cities. The analysis of these results provide some interest-

ing insights. First, results are globally better for smaller

Nancy than for bigger Adelaide, for both T = 24 and

T = 48 cases. Second, collapsed matrices improve the

baseline somewhat, but only taking into account temporal

user preferences does really boost the performance. More-

over, smoothed matrix factorization improves considerably

over the independent one. Third, the change latent vari-

ables appear to be more relevant than services ones. In-

1http://www.reseau-stan.com/
2https://www.adelaidemetro.com.au/

23

ICML MUD 2015

City Nancy Adelaide

Method T = 24 T = 48 T = 24 T = 48

Baseline: Trip Planner 24.91 ± 1.20 24.91 ± 1.28 38.17 ± 2.28 38.17 ± 2.28

Collapsed:Services 24.73 ± 1.17 24.73 ± 1.22 29.97 ± 2.11 29.97 ± 2.11

Collapsed:Changes 19.69 ± 1.01 19.69 ±1.09 28.63 ± 2.29 28.63 ± 2.29

Collapsed:Services+Changes 19.30 ± 1.14 19.30 ± 1.03 28.05 ± 2.32 28.05 ± 2.32

Collapsed:Sum 19.59 ± 1.13 19.59 ± 1.10 28.17 ± 2.18 28.17 ± 2.18

Indep: Services 14.08 ± 0.92 15.33 ± 0.97 25.33 ± 2.07 24.87 ± 1.87

Indep: Changes 9.55 ± 0.90 9.89 ± 0.86 23.89 ± 1.67 23.93 ± 1.75

Indep: Services+Changes 9.52 ± 0.89 9.41 ± 0.87 22.41 ± 1.72 22.15 ± 1.55

Indep: Sum 10.42 ± 0.89 9.37 ± 0.86 22.37 ± 1.56 23.55 ± 1.59

Smooth: Services 9.22 ±0.77 9.37 ± 0.78 15.37 ± 1.38 14.71 ± 1.24

Smooth: Changes 6.71 ± 0.82 6.69 ± 0.74 16.69 ± 1.24 16.69 ±1.15

Smooth: Services+Changes 5.83 ±0.81 6.12± 0.79 14.12±1.29 13.63±1.14

Smooth: Sum 7.63 ± 0.79 7.05 ± 0.81 15.05 ± 1.41 14.43 ± 1.32

Table 1. NDCG@1 values for 12 methods and two cities.

stead, using sum counts performs worse than keeping ser-

vice and change variables separately. We tend to explain

this by heterogeneity of service and change preferences.

Figure 7. Independent an smoothed predictions vs Number of la-

tent variables.

Figure 7 shows the performance of 3 independent and 3

smoothed methods for T = 24 for Nancy, with the number

of latent variables K varying between 2 and 30. Surpris-

ingly, already K=2 performs well enough, thus indicating

the sparsity of the count matrices.

Figure 8 reports the hour-per-hour performance for the

same six methods for Nancy case. Rush hours and lunch

time appear to be hard for all methods; the error is the

smallest for the periods 10am-12am and 2pm-4pm that

points to the correlation between the traffic and trip vari-

ability. The traffic growth pushes travelers away from the

conventional traveling choices.

Figure 8. NDCG@1: Independent and smoothed predictions dur-

ing the day.

7. Conclusion

We address the problem of relevance of trips recommended

by urban trip planners. We analyzed passengers’ trips ex-

tracted from two public transportation systems. We pro-

pose a method for improving the recommendation rele-

vance by learning from choices made by travelers who use

the transportation system daily. We convert the actual trips

into a set of pairwise preferences and learn a ranking func-

tion using the Gradient Boosting Rank method. We de-

scribe actual trips with a number of time-dependent latent

features, and develop a smoothed non-negative matrix fac-

torization to estimate the latent variables of user prefer-

ences while choosing PT services and change points. Ex-

periments with real trip data demonstrate that the re-ranked

trips are measurably closer to those actually chosen by pas-

sengers than are the trips produced by planners with static

24

ICML MUD 2015

heuristics.

References

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,

N. Hamilton, and G. Hullender. Learning to rank using

gradient descent. In ICML’05, pages 89–96, 2005.

C. Burges, R. Ragno, and Q. V. Le. Learning to rank with

nonsmooth cost functions. In Proc. NIPS’06, pages 193–

200, 2006.

Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon.

Adapting ranking svm to document retrieval. In Proc.

SIGIR ’06, pages 186–193, New York, NY, USA, 2006.

ACM.

B. Casey, A. Bhaskar, H. Guo, and E. Chung. Critical

review of time-dependent shortest path algorithms: A

multimodal trip planner perspective. Transport Reviews,

34:522–539, 2014.

J. L. Elsas and S. T. Dumais. Leveraging temporal dynam-

ics of document content in relevance ranking. In Proc.

WSDM ’10, pages 1–10, New York, NY, USA, 2010.

ACM.

Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An

efficient boosting algorithm for combining preferences.

J. Machine Learning Res., 4:933–969, 2003.

J. H. Friedman. Greedy function approximation: A gra-

dient boosting machine. Annals of Statistics, 29:1189–

1232, 2000.

N. Gillis and F. Glineur. Accelerated multiplicative updates

and hierarchical als algorithms for nonnegative matrix

factorization. Neural Comput., 24(4):1085–1105, April

2012.

R. Herbrich, T. Graepel, and K. Obermayer. Large margin

rank boundaries for ordinal regression. In Advances in

Large Margin Classifiers, pages 115–132, 2000.

P. O. Hoyer. Non-negative matrix factorization with sparse-

ness constraints. J. Mach. Learn. Res., 5:1457–1469,

December 2004.

H. Kim and H. Park. Nonnegative matrix factoriza-

tion based on alternating nonnegativity constrained least

squares and active set method. SIAM J. Matrix Anal.

Appl., 30(2):713–730, July 2008.

N. Lathia and L. Capra. Mining mobility data to minimise

travellers’ spending on public transport. In Proc. ACM

KDD’11, pages 1181–1189, 2011.

D. Lee and H. S. Seung. Algorithms for non-negative ma-

trix factorization. In Proc. NIPS’01, pages 556–562,

2001.

J. Letchner, J. Krumm, and E. Horvitz. Trip router with in-

dividualized preferences: Incorporating personalization

into route planning. In Proc. IAAI’06 - Vol 2, pages

1795–1800. AAAI Press, 2006.

T. Liebig, N. Piatkowski, C. Bockermann, and K. Morik.

Predictive trip planning-smart routing in smart cities. In

EDBT/ICDT Workshops, pages 331–338, 2014.

T.-Y. Liu. Learning to Rank for Information Retrieval.

Springer, 2011.

S. Mankad and G. Michailidis. Structural and functional

discovery in dynamic networks with non-negative matrix

factorization. Phys. Rev. E, 88:042812, Oct 2013.

L. McGinty and B. Smyth. Turas: A personalised route

planning system. In Proc. PRICAI’00, pages 791–791,

Berlin, Heidelberg, 2000. Springer-Verlag.

M. Mezghani. Study on electronic ticketing in public

transport. European Metropolitan Transport Authorities

(EMTA), 38:1–56, 2008.

A. Mokhtari, O. Pivert, and A. HadjAli. Integrating com-

plex user preferences into a route planner: A fuzzy-set-

based approach. In IFSA/EUSFLAT Conf., pages 501–

506, 2009.

M.-P. Pelletier, M. Trepanier, and C. Morency. Smart card

data in public transit planning: A review. CIRRELT Rap-

port 2009-46, November 2009.

A. Saha and V. Sindhwani. Learning evolving and emerg-

ing topics in social media: a dynamic nmf approach with

temporal regularization. In Proc. WSDM’12, pages 693–

702, 2012.

C. Seaborn, J. Attanucci, and N. H. M. Wilson. Analyz-

ing multimodal public transport journeys in london with

smart card fare payment data. Transportation Research

Record: J. Transp. Research Board, 2121:55–62, 2009.

J. Z. Sun, D. Parthasarathy, and K.R. Varshney. Collabo-

rative kalman filtering for dynamic matrix factorization.

IEEE Trans. on Signal Processing, 62(14):3499–3509,

July 2014.

M. Trepanier, R. Chapleau, and B. Allard. Can trip planner

log files analysis help in transit service planning? Jour-

nal of Public Transportation, 8(2):79–103, 2005.

M.-F. Tsai, Tie-Yan Liu, T. Qin, H.-H Chen, and W.-Y. Ma.

Frank: a ranking method with fidelity loss. In Proc. SI-

GIR’07, pages 383–390, 2007.

25

ICML MUD 2015

F. Xia, T.Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise

approach to learning to rank: theory and algorithm. In

Proc. ICML’08, pages 1192–1199, 2008.

J. Yuan, Yu Zheng, X. Xie, and G. Sun. Driving with

knowledge from the physical world. In KDD ’11, pages

316–324, New York, NY, USA, 2011. ACM.

Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression

framework for learning ranking functions using relative

relevance judgments. In Proc. SIGIR ’07, pages 287–

294, New York, NY, USA, 2007. ACM.

26

Automatic Extrapolation of Missing Road Network Data in OpenStreetMap

Stefan Funke FUNKE@FMI.UNI-STUTTGART.DE

University of Stuttgart, 70569 Stuttgart, Germany

Robin Schirrmeister SCHIRRMR@INFORMATIK.UNI-FREIBURG.DE

University of Freiburg, 79110 Freiburg, Germany

Sabine Storandt STORANDT@INFORMATIK.UNI-FREIBURG.DE

University of Freiburg, 79110 Freiburg, Germany

Abstract

Road network data from OpenStreetMap (OSM)

is the basis of various real-world applications

such as fleet management or traffic flow estima-

tion, and has become a standard dataset for re-

search on route planning and related subjects.

The quality of such applications and conclusive-

ness of research crucially relies on correctness

and completeness of the underlying road network

data. We introduce methods for automatic de-

tection of gaps in the road network and extrapo-

lation of missing street names by learning topo-

logical and semantic characteristics of road net-

works. Our experiments show that with the help

of the learned data, the quality of the OSM road

network data can indeed be improved.

1. Introduction

OpenStreetMap (OSM) is a huge collection of crowd-

sourced spatial information. The goal of the OSM project

is to map the whole world with all its road networks, build-

ings, regions and other kinds of natural and man-made en-

tities. The OSM data set size increases significantly ev-

ery year as more and more parts of the world are covered,

and information becomes more detailed. For example, the

world-wide road network in OSM contained at the begin-

ning of 2007 less than 30 million data points whereas in

2013 this number has grown to more than two billions.

Nowadays, the quality of OSM data often even exceeds the

quality of proprietary data.

OSM is the basis for numerous applications and research

projects, concerned e.g. with pedestrian and vehicle navi-

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

gation (Holone et al., 2007; Vetter, 2010), location-based-

services (Mooney & Corcoran, 2012), disaster warning

(Rahman et al., 2012), fleet management (Efentakis et al.,

2014), traffic estimation (Tao et al., 2012) and many other

related topics1. Completeness of the road network data

is mandatory for these applications to guarantee usability

in practice. Road networks extracted from OSM (mainly

Japan, Germany, North and South America and Australia)

have also become standard benchmarks in route planning

papers, see (Delling & Werneck, 2013; Baum et al., 2013;

Funke et al., 2014). For research on route planning the

completeness of the data plays an important role, as the

developed algorithms are designed to take typical connec-

tivity characteristics of road networks into account.

But while the OSM data is of very high quality already,

there is still structural information missing, as e.g. road

or path sections (see Figure 1). Moreover street names

are far from being complete. The correct street name is

necessary for specifying start and destination in a route

planning query, for location-based services (’all shops on

Norris Street’) and for answering complex route planning

queries like ’from A to B avoiding Park Street’ accurately.

In this paper we design a classifier based on learning topo-

logical and semantic characteristics of road networks which

can then be used to identify pairs of candidate locations

where road segments are likely to be missing inbetween.

We refer to missing structural data as holes in the following.

Furthermore we show how to instrument machine learning

techniques to identify road segments where the name tag

can be extrapolated with high confidence. Our experimen-

tal results prove the ability of our methods to enhance the

quality of OSM road network data considerably.

1http://wiki.openstreetmap.org/wiki/List_

of_OSM-based_services

27

Automatic Extrapolation of Missing Road Network Data

Figure 1. OSM based map (left) and GoogleMaps on a small cut-out of Poland. In the OSM map, the roundabout in the lower left corner

is much more detailed and more building footprints and house numbers are available. For the coloured points in the left image, though,

there are road segments missing as observable on the right.

2. Related Work

Studies on completeness and correctness of the OSM data

are numerous, see e.g. (Girres & Touya, 2010) or (Hak-

lay, 2010). The problem is that there either needs to be a

ground truth one can compare to in an automated way (as

investigated in (Fan et al., 2014) for building footprints in

Munich), or data has to be manually compared to propri-

etary data. In both cases, the ground truth sample sizes are

typically limited. Machine learning was applied to OSM

data in order to automatically assess the quality of the road

network data (Jilani et al., 2013b). Here, characteristics

of certain street types (as e.g. motorways) are learned,

including features such as total street length, number of

dead-ends, number of intersection points and connectivity

to other street types. In the quality analysis, feature vectors

of streets are compared to the learned feature vector for the

respective street type. If they do not resemble each other it

is assumed that the data quality of the considered street is

poor. The authors state that these learned features are also

useful to classify streets with unknown type.

Preliminary results on automated quality improvement of

OSM data were also reported in (Jilani et al., 2013a). Here,

Artificial Neural Networks (ANN) are applied to distin-

guish residential and pedestrian streets; features include

node count within a bounding box and betweenness cen-

trality. In (Jilani et al., 2014), the automated street type

classification for OSM was considered in more detail. In

addition to the above mentioned features, the shape of the

street is considered. About 20 different OSM street types

were used in the experimental evaluation. The classifica-

tion accuracy varies widely but for some types even an ac-

curacy of 100% is achieved.

Further research on enhancing or correcting OSM data au-

tomatically (not necessarily using machine learning tech-

niques) include the deduction of turn restrictions from GPS

tracks (Efentakis et al., 2014), the detection of vandalism

using a rule-based approach (Neis et al., 2012), or the iden-

tification of basic spatial units (so called parcels) for fine-

scale urban modeling (Long & Liu, 2013).

To the best of our knowledge, tools for detecting missing

parts of the OSM road network automatically were not in-

vestigated before, the quality assurance tools in the OSM

project2 mostly focus on detecting syntactic errors in the

map specification. Hole detection in other kind of net-

works, as e.g. sensor networks, is an important and well

established problem, though. Here also topological char-

acteristics of the networks were taken into account (Funke,

2005). But as such networks differ significantly from road

networks in many aspects results are hardly transferable.

3. Basics

OSM data comes in form of nodes, ways and relations.

Nodes are single locations with latitude, longitude and ad-

ditional tags (like the name of the location). Ways are or-

dered sets of nodes, describing e.g. a road or a building

footprint. Relations are compositions of multiple nodes or

ways, e.g. to aggregate all buildings and roads within an

industrial area. Ways and relations are typically also aug-

mented with tags that provide various information (e.g. the

street or region name).

To be able to identify meaningful features for hole classifi-

cation and street name extrapolation later on, we extracted

all nodes and ways that describe roads in OSM and mod-

2http://wiki.openstreetmap.org/wiki/

Quality_assurance

28

Automatic Extrapolation of Missing Road Network Data

eled them into a directed graph G(V,E) where V is the

set of vertices and E ⊆
(

V

2

)

is the set of edges. Addi-

tionally, we define a weight function w : E → R
+ which

provides the Euclidean length (computed on the sphere) of

each edge. For given vertices s, t ∈ V we also define the

shortest path π(s, t) as the path from s to t minimizing the

summed weight of the edges
∑

e∈π w(e).

Moreover we break down name tags associated with ways

by assigning the respective name n(e) to every edge e

making up the way. Edges without names are labeled

n(e) = null. Similarly we associate with every edge e

a type t(e) as inherited from the respective way it is part

of. Here, t(e) ∈ {0, 15} and reflects the hierarchy of the

network (small numbers indicate important streets as mo-

torways, while high numbers refer to living streets).

4. Hole Detection in Road Networks

The basic question is how to identify pairs of locations

in the network where road segments are very likely to be

missing inbetween. To be able to deal with the enormous

amount of OSM data, we aim for methods which work

without the need for manually checking large portions of

the data set. Therefore, we will apply machine learning to

design a hole classifier which can be used to automatically

check location pair candidates.

In the following we discuss several features that are rel-

evant for hole detection. Obviously, connectivity charac-

teristics of the network play an important role. Therefore,

we will describe thoroughly how to measure connectivity

between two nodes in a road network reasonably. Finally,

we sketch the complete pipeline for hole detection, includ-

ing the generation of suitable training data for the machine

learning approach as well as a redundancy filter.

4.1. Road Network Characteristics

To identify holes, we make use of several characteristics

of road networks. To be specific, we are interested in the

following features:

• Connectivity. The most important feature is how well

two locations are connected via the street network.

Measuring connectivity is non-trivial and therefore

discussed in detail in the next section.

• Street type difference. Missing links between loca-

tions exhibit most likely the same street type as the

mapped streets adjacent to those locations. So a

hole/missing link between an interstate and a dirt road

is very unlikely. Therefore we compute the minimal

street type difference for two locations v, w by iter-

ating over all their adjacent edges E(v), E(w) and

calculating mine1∈E(v),e2∈E(w) |t(e1)− t(e2)|. If the

street type is not available for one or more of these

edge, we set the feature value to 0.

• Node degree. In typical (OSM) road networks, the

average node out-degree and in-degree (i.e. number

of outgoing/incoming adjacent edges) is about 2, the

maximum rarely exceeds 9. Nodes with a high de-

gree are typically important intersections and there-

fore have a better chance to be in a well mapped area

in OSM. On the other hand, nodes with a low degree

and especially dead-ends might be indicators for poor

data coverage.

While street type difference and node degree can be com-

puted quite easily, coming up with a reasonable measure

for connectivity is more difficult. In the following, we de-

sign a measure based on the notion of local stretch that fits

our purpose of hole detection well.

4.2. Measuring Connectivity

Intuitively, two locations in a road network that are in close

proximity of each other should also have a short path within

the street network. If the shortest path in the street network

is much longer than the straight line distance, it might well

be that parts of a street are missing.

We will first formalize this condition and provide empirical

evidence for the assumption that the shortest path distance

and the straight line distance are highly correlated in road

networks. Subsequently, we describe common exceptions

from this observation and introduce methods to deal with

those.

4.2.1. LOCAL STRETCH COMPUTATION

Our goal is to automatically identify pairs of vertices s, t ∈
V for which we assume that there exists a shorter path in

reality than the one derived from the OSM network. We al-

ready outlined that the ratio of the shortest path distance

between s and t and the straight line distance might be

a good indicator. This ratio is called local stretch. In

the following we refer to the length of a shortest path by

l(s, t) = |π(s, t)|, and to the straight line or Euclidean dis-

tance by d(s, t). Then the local stretch can be formally de-

fined as LS(s, t) = l(s,t)
d(s,t) . As d(s, t) is a lower bound for

the shortest path length, the local stretch is always greater

or equal to 1. The closer it is to 1 the better the connectivity

between s and t in the road network. To compute π(s, t) a

Dijkstra run from s to t is the method of choice (or some

accelerated variant).

In Figure 2, the correlation of straight line and shortest path

distance is visualized via the local stretch value. We ob-

serve that for large shortest path distances the local stretch

is remarkable small, in fact it converges to about 1.25 (so

29

Automatic Extrapolation of Missing Road Network Data

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

 3.25

 3.5

 3.75

 0 50 100 150 200 250

lo
c
a
l
s
tr

e
tc

h

shortest path distance in km

Figure 2. Local stretch in dependency of the shortest path length

for 8,000 random point-to-point queries in Southern Germany.

Figure 3. The straight line distance between the orange and the

green marker is about 500 meters, but the shortest path distance is

almost 8 kilometers, as the next bridge over the river is not close-

by. This results in a local stretch value of 16.

the shortest path is only 25% longer than the straight line

distance). For smaller shortest path distances (< 50 km),

the local stretch values vary more and exceed 2 for some

of the queries. Such point pairs with a higher local stretch

than the average are good candidates for hole indication as

they imply poor connectivity of the road network. Also it

makes only sense to search for holes on a very local level

anyhow. Holes between two far away locations are likely to

be caused by (several) local holes, i.e. many missing road

segments. Furthermore holes between two locations that

are many kilometers apart are at least equally likely to re-

sult from poor infrastructure in the area than from missing

road network data.

4.2.2. INCORPORATING OBSTACLES

Unfortunately, local stretch alone is not a sufficient mea-

sure for connectivity in road networks. Consider e.g. a

river which can only be crossed via few bridges, then the

local stretch for two points on opposite sides of the river is

high as well (see Figure 3 for an illustration). Other kinds

of natural or artificial obstacles have the same effect, as e.g.

lakes or interstates.

One way to overcome this problem would be to add a post-

processing phase in which for each identified pair of nodes

with high LS it is automatically checked whether there is

some obstacle between them. But this approach imposes

several problems:

• How to decide if an obstacle blocks the hole enough.

Consider e.g. the two green points in Figure 1 (left):

There is a building on the straight line between them.

Nevertheless, these two points indicate a real hole.

• Increased Runtime. If the number of pairs is large

(e.g. along every river, we expect a multitude of can-

didates), then to check for every single one if there is

a blockage inbetween is very time-consuming even if

a suitable spatial data structure for managing the ob-

stacles is used.

• Distorted Learning. In the end, we want to use con-

nectivity as a feature in our machine learning ap-

proach for hole detection. If we consider these ob-

stacle induced high LS values in the learning process,

it might affect the ability to identify real holes later on.

To overcome these problems, we introduce an approach

that avoids reporting such obstacle induced high LS values

in the first place. The basic idea is to incorporate obstacles

already in the local stretch computation phase. Compar-

ing the shortest path distance to the straight line distance is

somewhat unfair if the straight line is blocked with obsta-

cles. Therefore we should rather compare the shortest path

between two locations in the street network to the shortest

path in the plane with movement-blocking obstacles, see

Figure 4 (left) for an illustration. The exact computation of

the shortest path with obstacles is rather complicated and

expensive (see e.g. (Mitchell, 1996)), therefore we sug-

gest an easy way to get the approximative distance: We

construct a two-dimensional grid graph covering the whole

area with a cell width of e.g. 10 meter. For every obstacle,

we determine all grid points that are blocked by this obsta-

cle and remove them and all adjacent edges from the grid

graph. Then a conventional Dijkstra computation in the re-

sulting grid graph provides a feasible path, see again Figure

4 (right). We refer to the length of this path as g(s, t) in the

following.

On this basis, we redefine local stretch as the ratio of l(s, t)
and g(s, t) – abbreviated by LS′(s, t). Note that due to

the approximative nature of our shortest path length in the

plane and the fact that bridges etc. are not incorporated in

this calculation, LS′ might be smaller than 1 (while LS

always is ≥ 1). Still, the smaller LS′, the better the con-

nectivity between two locations in the road network.

30

Automatic Extrapolation of Missing Road Network Data

Figure 4. Left image: The shortest path (green) between the two

black locations is much longer than the straight line distance (red).

But it is not much longer than the shortest path in the plane with

the lake considered as obstacle (orange). Right image: Approx-

imative shortest path (purple) in the plane with obstacles using a

grid approach.

4.3. Learning a Hole Classifier

With our newly designed connectivity measure LS′, we are

now able to compute all described road network features

for hole detection. As already outlined above, we are go-

ing to search for holes only between locations with a small

straight line distance as otherwise we cannot hope for good

accuracy – furthermore, considering every pair of locations

in a large road network is computationally infeasible.

4.3.1. GENERATING TRAINING DATA

Manual creation of a ground truth data set large enough for

training the classifier is very time-consuming. Moreover,

one needs to rely on the correctness/completeness of other

data (e.g. GoogleMaps) for this purpose. Hence to con-

struct a large ground truth set of classified node pairs, we

used the following method: Nodes in the network that are

directly connected with an edge (LS = 1) are no holes

for sure. Also node pairs with a small local stretch do not

indicate a hole with high confidence (we used 2 as a thresh-

old in the experiments). We repeatedly selected a node in

the network randomly and then searched for other nodes

in close proximity with small LS value. Among those we

randomly picked one to form a respective pair. For each

such pair we computed the feature vector and added it to

the training data set. To generate training data for actual

holes, we used a similar approach but removed all edges

on the shortest path between the two selected nodes before

computing the feature vector. In this way, we created arti-

ficial holes. For the final evaluation of the accuracy of our

method, real holes will be used.

4.3.2. CLASSIFIER CHOICE

Using the described feature vectors, the goal is to learn a

good classifier which distinguishes between holes and non-

holes. We expect the relationships between our features

and the existence of a hole to be rather simple; for exam-

ple, we expect the higher the local stretch the more likely

there is a hole between two nodes. Due to these expected

feature-target correlations, one suitable method for learn-

ing is Logistic Regression. Nevertheless, we also want to

Figure 5. The left image shows a small cutout of a road network.

In the middle image, hole candidates are indicated by red lines.

The right image shows the single remaining hole after applying

the extremeness check.

check whether there might be more complex relationships

(e.g. considering node degrees). Therefore, we also used

Random Forest as it might be able to exploit these more

complex relationships.

Both of these classifiers often work well with default pa-

rameters3 and their learned models are fairly easily inter-

pretable. This makes them more suitable for our task than

e.g. Artificial Neural Networks.

4.3.3. EXTREMENESS CHECK

Feeding all reasonable node pairs into the learned classifier

provides us with the set of potential holes in the network.

Unfortunately, it is very likely that a single missing road

segment leads to a multitude of reported candidate node

pairs. If between two vertices s, t ∈ V a segment is miss-

ing, the classifier might not only declare s, t a hole but also

s′, t′ with s′ in close proximity of s and t′ in close prox-

imity of t. In the example in Figure 5 the problem is il-

lustrated. This unnecessarily decreases the accuracy of our

method and leads to more candidate locations that have to

be manually checked in the end.

To avoid this overhead, we introduce a filter in form of an

extremeness check: For every pair s, t classified as hole,

we inspect LS′ for all vertex pairs s′, t′ with (s, s′) ∈ E

and (t′, t) ∈ E, i.e. all neighbors of s and t in G. If for

one of those pairs LS′(s′, t′) is larger than LS′(s, t), we

prune s, t from the candidate list. The image in Figure 5

on the right shows the result of applying the extremeness

procedure for the considered example.

The remaining candidate location pairs are then reported as

the result of the automatic hole detection procedure.

5. Extrapolation of Missing Street Names

Another important part of the road network data in OSM

are the street name tags. If a user issues a query to a route

planning service, start and destination are often specified

by their respective street names. This only works well if

street names are complete. In OSM, though, unlabeled

or only partially labeled streets are quite frequent. Of-

ten, there are multiple ways in OSM with the same street

name tag but these ways are not connected (as the ways

3using e.g. scikit-learn (Pedregosa et al., 2011)

31

Automatic Extrapolation of Missing Road Network Data

(a)

(b) (c)

Figure 6. (a) Small map section based on OSM data. For every

street name a random color was chosen and all segments with the

same name share the same colour. Thin gray road segments are

not tagged in OSM. In the second row, close-ups of (a) are shown:

(b) illustrates a set of disconnected road segments with the same

name (orange), and (c) shows small untagged side roads which

are likely to have the same name as the red street.

might be contributed by different volunteers, but none of

them mapped the complete course). If a user searches for

a specific street (e.g. to see which shops are close-by),

he expects a single entity to be returned and not multiple

ways. Also if in a route planning query a user prefers cer-

tain streets or wants to avoid them, their names have to be

fully contained in the data to account for that.

In the following we try to extrapolate missing street name

tags from given data. We want to connect multiple ways

with the same street name and extend partially tagged roads

to completely tagged roads where possible. We describe se-

mantic and topological characteristics of the road network

that used as features in machine learning help to decide

whether an untagged road segment can be labeled with high

confidence.

5.1. Feature Extraction

We primarily rely on the assumption that all the road seg-

ments that belong to a street with one name are connected.

According to our study in completely tagged areas this as-

sumption is true for almost 99% of all streets. The visual-

ization in Figure 6 (a) also shows typical connectivity char-

acteristics of road segments with the same name. We refer

to a connected set of edges with the same name as name

component. A first feature we consider is whether an edge

is on a shortest path between two disconnected name com-

ponents with the same name (see Figure 6(b) for an exam-

ple). We initially set this feature to 0 for all edges. Then

we extract all name components in the network and iden-

tify street names which exhibit multiple name components

in close proximity of each other (as the same street name

might also occur in many villages/cities, as e.g. ’Main

Street’). For every such street name we run Dijkstra com-

putations between all pairs of nodes in different compo-

nents. For all untagged edges on one of the resulting short-

est paths we set the feature value to 1.

As a second feature we consider the number of close-by

name components. So we run a Dijkstra computation from

each of the two endpoints of an untagged edge until all

nodes in the Dijkstra search tree are either dead-ends or

are only adjacent to unrelaxed edges with n(e) 6= null. For

all nodes in the Dijkstra search trees we compute the set

of name tags of adjacent edges. Figure 6(c) shows a small

example where the feature vector entry equals 1. Being

connected to a single name component might be a strong

indicator for the segment to belong to this component.

But as connectivity to a single name component could also

mean that only one street in the area is tagged, we also con-

sider the shortest path distance to the closest name com-

ponent (retrievable from the two Dijkstra runs described

above) and the number of intersections on the shortest path

from the edge to the nearest name component. The higher

those two values the less likely it is that the edge belongs to

that name component. Finally, we again consider the street

type. Typically, a name component consists only of edges

of the same street type. Hence the feature value is com-

puted as the absolute street type difference of the edge and

the most frequent street type in the closest name compo-

nent.

5.2. Training Data and Machine Learning

Again, we generated a large training data set automati-

cally. For that purpose we first extracted completely tagged

streets, i.e. we searched for name components with all

nodes in that component only being adjacent to tagged

streets, so no surrounding street name data is missing. Then

we randomly deleted less than half of the name tags from

edges on this street and also from edges inside a certain

radius around the street. Afterwards, we computed the fea-

ture vector for each now untagged edge on the selected

street and added the result to the training data set. Fur-

thermore we selected completely tagged streets in the same

way, but removed all of its tags and some tags on edges in

the neighborhood. These are examples where extrapolation

is not possible. Again, we computed the feature vectors and

added them to the training data.

Like for hole classification, we deem Logistic Regression

and Random Forest as suitable learning methods to infer

which street segments can be extrapolated.

32

Automatic Extrapolation of Missing Road Network Data

Figure 7. Accuracy of learned classifier on generated data using

Logistic Regression or Random Forest.

Figure 8. Feature importance when using Random Forest for clas-

sification.

6. Experimental Evaluation

We implemented the described feature extraction methods

in C++. For machine learning, we used the scikit-learn

package for Python (Pedregosa et al., 2011). Experiments

were conducted on a single core of an Intel i5-4300U CPU

with 1.90GHz and 12GB RAM. We used the OSM road

network data of Germany (22.3 million nodes) and Poland

(6.3 million nodes) for learning and evaluation.

6.1. Hole Classification

We created a data set containing 10,000 feature vectors of

holes and 10,000 feature vectors of non-holes with the pro-

cedure described in Section 4.3.1 on the Germany data set.

For evaluating our machine learning pipeline on this data,

we used 10-fold stratified cross-validation applying Logis-

tic Regression and Random Forest to our training data.

The outcomes are summarized in Figure 7. We observe

that both Logistic Regression and Random Forest work re-

markably well; both predict correctly in over 99% of the

cases. While Logistic Regression achieves a better overall

accuracy, Random Forest misclassifies slightly less holes

as non-holes.

Having a closer look at the importance of the considered

features (see Figure 8) for Random Forest, we see that lo-

cal stretch is most important followed by the out-degree

of s and the in-degree of t. We also evaluated the AuC

score of the features. Local stretch achieved a score of

Figure 9. Left: Location pair falsely identified as hole by our

classifier as observable when marked as start and endpoint in

GoogleMaps. Right: Correctly identified hole indicated in the

lower image by the two red markers on the OSM based map. The

upper image shows the same cut-out on GoogleMaps with the two

points being directly connected.

0.97 which underpins its importance for classification. The

other features achieved AuC scores below 0.6. Neverthe-

less the combination of all features led to a 1-2% higher

accuracy than considering only local stretch. The hierar-

chy difference resulting from the street types adjacent to

s, t does not really contribute to the classification process.

One reason might be the way we generated the training

data. Non-holes between e.g. parallel running motorways

and federal streets which exhibit rather high local stretch

but also high hierarchy difference are not likely to be in-

cluded in our data set. Manually selecting such examples

and adding them to the training data might increase the im-

portance of the hierarchy feature. Another problem is that

there are road segments without a type which distorts the

learning process.

Finally, we used our complete pipeline for real hole de-

tection on Germany and Poland. For evaluation, we firstly

selected 2000 nodes randomly in Germany and Poland. For

each such node s, we extracted all nodes t within a radius of

500m (straight line distance) to form candidate pairs (s, t).
For each candidate pair we computed the respective fea-

ture vector. We extracted rivers and lakes from OSM and

treated them as obstacles for the LS′ computation. Due to

our efficient implementation of the local stretch computa-

tion, it took less than 5 minutes to process all nodes. Then

we applied our classifier (Random Forest) to decide which

of the candidate pairs are likely to be holes. Afterwards,

we used the extremeness check to filter superfluous candi-

dates by classifying also node pairs close to the identified

holes and selecting those with the highest LS′ value (there-

fore final node pairs not necessarily include one of the ran-

domly selected nodes in the beginning). Table 1 shows an

overview of the number of pairs resulting from each step.

33

Automatic Extrapolation of Missing Road Network Data

Germany Poland

d(s, t) < 500m 64,194 44,332
classified 18,970 11,432
extreme 216 128

real holes 7 19

Table 1. Number of hole candidates after each step of our detec-

tion pipeline and number of correctly recognized holes in the end.

Figure 10. OSM based map (left) and GoogleMaps (right) on a

cutout of Ulm, Germany. The red segments on the left indicate

missing street names in the OSM. In GoogleMaps the correct

name for all those segments is ’Im Lehrer Feld’. As the surround-

ing streets are tagged with this name in OSM and our approach

classified the road segments as extrapolatable, the OSM data cov-

erage can be increased here.

For the remaining extreme candidates we checked one-by-

one if they are correctly classified by comparing to satellite

images and map data from GoogleMaps. Figure 9 shows

examples for a falsely identified hole and a real hole. The

falsely identified hole shows that it is nearly impossible to

design a perfect classifier as the very same configuration of

streets might very well indicate a real hole at some other lo-

cation. Main sources of misclassifying non-holes as holes

were clusters of one-way streets in the middle of cities, vil-

lages close to federal streets that are not directly connected

and tree-like network structures in rural areas with many

dead-ends. In future work, training data could be created

in a way that the classifier can better deal with such scenar-

ios.

Nevertheless, the number of pairs that have to be manu-

ally checked is significantly smaller than the number of ini-

tially created candidate pairs. The percentage of real holes

among the extreme pairs is 3% for Germany and about 15%
for Poland. The difference might result from the much bet-

ter overall OSM data quality in Germany or could also be

seen as an indicator for already high data coverage.

6.2. Street Name Extrapolation

We extracted 10,000 feature vectors for edge segments

where we assume extrapolation is possible and 10,000 for

edge segments where we are sure extrapolation is impossi-

ble. Then we used Logistic Regression and Random Forest

to learn feature importance/weights. In our cross-validation

both approaches achieved an accuracy of 99.95%. Also

in both approaches the feature expressing whether the seg-

ment connects two name components with the same name

had most influence. Despite a high AuC score, the number

of close-by name components made only little difference

in the learned classifiers. We assume the feature indicating

the shortest path distance to the closest name component

shadows the number of name components, as a very small

shortest path distance and a small number of close-by com-

ponents are highly correlated.

For real-world validation of our learned classifier, we se-

lected 2000 unnamed road segments in each Germany and

Poland and computed the feature vectors. Our classifier de-

clared 235 road segments in Germany extrapolatable and

164 in Poland. A visual analysis showed that most of

the segments not declared extrapolatable lied in larger un-

tagged areas. For the road segments where the classifier

indicated extrapolation might be possible, we selected the

closest name component for name suggestion or, if the seg-

ment connects two components with the same name, this

name is the obvious choice. We relied on a comparison

to GoogleMaps and BingMaps data for evaluation. Un-

fortunately, in surprisingly many cases (about 10%) the

street segments in question were unlabeled or unclear or not

even present in GoogleMaps or BingMaps. We excluded

these cases from the evaluation. For the remaining cases,

we achieved an accuracy of 96% in Germany and 91% in

Poland (see Figure 10 for a positive example).

7. Conclusions and Future Work

We showed that machine learning is a useful tool to de-

tect missing and possibly extrapolatable road network data

in OSM. Making classified holes and nameless street seg-

ments with a good name suggestion available to the OSM

community might raise attention to such locations and fi-

nally lead to a faster improvement of the OSM data quality.

There are various directions for future research. Our cur-

rent methods do not work in regions where road data is

completely missing. But e.g. mapped building footprints

could be a strong indicator for the existence of infrastruc-

ture in an area. Considering buildings could also improve

our classifiers. Including (large) buildings as obstacles for

hole detection could lead to more realistic local stretch val-

ues in cities. Moreover, considering house numbers could

significantly help to decide if a street segment should be

tagged with a certain name. If the house numbers of tagged

and untagged segments complement each other there is a

good chance that they share the same name.

Finally, many other aspects of the OSM data might be suit-

able for extrapolation or classification using machine learn-

ing, e.g. distinguishing living and industrial areas or ex-

trapolating missing house numbers.

34

Automatic Extrapolation of Missing Road Network Data

References

Baum, Moritz, Dibbelt, Julian, Pajor, Thomas, and Wagner,

Dorothea. Energy-optimal routes for electric vehicles.

In Proceedings of the 21st ACM SIGSPATIAL Interna-

tional Conference on Advances in Geographic Informa-

tion Systems, pp. 54–63. ACM, 2013.

Delling, Daniel and Werneck, Renato F. Faster customiza-

tion of road networks. In Experimental Algorithms, 12th

International Symposium, SEA 2013, Rome, Italy, June

5-7, 2013. Proceedings, pp. 30–42, 2013.

Efentakis, Alexandros, Brakatsoulas, Sotiris, Grivas,

Nikos, and Pfoser, Dieter. Crowdsourcing turning re-

strictions for openstreetmap. In EDBT/ICDT Workshops,

pp. 355–362, 2014.

Fan, Hongchao, Zipf, Alexander, Fu, Qing, and Neis, Pas-

cal. Quality assessment for building footprints data on

openstreetmap. International Journal of Geographical

Information Science, 28(4):700–719, 2014.

Funke, Stefan. Topological hole detection in wireless sen-

sor networks and its applications. In Proceedings of the

2005 joint workshop on Foundations of mobile comput-

ing, pp. 44–53. ACM, 2005.

Funke, Stefan, Nusser, André, and Storandt, Sabine. On k-

path covers and their applications. In International Con-

ference on Very Large Databases (VLDB), 2014.

Girres, Jean-François and Touya, Guillaume. Quality as-

sessment of the french openstreetmap dataset. Transac-

tions in GIS, 14(4):435–459, 2010.

Haklay, Mordechai. How good is volunteered geographical

information? a comparative study of openstreetmap and

ordnance survey datasets. Environment and Planning B

Planning and Design, (37):682–703, 2010.

Holone, Harald, Misund, Gunnar, and Holmstedt, Hakon.

Users are doing it for themselves: Pedestrian navigation

with user generated content. In Next Generation Mo-

bile Applications, Services and Technologies, 2007. NG-

MAST’07. The 2007 International Conference on, pp.

91–99. IEEE, 2007.

Jilani, Musfira, Corcoran, Padraig, and Bertolotto,

Michela. Automated quality improvement of road net-

work in openstreetmap. In Agile Workshop (Action

and Interaction in Volunteered Geographic Informa-

tion), 2013a.

Jilani, Musfira, Corcoran, Padraig, and Bertolotto,

Michela. Multi-granular street network representation

towards quality assessment of openstreetmap data. In

Proceedings of the Sixth ACM SIGSPATIAL Interna-

tional Workshop on Computational Transportation Sci-

ence, IWCTS ’13, pp. 19:19–19:24. ACM, 2013b.

Jilani, Musfira, Corcoran, Padraig, and Bertolotto,

Michela. Automated highway tag assessment of open-

streetmap road networks. 2014.

Long, Ying and Liu, Xingjian. Automated identifica-

tion and characterization of parcels (AICP) with open-

streetmap and points of interest. CoRR, abs/1311.6165,

2013.

Mitchell, Joseph SB. Shortest paths among obstacles in the

plane. International Journal of Computational Geome-

try & Applications, 6(03):309–332, 1996.

Mooney, Peter and Corcoran, Padraig. Using OSM for

LBS–an analysis of changes to attributes of spatial ob-

jects. Springer, 2012.

Neis, Pascal, Goetz, Marcus, and Zipf, Alexander. To-

wards automatic vandalism detection in openstreetmap.

ISPRS International Journal of Geo-Information, 1(3):

315–332, 2012.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-

napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.

Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12:2825–2830, 2011.

Rahman, Kazi Mujibur, Alam, Tauhidul, and Chowd-

hury, Mashrur. Location based early disaster warning

and evacuation system on mobile phones using open-

streetmap. In Open Systems (ICOS), 2012 IEEE Con-

ference on, pp. 1–6. IEEE, 2012.

Tao, Sha, Manolopoulos, Vasileios, Rodriguez, Saul, Rusu,

Ana, et al. Real-time urban traffic state estimation with

a-gps mobile phones as probes. Journal of Transporta-

tion Technologies, 2(01):22, 2012.

Vetter, Christian. Fast and exact mobile navigation with

openstreetmap data. Master’s thesis, Karlsruhe Institute

of Technology, 2010.

35

Distributed Traffic Flow Prediction with Label Proportions:

From in-Network towards High Performance Computation with MPI

Thomas Liebig THOMAS.LIEBIG@TU-DORTMUND.DE

University of Dortmund, 44221 Dortmund, Germany

Marco Stolpe MARCO.STOLPE@TU-DORTMUND.DE

University of Dortmund, 44221 Dortmund, Germany

Katharina Morik KATHARINA.MORIK@TU-DORTMUND.DE

University of Dortmund, 44221 Dortmund, Germany

Abstract

Modern traffic management should benefit from

the diverse sensors, smart phones, and social net-

works data that offer the potential of enhanced

services. In disaster scenarios, it is no longer

guaranteed that a central server and reliable com-

munication is always available. This motivates

a distributed computing setting with restricted

communication. Also in distributed High Perfor-

mance Computing communication costs have to

be reduced to the minimum and costly broadcast

to all compute nodes hould be avoided. We want

to learn local models with high communication

efficiency. They still require the exchange of la-

bel information in a setting of supervised learn-

ing. The transmission of all labels among the

nodes can be as costly as communicating all ob-

servations. Sophisticated methods are required

to trade-off prediction performance against com-

munication costs.

We hereby present an in-network algorithm

based on local models that only sends label

counts to neighboring nodes. Therefore the

method is a novel approach that transfers no

data about individual observations, but just ag-

gregated label information. We outline its MPI

implementation. And evaluate our approach on

real world data in a traffic monitoring scenario.

Tests reveal that in comparison to sending all la-

bels, the algorithm is scalable.

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

1. Introduction

Traffic flow prediction is an important task for traffic man-

agers. It allows performance assessment of major traffic in-

frastructure, like roads and junctions. Individual mobility

benefits from predictions, as they provide necessary data

for proactive, smart decisions on individual travel plans,

e.g. predictive situation-aware trip planning by avoidance

of likely traffic hazards (Niu et al., 2015; Liebig et al.,

2014). Traffic flow models are based on sensor observa-

tions of current traffic gained by a mesh of (mostly static)

presence sensors. While existing learning methods central-

ize and process measurements on a dedicated traffic man-

agement server, they have some major drawbacks, partic-

ularly in cases of disaster: The need for a reliable com-

munication infrastructure reduces sustainability in case of

natural hazards. First, the server-side collection causes

high communication costs, decreasing the system’s abil-

ity to process all sensor data, in time. Second, the area of

traffic prediction systems is limited by the political area of

homogeneous regulations for sending the data through the

network. Third, increasing the network’s density bares the

risk of re-identification of individual persons and tracking

them throughout the network. Existing systems are there-

fore limited by communication bandwidths, processing ca-

pabilities and political regulations.

We tackle these limitations by a distributed spatio-temporal

in-network learning algorithm, where sensors compute

local models and efficiently communicate label counts

with their topological neighbors. Our approach sends

space-time aggregated values that, by design, provide k-

anonymity. Hence, our method is privacy preserving and

can be applied for large-scale traffic management scenar-

ios. Our particular focus is on the prediction of future traf-

fic flow at junctions throughout the region of interest (e.g.

a city, a state or even areas at European scale). Possible

36

Distributed Traffic Flow Prediction with Label Proportions

applications comprise, for instance,

• distributed car-to-car scenarios where cars or trucks

communicate at junctions the number of observed

vehicles at the road to estimate traffic flow and al-

ter their individual transportation plans based on pre-

dicted traffic conditions, or,

• large scale traffic flow prediction that processes mas-

sive local observations on a high performance com-

puter.

Scalable in-network algorithms belong to the field of dis-

tributed data mining. Existing work mostly focuses on hor-

izontally partitioned data. There, full observations, i.e. all

features and labels, are stored on different nodes in a net-

work. However, network states representing the current

traffic flow are vertically partitioned. Here, only partial in-

formation about observations is stored on different nodes.

Learning and prediction therefore either require the trans-

mission of observations or labels to other nodes. Previ-

ous work (Das et al., 2011; Lee et al., 2012; Stolpe et al.,

2013) has focused on sending less information about ob-

servations to a central coordinator. Here, we deal with re-

ducing the amount of labels sent to neighboring peer nodes.

Communication-efficient algorithms for vertical distributed

learning are not just relevant for traffic flow prediction, but

for applications as diverse as intrusion detection, monitor-

ing production processes or smart grid management. The

main contributions of our work are the following:

1. We introduce a privacy-preserving approach for the

distributed learning of spatio-temporal prediction

models which transfers only aggregated label infor-

mation, but no data about individual observations.

2. A connection is drawn between the task of learning

from label proportions and reducing communication

costs in distributed environments, and it is evaluated

on real-world data.

3. We introduce a fast search strategy for the LLP al-

gorithm (Stolpe & Morik, 2011) and demonstrate its

prediction performance in the context of traffic flow

prediction.

The next section reviews related work. Section 3 details our

problem setting and introduces a novel approach for the in-

network training of local models. Section 4 discusses learn-

ing from aggregated label information, discusses its imple-

mentation in using message passing interface (MPI), anal-

yses its communication cost and aspects of privacy. Eval-

uations of our approach can be found in Sect. 5. We finish

with conclusions and outlook on future work.

2. Related Work

Many distributed data mining algorithm learn from hor-

izontally partitioned data, whereas our data is vertically

partitioned. In this context, privacy-preserving SVMs

like (Yunhong et al., 2009) are not scalable, since they

send quadratic kernel matrices to a central server. Dis-

tributed optimization algorithms (Bellet et al., 2014) ex-

change predictions for each observation per iteration, po-

tentially sending more than the entire dataset. So does a

co-regularized least squares regression in (Brefeld et al.,

2006). Communication-efficient anomaly detection algo-

rithms (Das et al., 2011; Stolpe et al., 2013) combine local

and global models, but are 1-class algorithms reducing data

sent about observations, not labels. In (Lee et al., 2012), lo-

cal support vector machine (SVM) models are trained, but

all labels are sent by a central server.

Also in traffic flow prediction, most literature describes

processes on central servers. There are two major ways

to model traffic: using a simulation (Raney & Nagel, 2006)

or applying an imputation model, trained on previous sen-

sor measurements. Models are required for the estimation

of traffic flow at locations not being observed at all. Such

imputation is not the focus of our study, but the predic-

tion of traffic flow at sensor locations. We point the inter-

ested reader to methods of simulation (e.g. cellular automa-

ton (Raney & Nagel, 2006)) and model-based imputation

(e.g. (Liebig et al., 2012)). Most learning-based traffic flow

prediction methods analyse time series, where a popular

model is based on auto-regressive integrated moving aver-

age (ARIMA) (Ahmed et al., 1979). Recently, an applica-

tion of a Gaussian Markov Model was proposed in (Schnit-

zler et al., 2014), and more advanced graphical models,

namely Spatio-Temporal-Random-Fields (STRFs), were

applied to traffic modeling in (Piatkowski et al., 2013).

Distributed approaches comprise an approach that applies

kNN and Gaussian Process Regression (Chen et al., 2014),

on-line distributed prediction of traffic flow in a large-scale

road network (Wang et al., 2014), distributed traffic model-

ing in a MapReduce framework (Chen et al., 2013), Mapre-

duce parallel multivariate regression (Dai et al., 2014) and

MPI (Message Passing Forum, 1994) based high perfor-

mance computation based on SVM (Yang et al., 2014). Few

distributed approaches combine sketches of neighbouring

sensors to get probabilistic estimates of the number of vehi-

cles co-occurring at different locations. Instead of counting

and re-identifying individual vehicles, we use aggregated

quantities.

The task of learning from aggregated label information was

first introduced in (Kück & de Freitas, 2005). Theoreti-

cal bounds have only recently been proven in (Yu et al.,

2014). (Musicant et al., 2007) propose variants of exist-

ing algorithms. The SVM optimization problem has been

37

Distributed Traffic Flow Prediction with Label Proportions

adapted to the setting (Rüping, 2010; Yu et al., 2013).

Mean Map (Quadrianto et al., 2009) estimates the mean

operator solving a system of linear equations, while (Pa-

trini et al., 2014) extend it with a manifold regulariza-

tion, outperforming both SVMs and Mean Map on stan-

dard datasets. A modified Kernel k-Means algorithm (Chen

et al., 2009) minimizes the distance to the given label

proportions by matrix factorization. Recent work learns

Bayesian network (Hernndez-Gonzlez et al., 2013) and

generative (Fan et al., 2014) classifiers. The LLP algorithm

proposed in (Stolpe & Morik, 2011) first determines clus-

ters and then tries to label them. LLP only has linear run-

ning time, while its prediction performance competes with

the approaches in (Quadrianto et al., 2009; Rüping, 2010)

and(Chen et al., 2009).

3. Distributed Learning of Spatio-Temporal

Local Models

Given are m distributed sensor nodes P1, . . . , Pm. Each

sensor node Pi delivers an infinite series of real-valued

measurements . . . , v
(i)
t−1, v

(i)
t , v

(i)
t+1, . . . for different time

points . . . , t− 1, t, t+ 1, Time spans between two

measurements are equidistant, given a constant sample rate.

Let t denote the current time of measurement, while t − a
and t+a are time points a steps in the past and future. Each

sensor node also has a spatial location.

Many traffic flow management tasks require the prediction

of traffic flow categories, that are achieved by a discretiza-

tion of raw values into distinct intervals (e.g. risk level

assignment or decision for emergency traffic signals).The

task, given the current time point t, is therefore to predict a

label y from a set Y = {Y1, . . . , Yl} of distinct categories

at some arbitrary node Pi at future time point t + r, based

on the current and previous (raw) sensor readings at all or

a subset of nodes P1, . . . , Pm.

We assume that for learning, measurements and labels

are somehow recorded (see below) over a fixed-length

time period. For the supervised training of prediction

models, each node Pi thus provides a sequence Vi =

〈v
(i)
1 , . . . , v

(i)
n 〉 of measurements, v

(i)
j ∈ R, and a sequence

Li = 〈y
(i)
1 , . . . , y

(i)
n 〉 of labels y

(i)
j ∈ Y .

DISTRIBUTED LEARNING OF LOCAL MODELS

Instead of centralizing all data, we propose that each Pi

records and stores its own measurements and labels. For

predicting future traffic flow categories at node Pi, we re-

strict learning to Pi itself and c topological neighboring

nodes around Pi. For instance, to learn and predict the fu-

ture type of traffic flow at some street junction, considered

are only measurements and labels recorded at the junction

itself and at c junctions closest to it.

Before training, each Pi preprocesses measurements Vi as

follows. A window of size p is slided over the series

Vi with step size 1, storing all thereby created windows

x
(i)
t = {v

(i)
t−p+1, . . . , v

(i)
t }, t = p, . . . , n as rows in a

dataset Di. Let N (i) = {n
(i)
1 , . . . , n

(i)
c } be the set of in-

dices for the c neighboring nodes around Pi. Based on

the datasets Di, Dn
(i)
1
, . . . , D

n
(i)
c

and labels Li, we want

to learn a local function (model) f (i) that, given windows

x
(i)
t , x

n
(i)
1

t , . . . , x
n(i)
c

t of sensor readings from node Pi and

its neighbors, predicts the label y
(i)
t+r at node Pi with hori-

zon r correctly.

Interpreting windows x
(i)
t , x

n
(i)
1

t , . . . , x
n(i)
c

t as features of a

single observation x that should be classified, the data is

vertically partitioned, since each neighboring node of Pi

only stores partial information about x, i.e. a subset of fea-

tures.

An obvious choice for the training of f (i) at Pi is to ask

for the recorded measurements at each neighboring node,

concatenate their columns at Pi and join the labels stored

at Pi to the new dataset. The approach is more scalable

than centralizing all data, since the number c of neighbors

is fixed, avoiding the bottleneck problem of limited band-

width. However, each node still needs to transmit all mea-

surements to each of its neighbors, consuming at least as

much energy per node as sending all data to a single server.

Therefore, we propose to send only label information from

node Pi to its neighbors and to train models f
(i)
0 at node Pi

and f
(i)

n
(i)
1

, . . . , f
(i)

n
(i)
c

at its neighbors. As model f (i) at node

Pi, we propose a majority vote over predictions from itself

and its neighboring nodes. All models are local, since they

only consider measurements and labels of a fixed number

of close topological neighboring nodes around Pi. More-

over, the approach works fully in-network without a central

coordinator, since each node only communicates with its

neighboring peer nodes. As learners at each node, one may

consider supervised learners, like kNN, Decision Trees or

SVMs. Considering the limited computational resources of

sensor nodes, however, our evaluation in Sect. 5 is solely

based on kNN.

Since the number of bits to encode all labels is often less

than an encoding of all measurements, communication is

saved by sending labels from Pi instead of measurements

to Pi. However, supervised learning still requires individ-

ual labels for all observations. The question is if communi-

cation can be reduced even further, by sending fewer labels

or aggregated label information to each neighboring node.

Semi-supervised (Chapelle et al., 2006) and active learn-

ing (Balcan et al., 2010) show that training on fewer labels

may achieve a similar performance as training on all labels.

38

Distributed Traffic Flow Prediction with Label Proportions

However, such methods do not preserve the privacy of the

data, since they need individual labels of observations (see

Sect. 4). Instead, we propose to send only aggregated la-

bel information, i.e. label counts, to neighboring nodes for

learning.

4. Aggregation of Label Information

Before sending label information to each of its neighbor-

ing nodes, Pi divides its time-related sequence Li of labels

into consecutive batches C
(i)
1 , . . . , C

(i)
h of a fixed size b

(see Fig. ??). It respects the prediction horizon r, such that

each C
(i)
j consists of labels from time point t+(j−1)b+r

to t + jb + r and align correctly with time points of ob-

servations (i.e. windows of measurements) at other nodes.

Let n be from here on the size of datasets Di, i.e. the

number of windows stored. Then, h is ⌈n/bs⌉. For each

batch j, labels y ∈ Y are aggregated by counting how of-

ten they occur, and stored in a h× l matrix of label counts

Q(i) = (q
(i)
jd), where q

(i)
jd = |{y ∈ Cj |y = Yd}| .

Let P
n
(i)
e

be a neighboring node receiving label counts from

Pi. P
n
(i)
e

transforms Q(i) into a label proportion matrix

Π(i) = (π
(i)
jd) = q

(i)
jd /b, i.e. the counts of labels are divided

by batch size b. Since every node knows b and r, P
n
(i)
e

can

partition its own windows x
n(i)
e

1 , . . . , x
n(i)
e

n of measurements

into batches B
n(i)
e

1 , . . . , B
n(i)
e

h . Since the sender respects r,

the time spans used for aggregating the labels align cor-

rectly with the windows of measurements stored at P
n
(i)
e

.

The learning task at node P
n
(i)
e

now consists of learning a

model f
(i)

n
(i)
e

, only based on its batches of (unlabeled) mea-

surements and the label information from node Pi, stored

in the label proportion matrix Π(i), such that the expected

prediction error over individual observations is minimized.

This task is also known as learning from label proportions.

Several methods have been developed to solve the task (see

Sect. 2). Considering the limited computational resources

of sensor nodes, the LLP algorithm (Stolpe & Morik, 2011)

looked most promising for our evaluation in Sect. 5, since

LLP has a linear running time and its centroid model a

small memory footprint. Moreover, it can handle multi-

class classification problems as they arise in traffic monitor-

ing. However, we found that it still needs to be improved

for scalability issues and performance. The next section

describes LLP shortly, while Sect. 4 introduces a new local

search method.

THE LLP ALGORITHM

LLP learns from label proportions by first clustering all ob-

servations and then assigning labels to each cluster. The

task of cluster analysis consists of partitioning a set of

observations into a set C of k disjunct groups (clusters)

C1, . . . , Ck, such that the similarity of observations in each

cluster is minimized. LLP relies on the idea that observa-

tions having the same class also share similar features, i.e.

that clusters somehow correspond to classes. LLP allows

for several clusters per class and assumes that the majority

of elements of a cluster belongs to the same class. Once

given a clustering the only remaining problem is to assign

correct labels to each cluster.

More formally, let µ : X → C be a mapping that assigns

an arbitrary observation x ∈ X to a cluster C ∈ C. For

centroids c1, . . . , ck found with k-Means, µ(x) would be

defined as µ(x) = argminCk∈C ||x− ck||
2 .

Further, let ℓ : C → Y be a mapping which assigns a label

λ ∈ Y to each cluster C ∈ C. For ease of notation, let f de-

note model f
(i)

n
(i)
e

to be learned at node P
n
(i)
e

, Bi denote the

batch B
n(i)
e

i and Π denote matrix Π(i). f is the composition

of mappings ℓ and µ, i.e. f = ℓ ◦ µ.

With prediction model f , entries γjd of a model-based pro-

portion matrix Γf = (γjd) can be calculated as

γjd =
1

|Bj |

∑

x∈Bj

I(f(x), Yd), I =

{

1 : f(x) = Yd

0 : f(x) 6= Yd
.

(1)

The LLP algorithm now minimizes the mean squared error

MSE(Π,Γf) =
1

hl

h
∑

j=1

l
∑

d=1

(πjd − γjd)
2 , (2)

between the given label proportion matrix Π and the model-

based proportion matrix Γf by trying different label map-

pings ℓ.

A LOCAL SEARCH STRATEGY WITH MULTISTARTS

The LLP algorithm as introduced in (Stolpe & Morik,

2011) can work with different cluster algorithms and la-

beling strategies. LLP with an exhaustive labeling strategy,

called LLPexh in the following, tries all possible labelings

of the clusters. We found it too time-consuming for the

evaluations done in Sect. 5. The greedy strategy proposed

in (Stolpe & Morik, 2011) didn’t achieve sufficient accura-

cies for traffic prediction. Hence, a better search strategy is

demanded.

We propose a local search that is started multiple times with

different random combinations of labels. LLP with this

search strategy will be called LLPlsm in the following. The

local search greedily improves on the current labeling of

clusters by trying all possible labels at each component of

a labeling vector λ. Fitness measures how well the model-

39

Distributed Traffic Flow Prediction with Label Proportions

based label proportion matrix Γf , as calculated from the

current labeling, matches the given label proportions. If

the fitness improves, the search starts from the first com-

ponent of the labeling vector λ, again. Otherwise, it resets

the label at the current position kpos to the label of the best

(local) solution found so far. Returned is the best labeling

found over all starts of the different greedy searches.

In each iteration, the greedy search runs until no further

improvement is possible. Moreover, at each step of the al-

gorithm, the fitness either improves or is staying the same

(which is a stopping criterion). Therefore, each search finds

a local minimum. Since the number of searches is finite, the

returned labeling vector is also locally minimal. In com-

parison to LLPexh, it cannot be guaranteed that a globally

optimal solution is found. However, with regard to the pre-

diction results presented in Sect. 5, we found that a local

search performed sufficient enough, despite a much lower

running time.

LLP as introduced in (Stolpe & Morik, 2011) combines the

MSE with two other error measures. However, we found

that the use of these additional measures decreases the ac-

curacy in the traffic monitoring scenario. Hence, all exper-

iments in Sect. 5 are based on the MSE, only. Similarly, we

abstain from the evolutionary feature weighting presented

in (Stolpe & Morik, 2011), since it would heavily increase

the algorithm’s running time.

MPI IMPLEMENTATION

We explicitly focus on the implementation with the Mes-

sage Passing Interface (MPI) (Message Passing Forum,

1994) as message passing in the top super computers in the

top500 list1 base on the MPI standard. MPI implements

the single program multiple data paradigm (Darema, 2001)

whereas every node of a distributed system executes the

same program but uses different data. To coordinate this

architecture a MPI program consists of 1 master node and

multiple slave nodes that perform computations, the results

are collected at the master. The art of MPI programming is

to divide the problem into multiple tasks that are transferred

to the slaves and processed thereby. Usually, the number of

tasks exceeds the number of slave nodes and the distribu-

tion of the tasks has to be organized by the master.

The work in (Nupairoj & Ni, 1994) analyses the perfor-

mance of such MPI systems and reveals that communica-

tion is major bottleneck in MPI programs. A succeeding

publication (Piernas et al., 1997) provides empirical esti-

mates for computation of communication costs depending

on message lengths. Based on this publications two major

conclusions ban be made: (1) The shorter the messages the

lower the communication cost, and(2) broadcast messages

1http://www.top500.org/lists/2014/11/, last accessed May, 1st

should be avoided. Our algorithm respects both findings

and therefore seems suitable for an MPI implementation.

For ease of development we decided for the Cran-R pack-

age Rmpi (Yu, 2002) which provides basic MPI functional-

ities in Cran-R, thus matrix operators can be applied to the

data. Our program comprises the following generic steps:

1. Load Rmpi, and spawn slaves

2. Definition of the functions for the master

3. Definition of necessary functions for the LLP algo-

rithm at the slave

4. Initialization of the data

5. Send required data and functions to the slaves

6. Tell slaves to execute their function

7. Communicate with the slaves to perform computation

8. Collect the results

9. Close slaves and quit

For the learning from label proportions, our implementa-

tion presumes a shared network file system and initially

processes the data at the master such that the sliding win-

dows of the measurements are stored as Robjects on the

file system. Every task gets its pointer to the correspond-

ing slice of data and the label proportions of neighbouring

nodes. The LLP algorithm is executed in every task and the

trained models (cluster centers and their labels) are again

stored physically for later re-use. This also allows the de-

ployment of the parallel learned models in embedded de-

vices or the future application of the label proportion mod-

els in high performance computation settings. Next subsec-

tion analyses the communication cost of LLP in compari-

son to kNN algorithm.

ANALYSIS OF COMMUNICATION COSTS

Each node Pi transmits a matrix Q to each of its neighbor-

ing nodes, consisting of counts for each label Yd ∈ Y and

batch. Such counts may be assumed to be integers. The

maximum value of each integer is b, which means we need

to reserve at most ⌈log2 b⌉ bits for each label. The num-

ber of batches, given n observations, is ⌈n/b⌉. The total

number of bits zAGG for encoding matrix Q is therefore

zAGG =
⌈n

b

⌉

⌈log2 b⌉|Y | . (3)

In comparison, the number of bits zALL required to encode

all labels of n observations, for |Y | different labels, is at

most

zALL = n⌈log2 |Y |⌉ . (4)

40

Distributed Traffic Flow Prediction with Label Proportions

The total costs are then either zAGG or zALL, multiplied by

the number of nodes m. Here we assume that label infor-

mation is broadcast to each neighboring node, which is not

unrealistic for sensors in topologically close regions. All

payloads reported in Sect. 5 base on this assumption.

ANALYSIS OF PRIVACY

The vulnerable data are the original sensor readings. These

traffic flow measurements bare the risk of re-identification

of individual vehicles. For example in a dense sensor net-

work with sparse observations of vehicles, their occurrence

may be tracked throughout the network. As mobility often

is a regular behaviour and contains patterns this risk is even

higher. In this section we show that our LLPlsm-based al-

gorithm transforms the data such that re-identification risk

is at most 1/s.

In our distributed setting, adversaries of a particular sensor

node are malicious sensors that could use received mea-

surements of neighboring sensors for deduction of individ-

ual mobility traces. The following attack model is possi-

ble: The adversary analyses differences among neighbor-

ing sensor readings and deduces individual movement. If

the difference among two neighboring sensor readings is

zero and both traffic flow counts are w, it is (depending

on network topology) likely that w vehicles moved be-

tween the two sensors. In case of three neighboring sensors

Pa, Pb, Pc their measurements va, vb, vc can be combined

as follows: If va − vb = w = vc it may be deduced that

on the way from Pa to Pb w vehicles turned to Pc, in case

va − vb = −w = −vc w vehicles originated from the loca-

tion Pa.

With our new LLPlsm-based approach we process dis-

cretized traffic flow values and just communicate counts of

these value ranges. We denote the minimal (nonzero) in-

terval width by s. Thus, measurements may not be distin-

guished up to a granularity of s vehicles and w is bounded

by s, w ≥ s. In turn, the risk of re-identification with

the hereby described attack model is at most 1/s. Our ap-

proach therefore provides s-anonymity by design. The ag-

gregation of label information reduces the remaining risk

for disclosure of neighboring labels at a malicious sensor

node. The solely transmission of label counts prevents

doubtless reconstruction of the labels (Yu et al., 2014).

5. Experiments

We perform tests of the method on data of the city of

Dublin. The Sydney Coordinated Adaptive Traffic Sys-

tem (SCATS) provides information on vehicular traffic at

over 750 fixed sensor locations as spatio-temporal time se-

ries (McCann, 2014). The data we use2 is a snapshot from

2Data is publicly available at http://dublinked.ie .

01/01/2013 till 14/05/2013, consisting of tuples (t, u, w),
where u is the location of the observation and consists of

an index for the junction, the arm and the lane number at

which the sensor is located at. The metric w contains the

aggregated vehicle count at sensor location since last mea-

surement. The time stamp t denotes the recording time.

 65

 70

 75

 80

 85

 90

 95

kNN LLP-25 LLP-50 LLP-75 LLP-100

a
c
c
u
ra

c
y
 (

%
)

model

Accuracy of kNN vs. LLP-lsm with different aggregations

 0

 50

 100

 150

 200

 250

 300

 350

kNN LLP-25 LLP-50 LLP-75 LLP-100

K
b
y
te

s

model

Payload of kNN vs. LLP with different aggregations

Figure 1. Trade-off between accuracy and payload sent for kNN

and LLPlsm

Local models are trained for each of the 296 sensor nodes

and their nearest topological neighbors. As supervised

base-line learner that receives all labels, we use kNN with

k = 15. For learning from aggregated label counts, we

cluster the observations at each node with k-Means (k =
15, 50 different random starting points, 500 iterations at

maximum) and label the clusters with LLPlsm (with 150

starts of the local greedy search) at each node for different

batch sizes b = 25, 50, 75 and 100. The accuracy of each

method is assessed by a 10-fold cross validation, i.e. all

models are trained and evaluated for different hold-out sets

10 times. In total 296× 7× 10 = 20, 720 models for kNN

need to be evaluated and 296× 7× 10× 4 = 82, 880 mod-

els trained and evaluated for LLPlsm. The evaluation has

been done offline in parallel on different machines (about

36 CPU cores).

Figure 1 shows the trade-off between accuracy and pay-

load sent for kNN and LLPlsm trained on differently sized

batches of aggregated labels. Besides the average accuracy

over all 10-fold cross-validations at each node, the bars in

Fig. 1 (left) also depict the standard deviation of accuracy

over all nodes.

In general, LLPlsm performs slightly worse than kNN. Nev-

ertheless, there are still many junctions for which the traffic

flow is predicted quite well with LLPlsm. Some locations

have bad performance with both methods, a comparison to

the map reveals that these are locations of parking areas

e.g. inner-city parking houses and recreational areas where

many vehicles stay for a long period of time.

6. Conclusions

The task of scalable traffic flow prediction involves a trade-

off between the accuracy of models and the amount of com-

munication between networked nodes. Especially in high

41

Distributed Traffic Flow Prediction with Label Proportions

performance computation and embedded devices commu-

nication is costly.

In this paper we presented a novel approach for local mod-

els that trades-off communication costs to prediction accu-

racy which is suitable for in-network deployment and clus-

ter computations.

Future work will focus on examining more sophisticated

aggregation strategies for labels. We will study how to in-

clude dynamic distributed traffic flow prediction in state-

of-the-art (multi-modal) route planning methods proposed

by (Bast et al., 2014).

Acknowledgements

This research has received funding from the European

Union’s Seventh Framework Programme under grant

agreement number FP7-318225, INSIGHT. Additionally,

this work has been supported by Deutsche Forschungsge-

meinschaft (DFG) within the Collaborative Research Cen-

ter SFB 876, project B3. We thank Jan Czogalla for data

preprocessing.

References

Ahmed, M.S., Cook, A.R., of Oklahoma. School of

Civil Engineering, University, and Science, Environ-

mental. Analysis of Freeway Traffic Time Series Data

Using Box and Jenkins Techniques. 1979.

Balcan, M.-F., Hanneke, S., and Vaughan, J. W. The true

sample complexity of active learning. Machine Learn-

ing, 80(2–3):111–139, 2010.

Bast, Hannah, Delling, Daniel, Goldberg, Andrew, Müller-

Hannemann, Matthias, Pajor, Thomas, Sanders, Peter,

Wagner, Dorothea, and Werneck, Renato. Route plan-

ning in transportation networks. Technical Report MSR-

TR-2014-4, January 2014.

Bellet, A., Liang, Y., Garakani, A. B., Balcan, M.-F., and

Sha, F. Distributed Frank-Wolfe algorithm: A unified

framework for communication-efficient sparse learning.

CoRR, abs/1404.2644, 2014.

Brefeld, U., Gärtner, T., Scheffer, T., and Wrobel, S. Ef-

ficient co-regularised least squares regression. In Proc.

of the 23rd Int. Conf. on Machine Learning (ICML), pp.

137–144, New York, NY, USA, 2006. ACM.

Chapelle, O., Schölkopf, B., and Zien, A. Semi-Supervised

Learning. MIT Press, Cambridge, MA, 2006.

Chen, Cheng, Liu, Zhong, Lin, Wei-Hua, Li, Shuang-

shuang, and Wang, Kai. Distributed modeling in a
mapreduce framework for data-driven traffic flow fore-

casting. Intelligent Transportation Systems, IEEE Trans-

actions on, 14(1):22–33, 2013.

Chen, S., Liu, B., Qian, M., and Zhang, C. Kernel k-

Means based framework for aggregate outputs classifi-

cation. In Proc. of the Int. Conf. on Data Mining Work-

shops (ICDMW), pp. 356–361, 2009.

Chen, Xing-Yu, Pao, Hsing-Kuo, and Lee, Yuh-Jye. Ef-

ficient traffic speed forecasting based on massive het-

erogenous historical data. In Big Data (Big Data), 2014

IEEE International Conference on, pp. 10–17, Oct 2014.

doi: 10.1109/BigData.2014.7004425.

Dai, Liang, Qin, Wen, Xu, Hongke, Chen, Ting, and Qian,

Chao. Urban traffic flow prediction: A mapreduce based

parallel multivariate linear regression approach. In Intel-

ligent Transportation Systems (ITSC), 2014 IEEE 17th

International Conference on, pp. 2823–2827, Oct 2014.

doi: 10.1109/ITSC.2014.6958142.

Darema, Frederica. The spmd model: Past, present and

future. In Recent Advances in Parallel Virtual Machine

and Message Passing Interface, pp. 1–1. Springer, 2001.

Das, K., Bhaduri, K., and Votava, P. Distributed anomaly

detection using 1-class SVM for vertically partitioned

data. Stat. Anal. Data Min., 4(4):393–406, 2011.

Fan, K., Zhang, H., Yan, S., Wang, L., Zhang, W., and

Feng, J. Learning a generative classifier from label pro-

portions. Neurocomput., 139:47–55, 9 2014.

Hernndez-Gonzlez, J., Inza, I., and Lozano, J. A. Learn-

ing bayesian network classifiers from label proportions.

Pattern Recognition, 46(12):3425–3440, 2013.

Kück, H. and de Freitas, N. Learning to classify individuals

based on group statistics. In Proc. of the 21th UAI, pp.

332–339, 2005.

Lee, S., Stolpe, M., and Morik, K. Separable approximate

optimization of support vector machines for distributed

sensing. In Machine Learning and Knowledge Discov-

ery in Databases, volume 7524 of LNCS, pp. 387–402,

Berlin, Heidelberg, 2012. Springer-Verlag.

Liebig, Thomas, Xu, Zhao, May, Michael, and Wrobel,

Stefan. Pedestrian quantity estimation with trajectory

patterns. In Machine Learning and Knowledge Discov-

ery in Databases, pp. 629–643. Springer Berlin Heidel-

berg, 2012.

Liebig, Thomas, Piatkowski, Nico, Bockermann, Christian,

and Morik, Katharina. Predictive trip planning - smart

routing in smart cities. In Proceedings of the Workshops

of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT

2014), Athens, Greece, March 28, 2014, volume 1133,

pp. 331–338. CEUR-WS.org, 2014.

42

Distributed Traffic Flow Prediction with Label Proportions

McCann, Barry. A review of scats operation and deploy-

ment in dublin. In Proceedings of the 19th JCT Traf-

fic Signal Symposium & Exhibition. JCT Consulting Ltd,

2014.

Message Passing Forum. Mpi: A message-passing inter-

face standard. Technical report, Knoxville, TN, USA,

1994.

Musicant, D. R., Christensen, J. M., and Olson, J. F. Su-

pervised learning by training on aggregate outputs. In

7th Int. Conf. on Data Mining (ICDM), pp. 252–261, 10

2007.

Niu, Xiaoguang, Zhu, Ying, Cao, Qingqing, Zhang, Xin-

ing, Xie, Wei, and Zheng, Kun. An online-traffic-

prediction based route finding mechanism for smart city.

International Journal of Distributed Sensor Networks,

501:970256, 2015.

Nupairoj, Natawut and Ni, Lionel M. Performance evalu-

ation of some mpi implementations on workstation clus-

ters. In Scalable Parallel Libraries Conference, 1994.,

Proceedings of the 1994, pp. 98–105. IEEE, 1994.

Patrini, G., Nock, R., Caetano, T., and Rivera, P. (almost)

no label no cry. In Advances in Neural Information

Processing Systems 27, pp. 190–198. Curran Associates,

Inc., 2014.

Piatkowski, Nico, Lee, Sangkyun, and Morik, Katharina.

Spatio-temporal random fields: compressible represen-

tation and distributed estimation. Machine Learning, 93

(1):115–139, 2013. ISSN 0885-6125.

Piernas, Juan, Flores, A, and Garcı́a, José M. Analyzing the

performance of mpi in a cluster of workstations based

on fast ethernet. In Recent advances in Parallel Vir-

tual Machine and Message Passing Interface, pp. 17–24.

Springer, 1997.

Quadrianto, N., Smola, A. J., Caetano, T. S., and Le,

Q. V. Estimating labels from label proportions. J. Mach.

Learn. Res., 10:2349–2374, 12 2009.

Raney, B. and Nagel, K. An improved framework for large-

scale multi-agent simulations of travel behavior. To-

wards better performing European Transportation Sys-

tems, pp. 305–347, 2006.

Rüping, S. SVM classifier estimation from group probabil-

ities. In Proc. of the 27th Int. Conf. on Machine Learning

(ICML), pp. 911–918, 2010.

Schnitzler, François, Liebig, Thomas, Mannor, Shie, and

Morik, Katharina. Combining a gauss-markov model

and gaussian process for traffic prediction in dublin

city center. In Proceedings of the Workshops of
the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT

2014), Athens, Greece, March 28, 2014, volume 1133,

pp. 373–374. CEUR-WS.org, 2014.

Stolpe, M., Bhaduri, K., Das, K., and Morik, K. Anomaly

detection in vertically partitioned data by distributed

core vector machines. In European Conf. on Ma-

chine Learning and Knowledge Discovery in Databases

(ECML/PKDD), pp. 321–336. Springer, 2013.

Stolpe, Marco and Morik, Katharina. Learning from

label proportions by optimizing cluster model selec-

tion. In Proceedings of the 2011 European Confer-

ence on Machine Learning and Knowledge Discovery in

Databases - Volume Part III, ECML PKDD’11, pp. 349–

364, Berlin, Heidelberg, 2011. Springer-Verlag.

Wang, Yubin, van Schuppen, Jan H., and Vrancken, Jos.

On-line distributed prediction of traffic flow in a large-

scale road network. Simulation Modelling Practice and

Theory, 47(0):276 – 303, 2014. ISSN 1569-190X. doi:

http://dx.doi.org/10.1016/j.simpat.2014.06.011.

Yang, Zhaosheng, Mei, Duo, Yang, Qingfang, Zhou, Hux-

ing, and Li, Xiaowen. Traffic flow prediction model

for large-scale road network based on cloud computing.

Mathematical Problems in Engineering, 2014, 2014.

Yu, F. X., Kumar, S., Jebara, T., and Chang, Shih-Fu. On

learning with label proportions. CoRR, abs/1402.5902,

2014.

Yu, F. X. Yu, Liu, D., Kumar, S., Jebara, T., and Chang,

S. ∝SVM for learning with label proportions. In Proc.

of the 30th Int. Conf. on Machine Learning (ICML), pp.

504–512, 2013.

Yu, Hao. Rmpi: Parallel statistical comput-

ing in r. R News, 2(2):10–14, 2002. URL

http://cran.r-project.org/doc/Rnews/

Rnews 2002-2.pdf.

Yunhong, H., Liang, F., and Guoping, H. Privacy-

preserving SVM classification on vertically partitioned

data without secure multi-party computation. In 5th Int.

Conf. on Natural Computation (ICNC), volume 1, pp.

543–546, 8 2009.

43

Event-Based Clustering for Reducing Labeling Costs of Incident-Related

Microposts

Axel Schulz SCHULZ.AXEL@GMX.NET

DB Mobility Logistics AG, Germany and Telecooperation Lab, Technische Universität Darmstadt, Germany

Petar Ristoski PETAR.RISTOSKI@INFORMATIK.UNI-MANNHEIM.DE

Data and Web Science Group, University of Mannheim, Germany

Johannes Fürnkranz JUFFI@KE.INFORMATIK.TU-DARMSTADT.DE

Knowledge Engineering Group, Technische Universität Darmstadt, Germany

Frederik Janssen JANSSEN@KE.TU-DARMSTADT.DE

Knowledge Engineering Group, Technische Universität Darmstadt, Germany

Abstract

Automatically identifying the event type of

event-related information in the sheer amount of

social media data makes machine learning in-

evitable. However, this is highly dependent on

(1) the number of correctly labeled instances and

(2) labeling costs. Active learning has been pro-

posed to reduce the number of instances to la-

bel. Though, current approaches focus on the

thematic dimension, i.e., the event type, for se-

lecting instances to label; other metadata such

as spatial and temporal information that is help-

ful for achieving a more fine-grained clustering

is currently not taken into account. Also, label-

ing quality is always assumed to be perfect as

currently no qualitative information is present for

manual event type labeling.

In this paper, we present a novel event-based

clustering strategy that makes use of temporal,

spatial, and thematic metadata to determine in-

stances to label. Furthermore, we also inspect the

quality of the manual labeling in a crowdsourcing

study by comparing experts and non-experts. An

evaluation on incident-related tweets shows that

(i) labels provided by crowdsourcing are of ac-

ceptable quality and (ii) our selection strategy for

active learning outperforms current state-of-the-

art approaches even with few labeled instances.

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

1. Introduction

Detecting event-related information in microposts has

shown its value for a variety of domains. Especially in

emergency management, different situational information

is present that could contribute to understand the situation

at hand (Schulz, 2014). However, solving the actual prob-

lem of classifying the incident type in this domain requires

labeled data. One of the main problems with microposts

is acquiring ground truth for utilizing supervised learning.

Thus, we deal with two major issues: (1) The costs for la-

beling a single instance, and (2) the number of instances to

label.

On the one hand, to actually build a classifier that is able

to accurately predict the type of the incident mentioned in

a tweet, usually experts are deployed for labeling as they

have enough domain knowledge to create ground truth.

However, as often several hundreds of examples have to be

labeled until the classifier is able to reach sufficient qual-

ity, relying on experts for labeling is not always possible

and it is costly. In contrast, labels can also be derived from

non-experts, i.e., by making use of crowdsourcing. Given

that the labels obtained in this way are of sufficient quality,

the costs for such a process would be acceptable as crowd-

sourcing is rather cheap. But up to now there is no infor-

mation about labeling quality for incident-related tweets.

Hence, first we proceeded by comparing the labeling qual-

ity of experts and non-experts.

On the other hand, the number of instances to label has to

be kept as low as possible. Due to the huge number of

tweets, labeling all instances is not possible as even with

cheap labeling the costs would explode. Keeping the num-

ber of instances to label low while maintaining accurate

44

Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts

classifiers is a typical active learning (Settles, 2012) prob-

lem. Here, labeling costs are reduced by iteratively (1) se-

lecting small subsets of instances to query for labels and (2)

re-training a classifier with the newly labeled data. Thus,

in general, but also specifically for classifying microposts,

there are two issues to solve, namely selecting a good initial

training set and the right instances in each iteration.

For selecting appropriate instances, several selection strate-

gies have been proposed based on the two criteria, informa-

tiveness and representativeness (Huang et al., 2010). Infor-

mativeness measures the usefulness of an instance to re-

duce the uncertainty of the model, whereas representative-

ness measures how good an instance represents the overall

input of unlabeled data. The latter usually is solved by em-

ploying clustering approaches where then from each cluster

the representative instances are drawn. Indeed, for event-

type classification the number of clusters to build is not

known in advance, as it is unknown how often an event oc-

curred. Hence, most often it is set to the number of distinct

event types, which obviously is not appropriate. For in-

stance, one event might be a tiny fire in a waste bin whereas

another is a huge fire in a factory; though microposts for

both events need to be classified with the “fire” event type,

state-of-the-art approaches would not distinguish these two

events and thus could not yield an optimal selection of in-

stances to label. For better distinguishing events, a straight-

forward approach is to characterize an event not only by its

type, but also by spatial and temporal information. Pro-

ceeding this way, the two example events are inherently

assigned to different clusters and hence instances to be la-

beled are drawn from both of them.

Consequently, we contribute an event-based clustering ap-

proach that also leverages the temporal and spatial dimen-

sion of tweets to allow a more fine-grained clustering. Due

to smaller clusters the selection of appropriate instances is

easier because one can assume that even with a bad sam-

pling the selected instances will still be of high quality.

The evaluation on incident-related tweets shows that this

enhanced clustering indeed improves the selection com-

pared to state-of-the-art approaches. It is also shown that

our approach has a good performance even when only few

examples are labeled.

In summary, the contributions of this paper are: (1) A study

comparing the labeling quality of experts and non-experts

showing no significant difference of error rates. (2) A novel

event-based clustering approach that makes use of spatial,

temporal, and thematic information present in microposts.

The clustering benefits strongly from these additional di-

mensions. (3) A comparison of our approach using differ-

ent number of annotators and different levels of noise. Even

with a classifier that was not explicitly build to be robust,

noise does not hinder the classifier much.

We begin with summarizing related approaches. Next, we

show how the ground truth data was developed. Then we

summarize the results of the study on crowdsourced labels

(Section 4) followed by a description of the event-based

clustering for active learning. After, the results are shown

and discussed (Section 6) and the paper is concluded.

2. Related Work

Although active learning has been studied extensively for

text classification (Hoi et al., 2006; Tong & Koller, 2002),

it was used for tweets only by a few previous works.

(Thongsuk et al., 2010) presented a technique for classi-

fying tweets into three business types. They showed that

using active learning outperforms simple supervised learn-

ing approaches in terms of labeling costs.

(Hu et al., 2013) presented the ActNeT approach, which

takes the relations between tweets into account for identify-

ing representative as well as informative instances. Based

on a social network, the topology is used to detect repre-

sentative instances using the PageRank algorithm. Infor-

mative instances are chosen using an entropy-based uncer-

tainty sampling. However, as building the social network

is time consuming and not always possible due to API re-

strictions, their approach is not applicable for our problem.

Also, they do not use event-related metadata.

Several selection strategies were presented that propose

to select informative as well as representative instances.

(Tang et al., 2002) used k-means clustering and proposed to

select the most uncertain instance for each cluster. Informa-

tion density was then used to weight instances. (Shen et al.,

2004) applied k-means clustering and uncertainty sampling

and used the information density calculated within a clus-

ter. (Donmez et al., 2007) combined uncertainty sampling

and k-Medoid to identify representative as well as informa-

tive instances and showed that this combination is indeed

beneficial.

The approach of (Zhu et al., 2008) is the most advanced re-

lated approach when it comes to combining representative-

ness and informativeness, thus, we used it as a foundation

for our technique. The authors employed clustering for the

initial selection. Uncertainty sampling is combined with

estimating a density for each iteration. Unlike their work,

we apply our event-based clustering also for the iterations.

(Huang et al., 2010) followed a similar approach. Instances

are selected based on clustering and on confidence in pre-

dicting a class label as informativeness measure. Though

their approach is quite promising, the authors stated that it

is restricted to binary classification, whereas we are able to

classify multiple classes.

Taking labeling quality into account is still open to re-

search. Up to now, there is no study of labeling quality

45

Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts

of event-related tweets, but only studies on structured texts

such as the work of (Hsueh et al., 2009). Since 2008, the

active learning community also tackled the problem of dif-

ferent reliabilities of oracles (Donmez & Carbonell, 2008;

Zhao et al., 2011; Wallace et al., 2011). These approaches

have been proposed to take labeling uncertainty into ac-

count and show that repeated re-labeling of wrongly la-

beled tweets could improve label quality and model quality.

Nevertheless, most often synthetic error rates have been as-

sumed.

To sum up, some works tried to combine informative-

ness and representative for selecting instances and showed

promising results. Nevertheless, none of these approaches

has been evaluated on microposts or has taken event-related

metadata into account. Also, no information about real-

world error rates is present or was used in active learning.

3. Developing Ground Truth Data

In this section, we present our dataset used for our evalua-

tion. We focus on incident-related tweets as a specific type

of event-related data. We differentiate between three inci-

dent types in order to classify microposts. These have been

chosen because we identified them as the most common in-

cident types in the Seattle Fire Calls dataset1, which is a

frequently updated source for official incident information.

We also add one neutral class, thus, our final classes are:

car crash, fire, shooting, and no incident.

As there are no publicly available labeled datasets for

event-related microposts, we needed to create our own

high-quality ground truth data. For this, we collected En-

glish microposts using the Twitter Search API. For the col-

lection, we used a 15km radius around the city centers of

Seattle, WA and Memphis, TN. We focused on only two

cities, as for our analysis we were interested in a large

stream of tweets for a specific time period of certain ar-

eas instead of a world-wide scattered sample. This gave us

a set of 7.5M microposts from Nov. 19th, 2012 until Feb.

7th, 2013. Although the datasets have been collected in dif-

ferent time periods, we do not expect any difference in the

way people post about incidents.

As this initial set was used for conducting our experiments,

we had to further reduce the size of the datasets follow-

ing our approach as described in (Schulz et al., 2013b).

The resulting 2,000 tweets were manually labeled by four

domain-experts using an online survey. To assign the final

coding, at least three coders had to agree on a label. In-

stances without an agreement were further examined and

relabeled during a group discussion. The final dataset con-

sists of 328 fire, 309 crash, 334 shooting, and 1029 not

1http://data.seattle.gov

Table 1. Results for the random error evaluated in a study on qual-

ity of crowdsourced labels. Means (µ) and standard deviation

(SD) of the error rates are displayed for each user group.

Random Error

Crowd Expert

µ 0.0338 0.0323

SD 0.0006 0.0002

incident related tweets.2 For our evaluation, we used 1,200

tweets for training and 800 tweets for testing (temporal

split, i.e., the testing instances are later in time than the

training instances). Though this selection might seem arbi-

trary, all compared algorithms rely on the same sampling,

thus, allowing for a fair comparison.

4. Study on Quality of Crowdsourced Labels

In active learning, most often a perfect oracle is assumed

for labeling instances. As this might not hold true in a real-

world environment, we conducted a study on labeling ac-

curacy. When it comes to labeling accuracy, the general

assumption is that labeling quality in crowdsourcing envi-

ronments might be dependent on the domain knowledge of

the annotators (Zhao et al., 2011). Thus, one of the goals of

the study is to analyze if the labeling quality of non-experts

differs significantly from domain experts. To answer this

question, we evaluated two user groups in our study: do-

main experts and regular crowd users with no or limited

domain knowledge. Second, there is no work describing er-

ror rates for labeling of incident-related microposts. Thus,

we want to quantify the error rates, so we can use them for

our simulations. For this, we evaluated the random error,

i.e., the error that results from the annotator carelessness.

E.g., a wrong label is occasionally assigned. The random

error is regarded as i.i.d. noise on each label, thus, we as-

sume a fixed probability RE ∈ [0, 1].

We assume a different labeling quality for crowd users

(CU) and domain experts (EX) and test the following

hypothesis H: The means (µ) of the random error are

different across both user groups (H0 : µRE,CU =
µRE,EX , HA : µRE,CU 6= µRE,EX).

We created a survey to conduct the labeling of our complete

ground truth dataset according to the incident types. Four-

teen users participated in the study. Eight participants were

crowd users with no or low experience in the crisis man-

agement domain and six users were domain experts with

more than three years experience in the domain. At least

three crowd users and at least two domain experts labeled

each tweet. Based on the results, we calculate the random

error (cf. Table 1) compared to the ground truth labels.

2All datasets will be published at http://www.doc.

gold.ac.uk/˜cguck001/IncidentTweets/

46

Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts

For evaluating our hypothesis, we first confirmed normal

distribution for all error types and both user groups using

the Anderson-Darling as well as the Shapiro-Wilk Normal-

ity test. Furthermore, we conducted a two-sample F-test

for variances to verify same variances for all combinations

with p < 0.01. For each combination we conducted the

two-sample t-test assuming equal variances. For all com-

binations the null hypotheses could not be rejected with

p < 0.01. Thus, for all error types, we cannot assume a

difference between both user groups. This means that in

our study there is no conceivable difference between do-

main experts and common crowd users.

One reason might be the rather low sample size. Others

might be found in the nature of microposts as they are

short and the amount of available information per tweet is

limited. Thus, the complexity of the information is low

and it is possible to understand the content even as a non-

expert. Furthermore, as tweets are send by lots of different

individuals, the number of domain specific terms could be

rather low compared to specialized texts. Also, as incident-

related tweets are common topics compared to physics or

medicine, people are somehow used to the vocabulary.

To reflect a real-world situation best, we combined the re-

sults of both groups as in typical crowdsourcing studies

both groups might be present. Also, the labels of the ex-

perts are available anyway for our dataset. This gave us a

final error rate of 0.0331 for the random error.

5. Event-Based Clustering

In this section, we show how active learning can be utilized

to classify the incident type of microposts. We also intro-

duce our approach and present how we cope with the initial

selection problem, i.e., how to select the initial training set,

as well as with the query selection problem, i.e., how to

choose appropriate instances for labeling in each iteration.

5.1. Active Learning for Event Type Classification

Active learning is an iterative process to build classification

models by selecting small subsets of the available instances

to label. Two major steps are conducted: (1) a learning

step, where a classifier is built and (2) an improvement step,

in which the classifier is optimized. We follow a pool-based

sampling approach. First, a large number of microposts are

collected as an initial pool of unlabeled data U . From this

information base, a set of training examples L is chosen

for learning an initial model. It is highly important how to

choose this set, because with a well-selected initial training

set, the learner can reach higher performance faster with

fewer queries (Kang et al., 2004).

For training a classifier using this initial set, we reuse the

classification approach presented in (Schulz et al., 2013b).

Here, microposts are processed with standard Natural Lan-

guage Processing (NLP) techniques such as stopword re-

moval, POS-tagging, and lemmatization. Afterwards, sev-

eral features are extracted from the preprocessed instances

such as word-3-grams after POS-filtering, TF-IDF scores,

syntactic features as well as semantic features. The syn-

tactic features are the number of exclamation and ques-

tion marks as well as the number of upper case charac-

ters. The semantic features are a feature group derived us-

ing different means of Semantic Abstraction (Schulz et al.,

2015). Furthermore, the existing approach allows us to ex-

tract a likely date of an event mentioned in a micropost. To

identify the temporal information in a tweet, we adapted

the HeidelTime framework for temporal extraction as pre-

sented in (Schulz et al., 2013b).

As the number of geotagged microposts is rather low (about

1-2%), we reuse an extension of our approach for geolo-

calization (Schulz et al., 2013a) of microposts as well as

for extracting location mentions as features used in the

classification. For geolocalization an estimation of the

city and the country where a tweet was send from was

used and additionally location mentions extracted from the

tweet message were considered. First, we use a Stanford

NER3 model to identify all location mentions. Then, the

discovered locations are geocoded using the geographical

database GeoNames4, and the MapQuest Nominatim API5

for more fine-grained locations, like streets. The intersec-

tion of all locations extracted from the tweet is used as an

estimation of the location where an event mentioned in a

tweet has happened.

After the initial training, the classifier is retrained in several

iterations using newly labeled instances. After each itera-

tion, the labeled instances are removed from the pool of un-

labeled instances U and added to L, thus, more instances

can be used for learning. A selection strategy is used on

U to query labels for a number of instances in each itera-

tion. For coping with this query selection problem, several

strategies can be chosen based on informativeness and rep-

resentativeness (Huang et al., 2010).

For informativeness as selection criteria, uncertainty sam-

pling (Lewis & Catlett, 1994) is commonly applied that

selects particularly those examples for labeling for which

the learner is most uncertain. However, the main issue

with the informativeness approach is that only a single in-

stance is considered at a time (Settles, 2012). Thus, out-

liers could be selected erroneously as the context is not

taken into account. In contrary, clustering helps to identify

representative instances. According to Nguyen and Smeul-

ders (Nguyen & Smeulders, 2004), the most representative

3http://nlp.stanford.edu
4http://www.geonames.org/
5http://developer.mapquest.com

47

Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts

examples are those in the center of cluster, which are the

instances most similar to all other instances in the clus-

ter. Nevertheless, selecting always the centers of the clus-

ters might result in selecting always very similar instances

for each iteration, thus, the model might not improve very

much. Furthermore, it remains unclear how many clusters

have to be built. Also, the resulting clusters not necessarily

correlate to the real-world events as spatial and temporal

information is neglected.

To overcome the individual problems of each approach, re-

lated work proposes to select the most informative and rep-

resentative instances. This results in selecting the instances

that are representative for the whole dataset as well as have

the highest chance to improve the model. In our approach,

we use metadata provided in microposts to cluster instances

based on both criteria and to choose the most valuable in-

stances for training the classifier. The whole process of

active learning continues until a stopping criteria is met,

e.g., a maximum number of iterations is reached or when

the model does not improve any more.

5.2. Event-based Clustering

Clustering-based approaches are frequently used for iden-

tifying representative instances. However, there might not

be an obvious clustering of event-related data, thus, clus-

tering might be performed at various levels of granularity

as the optimal number of cluster is unknown.

Consequently, we use event-related information such as

temporal and spatial information in combination with the

event type to perform an event-based clustering to take the

properties of real-world events into account. This way, we

are directly able to find a number of clusters without the

need of specifying the number beforehand. Furthermore,

our event-based clustering is based on both selection crite-

ria, so we overcome the limitations of each individual one.

The design of our approach follows the assumption that

every event-related information is either related to a real-

world event or not. Thus, we propose to cluster all in-

stances based on the three dimensions that define an event:

temporal, spatial and thematic extent. As a result, each in-

stance is aggregated to a cluster.

If a micropost lies within the spatial, temporal, and

thematic extent of another micropost, it is assumed

to provide information about the same event. This

assertion can be formalized as a triple of the form

{event type, radius, time}. The spatial extent is a radius

in meters drawn around the spatial location of the event.

The temporal extent is a timespan in minutes calculated

from the creation time of the initial event. The thematic ex-

tent is the type of an event. For example, for our approach

we use the rule {Car Crash, 200m, 20min}, which as-

Algorithm 1 Algorithm for initial selection strategy.

Data: Unlabeled instances U , Clusters C generated by event-based clustering,

Size of initial training set bi
Result: Instances to label L

for all clusters c ∈ C do

for all instances i ∈ c do

Calculate information density DS(i)
end for

end for

for all clusters c ∈ C do

Calculate average information density DSC(c)
end for

Order clusters in C based on DSC
while |L| ≤ bi do

for cluster c ∈ C do

Add one instance from c to L
end for

end while

serts that each incoming micropost of the event type Car

Crash is aggregated to a previously reported incident if it is

of the same type, within a range of 200 meters, and within a

time of 20 minutes. Clearly, altering the radius or the time

will have a strong effect on the final clustering. However, as

emergency management experts suggested to use these val-

ues, we did not change them. Inspecting the effects of dif-

ferent parameterizations remains subject for future work,

however, we are confident that our proposed approach is

not affected negatively by a change of these parameters.

With the help of these three assertion types, a rule engine

computes whether microposts are clustered as they describe

the same event or not.

Microposts containing no thematic information are as-

signed the unknown event type. Missing spatial informa-

tion is replaced with a common spatial center (the center

of a city). Missing temporal information is replaced with

the creation date of the micropost. Thus, even with one or

two missing dimensions, we are still able to build clusters.

Based on this clustering approach, we are able to cluster all

microposts related to a specific event. This helps to identify

those microposts that might be helpful for better training.

Opposed, microposts not related to events are assigned to

larger clusters, containing lots of noise and being less valu-

able for the learning process.

5.3. Initial Selection Strategy

The initial dataset that needs to be labeled is selected first.

Related approaches rely on random sampling or clustering

techniques (Zhu et al., 2008). However, this does not guar-

antee the selection of appropriate instances, because the

initial sample size is rather small, whereas the size of the

clusters is large. In contrast, event-based clustering uses the

properties of real-world events to perform an initial cluster-

ing.

Our approach for selecting the initial dataset is shown in

Algorithm 1. Based on the set of clusters resulting from our

48

Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts

event-based clustering, the most representative instances

for the complete and unlabeled dataset are identified for

training the initial model. For this, we use the event clus-

ters ordered by information density of their containing in-

stances to obtain a good initial set. Selecting informative

instances clearly is not possible yet, as a classifier cannot

be trained at this point. In the following, we describe the

algorithm in detail.

First, our clustering approach is applied on the complete

unlabeled set U without a thematic specification as this is

not present yet. Thus, the unknown event type is used.

Second, for all instances in each cluster the information

density is calculated. This is done based on how many in-

stances are similar or near to each other, thus, outliers are

regarded as less valuable. We used a k-Nearest-Neighbor-

based density estimation (Zhu et al., 2008): DS (x) =∑
s∈S(x)

Similarity(x,s)

k

The density DS(x) of instance x is estimated based on

the k most similar instances in the same cluster6 S(x) =
{s1, s2, ..., sk}. As a similarity measure, we use the cosine

similarity between two instances. The information density

DSC of each cluster c is then calculated based on the aver-

age of the information density of each instance as follows:

DSC (c) =

∑
x∈c

DS(x)

k

Doing this, we are able to avoid noisy clusters with lots of

unrelated items, which would typically be clusters not re-

lated to an event. Based on DSC(c) the clusters are sorted.

Then we iterate over the ordered list and select instances

until bi (initial training size) instances are selected. Pro-

ceeding this way, we achieve a good distribution over all

valuable event clusters as it is guaranteed that the instances

are selected from the most representative clusters. Based

on these instances, the initial model is build.

5.4. Query Selection Strategy

For the query selection strategy we choose representative

using clustering as well as informative instances using

uncertainty-based sampling. The pseudo-code is shown in

Algorithm 2. In every iteration, the classifier trained on the

currently labeled instances is applied to label all unlabeled

instances. As a result, every instance is assigned a thematic

dimension. Based on this, the event clustering is applied

using the spatial, temporal, and thematic information re-

sulting in a set of clusters C.

Next, for the query selection strategy, we calculate the in-

formation density DS per instance. For identifying in-

formative instances, we use the instances for which the

classifier is most uncertain. As an uncertainty measure

the entropy calculated for each instance x and each class

6k is equal to the number of instances in the cluster.

Algorithm 2 Algorithm for one iteration of the query se-

lection strategy.

Data: Unlabeled instances U , Labeled instances L, Clusters C generated by

event-based clustering, Number of instances to label per iteration bi, Trained

Model for iteration M , Mean average size of all cluster in iteration ms
Result: Instances to label L

Use L to train classifier M
for all clusters c ∈ C do

for all instances i ∈ c do

Calculate information density DS(i)
Calculate entropy H(i) using M
Calculate density×entropy measure DSH(i)

end for

end for

for all clusters c ∈ C do

Calculate DSHC(c)
end for

Order clusters based on DSHC
while |L| ≤ bi do

for all clusters c ∈ C do

n = logms(|c|)
Add n instances from c to L

end for

end while

y ∈ Y = {y1, y2, ..., yi} was employed: H(x) =
−
∑

yǫY P (y|x) logP (y|x)

Based on the information density and the entropy, the

density×entropy measure DSH(x) = DS(x) × H(x)
(Zhu et al., 2008) is calculated for each instance x. The in-

formativeness and representativeness of each cluster is then

computed based on the mean average of DSH of each in-

stance i in the cluster c: DSHC (c) =

∑
i∈c

DSH(i)

|c|

For selecting the appropriate instances to query, the clusters

are sorted by the DSHC of each cluster. The number of in-

stances to draw per cluster is calculated as n = log(ms)CS.

To determine how many instances have to be selected per

cluster (n), we calculate the average size of all clusters ms

and the size of the current cluster CS. We decided to use a

logarithmic scale by using a logarithm at basis ms to avoid

drawing too many instances from larger clusters as would

be the case with a linear approach. We assume that draw-

ing only small numbers per cluster is sufficient, as at some

point additional instances will not yield any additional in-

formation, as the instances will be too similar to each other.

Instances are selected until the number of instances to la-

bel per iteration is reached. Based on the previous and the

new instances the model is retrained. The whole process is

repeated until all iterations are finished.

6. Experiments

We conducted two experiments regarding incident type

classification. First, we compared related approaches

to show that event-based clustering outperforms other

clustering-based active learning approaches. Additionally,

the effect of the number of labeled instances on the clas-

sifier performance is examined. In the second experiment,

49

Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts

a) 1 user without noise

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

of Instances

65

70

75

80

85

90

F
1
 S

co
re

(a) ground truth data

b) 1 user with noise

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

of Instances

65

70

75

80

85

90

F
1
 S

co
re

(b) one annotator

c) 5 users with noise

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

of Instances

65

70

75

80

85

90

F
1
 S

co
re

(c) five annotators

e) 20 users with noise

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

of Instances

65

70

75

80

85

90

F
1
 S

co
re

(d) 20 annotators

f) 50 users with noise

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

of Instances

65

70

75

80

85

90

F
1
 S

co
re

(e) 50 annotators

h) 200 users with noise

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

of Instances

65

70

75

80

85

90

F
1
 S

co
re

(f) 200 annotators

Tang et al. Uncertainty Sampling Event-based Clustering Zhu et al.

Figure 1. Evaluation results of state-of-the-art selection strategies and our approach. The graphs for different number of annotators

(regular crowd users) are shown. Note that the more annotators labeled an instance the lower is the probability for a noisy labeling.

the influence of noise is inspected. Noise results from a

low number of non-expert labelers. For keeping costs low

a classifier should not be affected by a bad labeling.

6.1. Classification and Metrics

The active learning algorithms select instances from the

training set to query for labels. Based on these, a classi-

fier was trained and evaluated on the test set. As classifier

we used Weka’s implementation of John Platt’s sequential

minimal optimization (SMO) algorithm for training a sup-

port vector machine (Platt, 1998). Due to the complexity of

determining best parameters for each iteration and each ap-

proach, we followed related approaches (see (Huang et al.,

2010) and (Donmez et al., 2007)), and decided to compare

all algorithms on fixed parameters. Consequently, the SVM

was used with standard settings.

For comparison, the deficiency metric (Raghavan et al.,

2006) is calculated using the achieved F1 score of all it-

erations of a reference baseline algorithm (REF) and the

compared active learning approach (AL). The result is nor-

malized using the largest F1 score and the learning curve

of the reference algorithm REF. Thus, the measure is non-

negative and values smaller than 1 indicate more efficient

algorithms compared to the baseline strategy, whereas a

value larger than 1 indicates a performance decrease com-

pared to the baseline strategy.

6.2. Algorithms and Parameters

In order to evaluate the performance of our approach, we

re-implemented the following related approaches:

(Tang et al., 2002): For initial sampling a k-means clus-

tering is used. For query selection, first the most uncertain

instances for each cluster are selected. Then, information

density is used to weight the examples. We set k = 4,

because we have four different event types.

(Zhu et al., 2008): For initial sampling a k-means cluster-

ing is used (k = 4). During the iterations, the entropy ×
density measure is used as selection criteria and no cluster-

ing is applied.

Uncertainty: Random instances (initial) and the entropy-

based uncertainty sampling (iterations) is used.

Event-based clustering: Our event-based clustering is ap-

plied with a spatial extent of 200m and a temporal extent

of 20min.78

Following the experimental settings of (Hu et al., 2013) and

(Huang et al., 2010), we set the size of the initial train-

ing set and the size during the iterations to 50. No further

tuning or parameterization was applied. Each iteration for

7As a result, the 1,200 tweets of the training set are divided
into 438 distinct event clusters.

8The spatial and temporal extent are a result of discussions
with emergency managers.

50

Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts

Table 2. Deficiencies with Tang et al. as a baseline strategy.

Approach Deficiency

(Tang et al., 2002) 1
Uncertainty Sampling 0.53

(Zhu et al., 2008) 0.90
Event-based Clustering 0.44

each algorithm was repeated 10 times, as for instance, the

uncertainty approach is highly dependent on the selected

instances. We used averaged F1 based on the repetitions.

6.3. Comparison to state-of-the-art approaches

The performance graph for the ground truth data is shown

in Figure 1 (a). Note that the x-axis shows the total num-

ber of instances combining the 50 instances of the initial

training set and 50 instances drawn per iteration. Thus, it-

erations from 0 to 23 are depicted. As shown, the perfor-

mance after selecting the initial training set is superior with

our approach. Also, in regions where only a few instances

were labeled, the event-based clustering has a higher F1

value. This shows that a high-quality selection of the itera-

tion instances is possible with our method.

Table 2 shows the deficiencies. With respect to the perfor-

mance of the iterations, our approach has a decreased de-

ficiency compared to other clustering approaches (0.44 vs.

0.53). The approach of Zhu et al. outperforms the approach

of Tang et al. in most iterations and also with respect to the

deficiency. We attribute this to the improved strategy for

query selection. A surprising result is the performance of

uncertainty sampling that outperforms the other two clus-

tering strategies. Apparently, only focusing on the infor-

mativeness seems to be a good strategy for our dataset. In

contrast, using the number of distinct events as the number

of clusters might not be the most efficient approach.

The graph also shows that our approach has a steep learn-

ing curve as for instance only a sixth of all instances are

needed to achieve a F1 score of about 84%. This is espe-

cially important when it comes to labeling costs, as only a

limited amount of data would need to be labeled. One can

see a drop at 500 instances. This is most likely because

with more instances the number of clusters is decreasing,

thus, selecting appropriate instances is more difficult.

We can conclude that event-based clustering that takes rep-

resentative as well as informative instances into account is

a promising strategy for active learning. We also showed

that our approach outperforms state-of-the-art for selecting

an initial training set and for choosing appropriate instances

for labeling in each iteration.

Influence of noise in the labels In Figure 1 (b) and 1 (c),

the learning curves for the very error-prone cases with one

respective five annotators are shown. As can be seen in the

curve of the approach of Tang et al., the influence of noise is

notable in the big drop with 500 instances. Also Zhu et al.’s

approach has a much lower initial F1 score compared to

all others, which is an indicator for an inappropriate initial

selection strategy. The results indicate that even with noisy

labels, our approach outperforms the state-of-the-art as the

situation in the graphs of the lower part of Figure 1 does

not change much. In all these cases, the learning curves are

quite similar, which is a result of the decreased number of

wrongly labeled instances. Clearly, the performance of all

approaches increases with a lower number of errors.

As we showed, our approach outperforms related work also

if noise is taken into account. Not surprisingly, we found

that with an increasing number of annotators, noise is neg-

ligible. With only one annotator, the deficiency is worse

by 57% and with five annotators still worse by 26%. Even

with 50 annotators, the deficiency still is worse by 10%.

For more than ten annotators, an F1 score of 85% is reached

comparably fast. With a maximum of five annotators, this

level is only reached at the end of the simulation. For one

annotator, this maximum is never achieved. These results

indicate that a minimum number of annotators is needed for

achieving good results by crowdsourced labeling tasks. In

our experiments, ten annotators seem to be sufficient, while

in other domains with different error rates, there might be

a need for much more annotators.

7. Conclusion

We presented an event-based clustering strategy for event

type classification of microposts and coped with several

problems of active learning in the emergency management

domain. First, it was shown that domain experts do not dif-

fer significantly from regular crowd users when it comes

to labeling quality. Second, we presented a novel selection

strategy for active learning based on temporal, spatial, and

thematic information. Our event-based clustering that iden-

tifies representative as well as informative instances outper-

forms state-of-the-art clustering approaches. On incident-

related microposts we showed that a better initial training

set is selected as well as to appropriate instances for la-

beling in each iteration are chosen. The learning curve

indicated that only a sixth of all instances are needed to

achieve a F1 score of about 84%, which is especially im-

portant when it comes to labeling costs, as only a limited

amount of data would need to be labeled to achieve good

classification results.

In the future, we aim at using our active learning frame-

work in addition to labeling of single features. Further-

more, though our framework follows a general approach,

we only evaluated it on incident-related data, thus, we also

want so show the applicability on other types of events.

51

Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts

References

Donmez, Pinar and Carbonell, Jaime G. Proactive learning:

cost-sensitive active learning with multiple imperfect or-

acles. In CIKM’08, pp. 619–628, 2008.

Donmez, Pinar, Carbonell, Jaime G., and Bennett, Paul N.

Dual strategy active learning. In ECML’07, pp. 116–127,

2007.

Hoi, Steven C. H., Jin, Rong, and Lyu, Michael R. Large-

scale text categorization by batch mode active learning.

In WWW’06, pp. 633–642, 2006.

Hsueh, Pei-Yun, Melville, Prem, and Sindhwani, Vikas.

Data quality from crowdsourcing: A study of annotation

selection criteria. In NAACL HLT’09, pp. 27–35, 2009.

Hu, Xia, Tang, Jiliang, Gao, Huiji, and Liu, Huan. Actnet:

Active learning for networked texts in microblogging. In

SIAM’13, 2013.

Huang, Sheng-Jun, Jin, Rong, and Zhou, Zhi-Hua. Active

learning by querying informative and representative ex-

amples. In NIPS, pp. 892–900, 2010.

Kang, Jaeho, Ryu, Kwang R., and Kwon, Hyuk C. Using

Cluster-Based Sampling to Select Initial Training Set for

Active Learning in Text Classification. In PAKDD’04,

pp. 384–388, 2004.

Lewis, David D. and Catlett, Jason. Heterogeneous uncer-

tainty sampling for supervised learning. In ICML’94, pp.

148–156, 1994.

Nguyen, Hieu T. and Smeulders, Arnold. Active learning

using pre-clustering. In ICML’04, pp. 79–86, 2004.

Platt, J. Fast training of support vector machines using

sequential minimal optimization. In Schoelkopf, B.,

Burges, C., and Smola, A. (eds.), Advances in Kernel

Methods - Support Vector Learning. MIT Press, 1998.

Raghavan, Hema et al. Active learning with feedback on

both features and instances. J. of Machine Learning Re-

search, 7:1655–1686, 2006.

Schulz, Axel. Mining User-Generated Content for Inci-

dents. PhD thesis, TU Darmstadt, 2014. URL http:

//tuprints.ulb.tu-darmstadt.de/4107/.

Schulz, Axel, Hadjakos, Aristotelis, Paulheim, Heiko,

Nachtwey, Johannes, and Mühlhäuser, Max. A multi-

indicator approach for geolocalization of tweets. In Pro-

ceedings of the Eight International Conference on We-

blogs and Social Media (ICWSM), pp. 573–582, Menlo

Park, California, USA, 2013a. AAAI Press.

Schulz, Axel, Ristoski, Petar, and Paulheim, Heiko. I see

a car crash: Real-time detection of small scale incidents

in microblogs. In The Semantic Web: ESWC 2013 Satel-

lite Events, volume 7955 of Lecture Notes in Computer

Science, pp. 22–33. Springer Berlin Heidelberg, 2013b.

Schulz, Axel, Guckelsberger, Christian, and Janssen, Fred-

erik. Semantic abstraction for generalization of tweet

classification: An evaluation on incident-related tweets.

In Semantic Web Journal: Special Issue on The Role of

Semantics in Smart Cities (to appear). IOS Press, 2015.

Settles, Burr. Active Learning. Synthesis Lectures on Ar-

tificial Intelligence and Machine Learning. Morgan &

Claypool Publishers, 2012.

Shen, Dan, Zhang, Jie, Su, Jian, Zhou, Guodong, and

Tan, Chew-Lim. Multi-criteria-based active learning for

named entity recognition. In ACL’04, 2004.

Tang, Min, Luo, Xiaoqiang, and Roukos, Salim. Ac-

tive learning for statistical natural language parsing. In

ACL’02, pp. 120–127, 2002.

Thongsuk, Chanattha, Haruechaiyasak, Choochart, and

Meesad, Phayung. Classifying business types from twit-

ter posts using active learning. In I2CS’10, pp. 180–189,

2010.

Tong, Simon and Koller, Daphne. Support vector machine

active learning with applications to text classification. J.

Mach. Learn. Res., 2:45–66, 2002.

Wallace, Byron C., Small, Kevin, Brodley, Carla E., and

Trikalinos, Thomas A. Who should label what? instance

allocation in multiple expert active learning. In SDM’11,

2011.

Zhao, Liyue, Sukthankar, G., and Sukthankar, R. In-

cremental Relabeling for Active Learning with Noisy

Crowdsourced Annotations. In SocialCom’11, pp. 728–

733, 2011.

Zhu, Jingbo, Wang, Huizhen, Yao, Tianshun, and Tsou,

Benjamin K. Active learning with sampling by uncer-

tainty and density for word sense disambiguation and

text classification. In COLING’08, pp. 1137–1144,

2008.

52

Towards detection of faulty traffic sensors in real-time

Nikolas Zygouras, Nikolaos Panagiotou,

Ioannis Katakis, Dimitrios Gunopulos {NZYGOURAS,N.PANAGIOTOU,KATAK,DG}@DI.UOA.GR

University of Athens, Athens, Greece

Nikos Zacheilas, Ioannis Boutsis, Vana Kalogeraki {ZACHEILAS,MPOUTSIS,VANA}@AUEB.GR

Athens University of Economics and Business, Athens, Greece

Abstract

Detecting traffic events using the sensor network

infrastructure is an important service in urban en-

vironments that enables the authorities to han-

dle traffic incidents. However, irregular mea-

surements in such settings can derive either from

faulty sensors or from unpredictable events. In

this paper, we propose an efficient solution to

resolve in real-time the source of such irregu-

lar readings by examining the correlation and the

consistency among neighbor sensors and exploit-

ing the wisdom of the crowd. Our experimental

evaluation illustrates the efficiency and practical-

ity of our approach.

1. Introduction

Sensor network infrastructures have been widely used for

traffic management in smart cities to provide important ser-

vices for the benefit of pedestrians, cyclists, motorists and

public transport. Such services are typically provided by

analyzing data provided by heterogeneous static and mo-

bile sensors. This enables the implementation of numerous

applications like proposing alternative routes, altering traf-

fic lights, etc.

The most common type of sensor which is utilized in such

environments is the SCATS sensor. They are static sensors

embedded at the city roads providing rich, real-time infor-

mation such as traffic flow measurements based on vehicles

that cross a specific segment. Despite their utility in many

traffic applications, SCATS sensors can be faulty. Thus,

one fundamental challenge in these settings is how to ef-

ficiently distinguish between irregular and faulty measure-

ments before taking any unnecessary actions.

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

Automatic identification of anomalies in streaming data is

an emerging field of research due to the large number of

applications (intrusion detection, event identification, etc).

Many algorithms that utilize machine learning and time se-

ries analysis techniques have been successfully applied for

the detection of unexpected events during the last years (Yi

et al., 2000). These methods offer high quality results and

are able to perform on massive data streams in real-time.

An interesting use-case is the automatic analysis of traffic

data generated by Smart Cities infrastructures. Human per-

sonnel are unable to monitor and efficiently identify prob-

lems on these data. The utilization of anomaly detection

techniques would provide great assistance to traffic opera-

tors as it would enable the automatic real-time identifica-

tion of traffic issues.

Recently, Crowdsourcing has emerged as an attractive

paradigm to exploit the intelligence of ubiquitous human

crowd (citizens) to extract useful information. Traditional

Crowdsourcing systems such as AMT1, CrowdFlower2,

etc., constitute marketplaces for human intelligence tasks

(HITs), that allow a requester to define a task, which is per-

formed by other human workers in exchange for a reward.

For example, mobile human workers with different char-

acteristics can be queried for geo-located tasks to extract

real-time information without needing an expensive infras-

tructure(Boutsis & Kalogeraki, 2014).

In this paper we develop an efficient approach that identi-

fies faulty readings from traffic sensors by examining the

correlations among them and by taking advantage of the

ubiquitous citizens through Crowdsourcing. We summa-

rize our contributions below:

• We present an efficient approach that identifies

anomalous sensors and uses Crowdsourcing to resolve

whether irregular measurements are due to faulty sen-

sors or irregular traffic.

1http://www.mturk.com/
2http://www.crowdflower.com/

53

ICML Workshop

Figure 1. The SCATS sensors locations at Dublin’s city centre

• We tackle the problem of automatically detecting

anomalous SCATS sensors with three methods: (i)

Pearson’s correlation, (ii) cross-correlation and (iii)

multivariate ARIMA model. The proposed methods

have to tackle the task efficiently in real-time.

• We develop our approach using the Lambda-

Architecture which combines a batch processing

framework (i.e. Hadoop3) and a distributed stream

processing system (i.e. Storm4) for efficiently pro-

cessing both historical and real-time data.

• We develop a Crowdsourcing system used to extract

answers from the human crowd based on the MapRe-

duce paradigm.

• We provide an experimental evaluation, which illus-

trates that our approach is practical and can effectively

identify irregular measurements in real-time.

2. Problem Description and System Model

2.1. Smart City

Smart cities exploit digital sensor devices that can be either

embedded at the city infrastructure or they can be mobile

(e.g., smartphones) in order to provide services for their cit-

izens that enhance their well-being. Such services may re-

late to traffic management, housekeeping information, etc.

In this paper we focus on Dublin, a smart city that uti-

lizes sensors for supervising and managing road traffic

(Kinane et al., 2014). In Dublin the traffic is controlled

by the Dublin City Council (DCC), which is responsible

to develop, maintain and manage the city road network.

To achieve that they exploit several heterogeneous data

sources that include: (i) SCATS sensors which are em-

bedded on the road and monitor real-time traffic density,

(ii) GPS traces from sensors embedded on buses, (iii) the

3https://hadoop.apache.org/
4https://github.com/nathanmarz/storm

LiveDrive radio where users can report traffic, and (iv)

pedestrian counters.

2.2. System model

In this section we provide our system model for the data

sensors that we examine, namely the SCATS sensors and

Crowdsourcing.

SCATS Sensors. SCATS (Sydney Coordinated Adaptive

Traffic System) is an innovative computerized traffic man-

agement system developed by Roads and Maritime Ser-

vices (RMS) Australia. SCATS sensors are fixed mag-

netic sensors deployed on intersections to measure the traf-

fic flow and the degree of saturation of roads’ lanes. In

Dublin city, each SCATS sensor produces and transmits a

new record every minute. Each record contains information

related to the timestamp t of the measurement, the sensor’s

ID i and finally the degree of saturation and traffic flow

measurements. In the provided dataset there are approxi-

mately 300 SCATS controlled intersections and 1000 dif-

ferent SCATS sensors throughout the road network. The

GPS locations of the SCATS sensors are presented in Fig-

ure 1. Degree of saturation measures how much a road’s

lane is utilized, while traffic flow measures the vehicles’

volume divided by the highest volume that has been mea-

sured in a sliding window of a week5. In this work we

decided to monitor the degree of saturation value, noted as

s, as it more reliable and informative than the traffic flow.

The degree of saturation of a particular SCATS sensor with

ID i at the timestamp t is noted si,t.

Crowdsourcing. Our crowdsourcing system comprises a

set of human workers denoted as wj which are able to re-

ceive task assignments. Tasks are being inserted to the sys-

tem by an authority, such as the DCC. Each task tk is as-

sociated with a number of attributes as < idk, latitudek,

longitudek, rewardk, descriptionk >. Hence, every

task posses a unique identifier (idk), the geographical co-

ordinates of the location that the task involves (latitudek,

longitudek), the corresponding reward (rewardk) for ex-

ecuting the task and a task description that describes the in-

formation that needs to be provided by the human worker.

An example of such a task description is: “Is there traffic

in O’Connell Street? Yes/No”. Finally each response pro-

vided by a worker is captured with a record by our system

using the worker and the task identifiers, coupled with the

response as follows: < wj , idk, responsejk >.

3. Architecture

In Figure 2 we display our system architecture which

consists of the following components: (i) a Distributed

5http://dublinked.com/datastore/datasets/

dataset-274.php

54

ICML Workshop

M
a

p
 R

e
d

u
ce

Distributed Database MapReduce Job

B
a

tc
h

P
ro

ce
ss

in
g

Input Source Preprocessing

Analysis

CrowdSourcing S
tr

e
a

m

P
ro

ce
ss

in
g

dSourcing

A
p
p
li
ca
ti
o
n
’s

U
se

rs

CrowdSourocessing

Figure 2. System Architecture

Stream Processing System (DSPS), (ii) a batch processing

framework, (iii) a distributed database system, and (iv) the

Crowdsourcing component that consists of the users’ mo-

bile devices. Our architecture is an instance of the Lambda-

Architecture6 as we exploit the fast processing offered by

DSPS and the fault-tolerance and parallelism provided by

current batch processing frameworks.

Incoming SCATS-sensor data are forwarded to a stream

processing graph. These data are pre-processed and stored

in the Distributed Database (i.e. Preprocessing component

in Figure 2) for further processing by the batch processing

component. We analyze the reported metrics via the Anal-

ysis component which examines if one of the sensors de-

viates significantly from its neighbors so it could possibly

be a faulty sensor. This component uses both the current

conditions and historical data for identifying such condi-

tions. In case that one such sensor is detected, the Analysis

component informs the Crowdsourcing component about

this situation. The latter is responsible to send the appro-

priate Crowdsourcing tasks that will enable us to detect if

the sensor is a faulty-one. Finally, the batch processing

component periodically computes new statistics about the

historical sensor data.

There are multiple DSPSs which support low latency pro-

cessing in real-time. Some of these systems are Apache

Storm, Spark Streaming7 and TUD-Streams (Bockermann

& Blom, 2012). We used Storm as the DSPS that will

perform the real-time processing of incoming sensor data.

Storm is one of the most commonly used DSPS, and is sup-

ported by major companies such as Twitter8. It has been

successfully applied for processing high volume of data in

different application domains, achieving high throughput

6lambda-architecture.net
7https://spark.apache.org
8http://twitter.com

and low response latencies (McCreadie et al., 2013). Fur-

thermore, we decided to use Storm due to its scalability fea-

tures that we also exploit in our previous work (Zygouras

et al., 2015). Storm users can change the parallelism of

the processing components to adapt to possibly workload

bursts.

Finally, for the analysis of the historical sensor data we

used the most commonly used open-source implementation

of the MapReduce programming model, Hadoop. We ex-

ecute periodical (i.e. at the end of each day) Hadoop jobs

for computing the basic metrics required by our proposed

techniques, described in more detail in Section 4. Our jobs

retrieve historical data from a distributed database, more

specifically MongoDB9. We decided to use MongoDB in-

stead of the Hadoop Distributed Filesystem (HDFS), as we

want to have fast access to the data from the DSPS compo-

nent of our architecture, for computing and storing short-

term statistics in real-time.

4. Methodology

The goal of this work is to monitor the streaming traf-

fic data and automatically pose Crowdsourcing tasks when

anomalous sensors are identified. In order to identify

anomalous sensors we propose three different outlier tests

that examine whether the SCATS sensors behave differ-

ently from their normal behavior. These outlier tests

are based on the following statistical measurements: (i)

Pearson’s Correlation (ii) Cross-Correlation and (iii) the

ARIMA Model. The normal behavior for each sensor is

calculated offline using the historical data. These meth-

ods are implemented using the Lambda architecture and

Crowdsourcing tasks are assigned to users when anoma-

lous SCATS sensors are identified.

4.1. Identifying Anomalous Sensors

In this section we describe the three statistical measure-

ments that are used and we explain how these are utilized

to detect anomalous SCATS sensors. Initially we applied a

simple statistic measurement named Pearson’s correlation

that identifies the correlation between pairs of SCATS sen-

sors. Then we used an extension of the first method, named

cross-correlation, to identify how many lags we should

shift backward a sensor’s values to maximize its pairwise

correlation with another adjacent sensor. The first two ap-

proaches use two well known measures in time series anal-

ysis. The disadvantage is that they check pairs of sensors

and not the group of sensors as a whole. For this reason we

applied a third approach that can be thought as a multivari-

ate ARIMA model which deals with the aforementioned

problem and is faster than the other approaches.

9http://www.mongodb.org/

55

ICML Workshop

4.1.1. PEARSON’S CORRELATION

The Pearson’s correlation coefficient is a well known statis-

tic that measures the linear relationship of two variables X

and Y . It takes values in [−1, 1], where 1 means that the

variables are positively correlated, −1 stands for negative

correlation and 0 for no correlation between X and Y . The

Pearson’s correlation, noted ρX,Y , is calculated by dividing

the covariance of X and Y with the product of the standard

deviations of X and Y (see Equations 1 and 2).

ρX,Y =
cov(X,Y)

σXσY

(1)

cov(X,Y) = E[(X − µX)(Y − µY)] (2)

In our scenario we calculated the pair-wise correlation be-

tween all SCATS sensors X and Y whose spatial distance

does not exceed a predefined threshold. This restriction

creates a sparse correlation matrix that contains non-zero

elements when SCATS sensors are spatially adjacent. We

calculate the sparse correlation matrix from the historical

data. Then, utilizing the streaming data that arrive contin-

uously in our system we periodically calculate the stream-

ing correlation of the adjacent SCATS sensors. We note as

noisy sensors’ pairs those that their streaming correlations

disagree significantly with the correlations calculated from

the historical data. If a particular sensor disagrees signif-

icantly with the majority of his neighbors then a crowd-

sourcing task is posed.

4.1.2. CROSS-CORRELATION

Cross-correlation is a statistical measure of similarity be-

tween two variables X and Y as a function of the lag of one

relative to the other. More specifically cross-correlation be-

tween X and Y is calculated by shifting forward or back-

ward Y and calculating its correlation coefficient with X .

Cross-correlation with lag d, noted ρX,Y (d), is calculated

as seen in Equation 3. The numerator of the equation calcu-

lates the covariance of X and Y shifted d time bins back-

ward. Finally the denominator is the product of the stan-

dard deviations of X and the lagged Y .

ρX,Y (d) =

∑

i[x(i)− µX)(y(i+ d)− µY)]
√

∑

i(x(i)− µX)2
√
∑

i(y(i+ d)− µY)2

(3)

A traffic anomaly at a particular location, in a road net-

work, may require some time in order to be propagated to

the adjacent sensors. This observation motivates us to con-

sider the cross-correlation between adjacent SCATS sen-

sors. More specifically we calculated the dmax that maxi-

mized the correlation between two adjacent sensors X and

Y (see Equation 4).

dmax = argmax
d

(ρX,Y (d)) (4)

In order to identify anomalies with cross-correlation we

followed a similar approach to the one utilizing the Pear-

son’s correlation measure, described before. The main dif-

ference is that we identified, using historical data, the lag

dmax that maximized the correlation between two SCATS

sensors X and Y . In the streaming analysis in order to cal-

culate the cross-correlation between the sensors we shifted

dmax lags backward the Y and we calculated its correla-

tion with X . Finally, we measured how much the streaming

cross-correlation deviates from the offline calculated cross-

correlation between X and Y using the optimal lag value

dmax.

4.1.3. MULTIVARIATE ARIMA MODEL

A common strategy to detect outliers in multivariate time

series (Yi et al., 2000) is to build a regression model for

each time series and evaluate whether the actual values vary

significantly from the predictions. The model receives as

input the previous L degree of saturation measurements for

a particular sensor with ID = 0 and the sensor’s N nearest

SCATS sensors {si,j : i ∈ [0, N], j ∈ [0, L], i, j ∈ Z}.

The goal of the model is to make the best prediction for

s0,t, denoted as ˆs0,t. The model is presented in detail in

Equation 5. This model can be thought as a multivariate

ARIMA model, as multiple sensors are used in order to

make the predictions.

ˆs0,t =φ0,1s0,t−1 + · · ·+ φ0,Ls0,t−L+

φ1,0s1,t + φ1,1s1,t−1 + · · ·+ φ1,Ls1,t−L+

. . .

φN,0sN,t + φN,1sN,t−1 + · · ·+ φN,LsN,t−L

(5)

In the training phase we use the historical degree of sat-

uration values in order to calculate the coefficients Φ of

Equation 5. In order to solve this problem we created the

matrix A and vector b containing the input data (degree of

saturation values) and the target values respectively. The Φ
parameters are the values that optimally solve Equation 6.

The solution of this system is given with the pseudo-inverse

transformation of the input presented in Equation 7. The

key property of this approach, in contrast to the two pre-

viously described techniques, is that it monitors the differ-

ent sensors together as a whole. The Pearson’s correlation

and the cross-correlation approaches investigated only pair-

wise correlation between SCATS sensors, ignoring poten-

tially useful information. On the other hand, the ARIMA-

based method aims at exploiting this information.

Φ = [φ0,1 . . . φ0,L . . . φ2,0 . . . φ2,L]

A =

s0,t−1 . . . s0,t−L . . . sN,t . . . sN,t−L

s0,t−2 . . . s0,t−L−1 . . . sN,t−1 . . . sN,t−L−1

...
. . .

...
. . .

...
. . .

...
s0,L . . . s0,0 . . . sN,L . . . sN,0

56

ICML Workshop

b = [s0,t . . . s0,L+1]
⊤

b = AΦ (6)

Φ̂ = (ATA)−1AT b (7)

In order to integrate this approach we split the historical

data in training and test set. Initially we calculated of-

fline, using the training set, the Φ̂ parameters. These pa-

rameters are the coefficients regarding the sensor’s previ-

ous measurements and its adjacent sensors’ past measure-

ments. Then we calculated how well the data fitted to these

models computing for each sensor its Mean Absolute Er-

ror (MAE). Finally, in order to identify anomalous SCATS

sensors while monitoring the streaming data we compute

for each sensor its MAE at a particular time window. We

label a sensor as ‘anomalous’ if its streaming MAE notice-

ably differs from its MAE measured using the testing set.

4.2. Implementation

Our system calculates the correlation among adjacent

SCATS sensors. This is achieved by adding the SCATS

sensors’ GPS locations in a k-d tree data structure during

system initialization and calculating the k nearest SCATS

sensors for each sensor. Furthermore, we developed our

system using the Lambda architecture. So we should en-

sure that the required data are transmitted to the appropriate

cluster nodes. Thus, we created a mapping of each SCATS

sensor ID to one or more cluster nodes. This guarantees

that each computing node contains all the required data for

a sensor’s adjacent sensors.

We define three parameters that help us configure the com-

ponents of our system. The first one is job periodicity

and defines when the batch jobs should re-execute (e.g.

each day, every week). The other two control the

stream processing computations. More specifically, the

stream threshold parameter defines how often we should

re-compute the examined metrics (e.g. every ten minutes),

while time window defines the sliding time window (e.g.

the previous hour) that will be used for keeping the past

sensor data necessary for the computations.

As we described in Section 3, we periodically invoke

Hadoop jobs that compute the different metrics we ex-

plained in Section 4.1. Map tasks read the pre-processed

sensor data from the MongoDB, and send them to the re-

duce tasks. We partition the data based on the SCATS sen-

sor ID to cluster node mapping. The idea is that neigh-

boring sensors should always end up on the same reduce

task in order to appropriately compute the examined met-

rics. Each sensor may belong to more than one nodes in

such cases we send the tuple multiple times (i.e. equal to

the number of nodes it is part of) to avoid information loss.

Figure 3. Crowdsourcing Application (a) Main Application, (b)

Push Notification, (c) Map Task

Reduce tasks are responsible for computing the metrics de-

scribed in Section 4.1 and store the results in MongoDB.

In the stream processing component, we implemented a

Storm topology (see Figure 2) that processes the real-time

sensor data. We exploit the parallelism offered by Storm by

having multiple instances of our Analysis component, run-

ning in parallel, in order to decrease latency. The topology

pre-processes the incoming data and stores them in Mon-

goDB. Also the pre-processed data are sent to the compo-

nent that invokes the three different techniques. Again we

partition the data based on the offline mapping, to guaran-

tee that all neighboring data will be processed by the same

component’s instance. Detected events are forwarded to the

Crowdsourcing component that is responsible to inform the

users that will help us detect if the sensor is faulty.

4.3. Crowdsourcing System

Misco. Our Crowdsourcing system has been developed us-

ing the Misco framework (Dou et al., 2011; 2010; Kakan-

tousis et al., 2012), which is based on the MapReduce

paradigm and tailored for mobile devices to provide an ex-

tensible and efficient way to develop distributed applica-

tions.

Our Crowdsourcing system is structured using (i) a Mas-

ter Server that keeps track of the tasks tk submitted when

anomalies are detected from SCATS sensors, assigns them

to human workers wj and returns the responses to the sys-

tem, and (ii) the Workers who are the human contributors

that process the crowdsourcing tasks. Each Worker is re-

sponsible to process queries and return the results to the

server. These tasks are executed by workers through their

personal smartphone devices or tablets.

Task assignment. Suppose that we need to exploit Crowd-

sourcing to determine the source of an event using a task

tj . We describe the step-by-step sequence followed so as to

process the task and return the results. In the implementa-

tion described below we considered Android-based devices

57

ICML Workshop

and thus we have utilized the Android SDK10.

For every task tj , the Master Server spans the task to a set

of map tasks that need to be forwarded to the human work-

ers wk. Since these tasks are geo-located only the workers

that reside close to the specific selection need to be selected

by the Master Server to provide information. However, in

order to avoid tracking the users we follow a different pol-

icy. We forward the task to all the workers and the tasks are

locally filtered at the mobile devices if their location is far

from the location of the task tj .

We use Push Notifications services to initiate the communi-

cation with the human workers, to be able to send the Map

task to the users without being restricted by their connec-

tion (WiFi, 3G, etc). Such services exist in all major mobile

operator systems and allow users to register for message

delivery when they are online through a connection server.

In order to be able to receive map tasks, each user first

needs to login to our system so that the Master server will

be aware of the user. At the same time the user also regis-

ters in the push notification service to retrieve its unique id.

During normal operation the Crowdsourcing applications

runs in the background (Figure 3a).

When the Master Server retrieves a new task tj from the

requester, it delivers a push notification to the user devices

with the task, through the Push Notification service. Once

the device receives the notification it examines whether the

user current location is close to the location of the task so

as to alert the user (Figure 3b). Next, if the user selects the

notification on his mobile device the Crowdsourcing appli-

cation is triggered and the task will be displayed in the user

screen to process the task (Figure 3c).

Finally, the responses for each map task are forwarded to

the Master Server that initiates the reduce phase to aggre-

gate the answers. The reduce phase is performed through

Majority Voting. Hence the Master Server identifies the re-

sponse responsejk for task tk with the maximum amount

of answers from all users wj and forwards the response that

represents the cause of the event to the system.

Crowd Feedback. The response retrieved by the crowd-

sourcing component enables the system to determine

whether the irregular readings derive from an unexpected

event (e.g., roadworks) or if the sensor is indeed faulty

when most of the workers answer “None of the above”.

5. Evaluation

We have evaluated our proposals on our local cluster con-

sisting of 4 VMs. Each VM had two CPU processors at-

tached and 3, 096 MB of RAM. All VMs were connected

10Android platform: http://www.android.com/

Parameter Value

job periodicity 24 hours

stream threshold 10 minutes

time window 1 hour

Table 1. Basic Configuration Parameters

to the same LAN and their clocks were synchronized us-

ing the NTP protocol. The frameworks we used were the

following: Storm 0.8.2, Esper 5.1 and MongoDB 2.6.5.

In Table 1, you can see the values of the basic configuration

parameters described in Section 4.2. For the experiments,

we used SCATS data from the period of April and May

of 2014. The distance threshold used for the neighbour-

ing sensors computation was set to 250 meters. Data from

April were used in order to calculate the historical corre-

lations, cross-correlations as well as the ARIMA models.

On the other hand, data from May were used for different

experimental runs (see below).

For the Pearson Correlation method we have stored the his-

torical correlations of the neighbour-pairs in the MongoDB

component. 7116 neighbour pairs were identified under the

distance threshold from a set of 900 SCATS sensors. The

correlation value ranged from almost perfect correlation,

for sensors of the same junction under different lane, to no

correlation at all for more distant sensors. Negative corre-

lation values between nearby sensors were also observed.

This could be explained by the opposite direction of the

lane the sensors are responsible for. In Figure 4, the cor-

relation matrix for a set of 30 nearby sensors is presented.

As expected, clusters are formed by adjacent sensors that

are highly correlated. Thus, it is reasonable to argue that

when the expected correlation is not observed there might

be a problem with the sensor. For the Cross-Correlation

method apart from storing the correlation value itself we

have also stored the time lag that maximizes the pair-wise

sensor correlation. The time lag range was set to a maxi-

mum of 10 minutes since the sensors are quite close to each

other and larger time lags are unlikely to significantly favor

the correlation value. In addition, the larger the time lag

range is, the more computationally demanding the method

will be. As it was expected, in most cases the highest cross-

correlation was observed with no time lag at all, since most

sensor pairs are responsible for different lanes of the same

highway junction. However, for more distant sensor-pairs

responsible for different highway junctions, small time lags

gave a boost on their correlation value. One way to under-

stand this is because vehicles require a short time to reach

consecutive junctions. In addition, this behaviour could be

also explained by the operation of traffic lights that trans-

fer the traffic from junction to junction on fixed time inter-

vals. Figure 5 depicts the distribution of the optimal time

58

ICML Workshop

10 20 30

5

10

15

20

25

30

Correlation

Sensor ID

S
e

n
s
o

r
ID

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4. The correlation matrix of a set of

30 neighbors

0 5 10
0

500

1000

1500

2000

2500

3000

3500

lag

#
T

im
e

s
 M

a
x
im

iz
e

d
 C

o
rr

C
o

e
f

Figure 5. Distribution of the optimal time lag

value over all the neighbour-pairs

0 50 100 150
−20

0

20

40

60

80

100

120

Actual Values

P
re

d
ic

te
d

 V
a

lu
e

s

QQ Plot

Figure 6. The predicted and the actual de-

gree of saturation values over the validation

dataset

0 50 100 150
−20

0

20

40

60

80

100

120

Time (min)

D
e
g
re

e
 o

f
S

a
tu

ra
ti
o
n

Model Fit

Measured Value

Forecast

0 500 1000

0

50

100

150

200

Time (min)

D
e
g
re

e
 o

f
S

a
tu

ra
ti
o
n

Model Fit

Measured Value

Forecast

Figure 7. On the left there is a sensor whose values agree well with our forecast. On

the right there is a noisy sensor whose values diverge significantly from the predicted

and it is considered as faulty

10

13
0 82

37 3 161

Pearson

(105)

ARIMA

 (177)

Cross Correlation

 (135)

Figure 8. Venn diagram for the three proposed

methods

lag value over a sample of neighbor pairs.

In terms of the multivariate ARIMA method, a different

model was fitted to each sensor using as features all the

neighbor sensors. The performance of all the models was

aggregated and measured in terms of Mean Absolute Error

(MAE), Root Mean Squared Error(RMSE) and Correlation

Coefficient (CC) using a validation dataset. The results fol-

low on Table 2 with a low MAE value of 16.18 indicating

a decent fit.

Figure 6 shows the forecasting performance of the ARIMA

model on the validation dataset and Figure 7 gives an ex-

ample on forecasting two different sensors. Sensors such

as the one presented in Figure 7 (left) will be considered as

non-faulty since the deviation between the observed mea-

surements and the expectation is not significant. On the

other hand, sensors such as the one in Figure 7 (right),

given that it reports maximum values for a long period of

time, it is likely that it is faulty. These sensors are flagged

by our system for further manual evaluation or inspection

from the traffic operators.

The three methods were compared in terms of the number

of faulty sensors they identify. In addition, since the Corre-

lation and the ARIMA approaches focus at a very different

aspect of the same problem we measured the overlap be-

tween their results. Figure 8 displays the Venn diagram of

the results obtained over the period of one day during May

of 2014. As it was expected, the results of Pearson Corre-

lation and Cross-Correlation are highly overlapping since

for many sensors the optimal time lag is zero. On the other

hand, the ARIMA method identified different sensors as er-

roneous suggesting that the methods are complementary to

each other. Interestingly enough, 13 sensors were identified

as erroneous from all methods indicating that sensors op-

erate in an unexpected way in many settings and are more

likely to be faulty.

59

ICML Workshop

Metric Result

CC 0.68

MAE 16.8

RMSE 23.18

Table 2. The measurements that indicate the performance of the

multivariate ARIMA model

6. Related Work

Traffic monitoring has been a field of great interest in the

scientific community (Biem et al., 2010), (Patroumpas &

Sellis, 2012). These works detect unusual events based on

pre-defined rules so any updates to the traffic conditions

overtime is not taken into account. In contrast, our pro-

posal exploits historical data for updating the expected sen-

sor correlations and detects events only when the real-time

conditions deviate significantly from the expected. Authors

in (Ma et al., 2013) propose a novel city transportation ap-

plication that enables sharing of taxi rides in a large city.

Their goal was to develop an application that is beneficial

for both the citizens and the taxi drivers.

There has been significant work in traffic monitoring in the

use-case of Dublin. (Artikis et al., 2014) proposed a traffic

management system, based on heterogeneous data, which

used Crowdsourcing in order to resolve conflicting sensors

reports. (Zygouras et al., 2015) focused on monitoring the

traffic conditions of the city by considering the metrics re-

ported from sensors mounted on top of public buses. While

(Liebig et al., 2014a) and (Liebig et al., 2014b) perform in-

dividual trip planning that considers future traffic hazards

in routing. Furthermore, their approach estimates the ex-

pected traffic flow in areas with low sensor coverage.

Anomaly detection methods have been widely applied for

mining data streams including techniques such as data

clustering (Guo et al., 2009), principal component analy-

sis (PCA) (Lakhina et al., 2004), wavelet transform (No-

vakov et al., 2013) and many others. Some detection meth-

ods follow a time series analysis perspective and focus on

forecasting methods such as ARIMA (Zare Moayedi &

Masnadi-Shirazi, 2008; Fujimaki et al.). ARIMA mod-

els are a wide family of analysis and forecasting models

that are used widely in forecasting urban traffic time series

data (Lee & Fambro, 1999; Williams et al., 1998). This

makes ARIMA models suitable for our scenario. (Nien-

nattrakul et al., 2010), used distance-based outlier detec-

tion techniques, reducing the size of the original database,

in order to efficiently identify outliers in massive stream-

ing datasets. (Schettlinger et al., 2010) proposed an on-

line time series filter, using repeated median regression,

which is able to smooth the data and keep intact the sig-

nal’s trend. (Branch et al., 2013) developed a distributed

and in-network model in order to detect outliers on net-

work exchanges among neighboring nodes. (Fried et al.,

2015) proposed a Bayesian approach to model time series

of counts, using Metropolis-Hastings algorithm in order to

estimated the parameters of the model.

7. Conclusions

In this paper we presented an efficient approach for re-

solving whether irregular sensor measurements are due to

faulty sensors or unexpected traffic. Our approach exploits

sensors’ past measurements and the crowd’s wisdom for

decision making. We implemented our proposals using the

Lambda-Architecture for processing real-time and histori-

cal data, and an Android application for extracting answers

from the human crowd. We applied three different outlier

detection techniques that identified complementary set of

faulty sensors. Finally, our detailed experimental evalua-

tion indicates that our approach can effectively resolve the

source of irregular measurements in real-time.

Acknowledgments

This research has been co-financed by the European Union

(European Social Fund ESF) and Greek national funds

through the Operational Program Education and Lifelong

Learning of the National Strategic Reference Framework

(NSRF) - Research Funding Program: Thalis-DISFER,

Thalis-CompGeom, Aristeia-MMD Investing in knowl-

edge society through the European Social Fund, the FP7

INSIGHT project and the ERC IDEAS NGHCS project.

References

Artikis, A., Weidlich, M., Schnitzler, F., Boutsis, I., Liebig,

T., Piatkowski, N., Bockermann, C., Morik, K., Kaloger-

aki, V., Marecek, J., Gal, A., Mannor, S., Kinane, D., and

Gunopulos, D. Heterogeneous Stream Processing and

Crowdsourcing for Urban Traffic Management. in Proc.

17th International Conference on Extending Database

Technology (EDBT), Athens, Greece, March 24-28, pp.

712-723, 2014.

Biem, Alain, Bouillet, Eric, Feng, Hanhua, Ranganathan,

Anand, Riabov, Anton, Verscheure, Olivier, Koutsopou-

los, Haris, and Moran, Carlos. IBM Infosphere Streams

for Scalable, Real-time, Intelligent Transportation Ser-

vices. Proceedings of the 2010 ACM SIGMOD Interna-

tional Conference on Management of data, 2010.

Bockermann, C. and Blom, H. The streams framework.

Technical Report 5, TU Dortmund University, 2012.

Boutsis, Ioannis and Kalogeraki, Vana. On task assignment

for real-time reliable crowdsourcing. In ICDCS, pp. 1–

10, Madrid, Spain, June 2014.

60

ICML Workshop

Branch, JoelW., Giannella, Chris, Szymanski, Boleslaw,

Wolff, Ran, and Kargupta, Hillol. In-network outlier

detection in wireless sensor networks. Knowledge and

Information Systems, 34(1):23–54, 2013. ISSN

0219-1377. doi: 10.1007/s10115-011-0474-5.

URL http://dx.doi.org/10.1007/

s10115-011-0474-5.

Dou, Adam, Kalogeraki, Vana, Gunopulos, Dimitrios,

Mielikainen, Taneli, and Tuulos, Ville H. Misco: a

mapreduce framework for mobile systems. In PETRA,

June 2010.

Dou, Adam Ji, Kalogeraki, Vana, Gunopulos, Dimitrios,

Mielikinen, Taneli, Tuulos, Ville, Foley, Sean, and Yu,

Curtis. Data clustering on a network of mobile smart-

phones. In SAINT, pp. 118–127, Munich, Germany, July

2011.

Fried, Roland, Agueusop, Inoncent, Bornkamp, Bjrn,

Fokianos, Konstantinos, Fruth, Jana, and Ickstadt,

Katja. Retrospective bayesian outlier detection in

ingarch series. Statistics and Computing, 25(2):

365–374, 2015. ISSN 0960-3174. doi: 10.1007/

s11222-013-9437-x. URL http://dx.doi.org/

10.1007/s11222-013-9437-x.

Fujimaki, Ryohei, Yairi, Takehisa, and Machida, Kazuo.

An anomaly detection method for spacecraft using rel-

evance vector. In Learning, The Ninth Pacific-Asia

Conference on Knowledge Discovery and Data Mining

(PAKDD, pp. 785–790. Springer.

Guo, Feng, Yang, Yingzhen, and Duan, Lian. Anomaly

detection by clustering in the network. In Compu-

tational Intelligence and Software Engineering, 2009.

CiSE 2009. International Conference on, pp. 1–4. IEEE,

2009.

Kakantousis, Theofilos, Boutsis, Ioannis, Kalogeraki,

Vana, Gunopulos, Dimitrios, Gasparis, Giorgos, and

Dou, Adam. Misco: A system for data analysis applica-

tions on networks of smartphones using mapreduce. In

MDM, pp. 356–359, Bengaluru, India, July 2012. IEEE.

Kinane, D., Schnitzler, F., Mannor, S., Liebig, T., Morik,

K., Marecek, J., Gorman, B., Zygouras, N., Katakis, Y.,

Kalogeraki, V., and Gunopulos, D. Intelligent synthe-

sis and real-time response using massive streaming of

heterogeneous data (insight) and its anticipated effect on

intelligent transport systems (its) in dublin city, ireland.

In ITS, Dresden, Germany, November 2014.

Lakhina, Anukool, Crovella, Mark, and Diot, Christiphe.

Characterization of network-wide anomalies in traffic

flows. In Proceedings of the 4th ACM SIGCOMM con-

ference on Internet measurement, pp. 201–206. ACM,

2004.

Lee, Sangsoo and Fambro, Daniel B. Application of sub-

set autoregressive integrated moving average model for

short-term freeway traffic volume forecasting. Trans-

portation Research Record: Journal of the Transporta-

tion Research Board, 1678(1):179–188, 1999.

Liebig, Thomas, Piatkowski, Nico, Bockermann, Christian,

and Morik, Katharina. Predictive trip planning-smart

routing in smart cities. In EDBT/ICDT Workshops, pp.

331–338, 2014a.

Liebig, Thomas, Piatkowski, Nico, Bockermann, Christian,

and Morik, Katharina. Route planning with real-time

traffic predictions. In Proceedings of the 16th LWA Work-

shops: KDML, IR and FGWM, Aachen, Germany, pp.

83–94, 2014b.

Ma, Shuo, Zheng, Yu, and Wolfson, Ouri. T-Share: A

Large-Scale Dynamic Taxi Ridesharing Service. ICDE,

2013.

McCreadie, Richard, Macdonald, Craig, Ounis, Iadh, Os-

borne, Miles, and Petrovic, Sasa. Scalable Distributed

Event Detection for Twitter. BigData Conference: 543-

549, 2013.

Niennattrakul, V., Keogh, E., and Ratanamahatana, C.A.

Data editing techniques to allow the application of

distance-based outlier detection to streams. In Data Min-

ing (ICDM), 2010 IEEE 10th International Conference

on, pp. 947–952, Dec 2010. doi: 10.1109/ICDM.2010.

56.

Novakov, Stevan, Lung, Chung-Horng, Lambadaris, Ioan-

nis, and Seddigh, Nabil. Studies in applying pca and

wavelet algorithms for network traffic anomaly detec-

tion. In High Performance Switching and Routing

(HPSR), 2013 IEEE 14th International Conference on,

pp. 185–190. IEEE, 2013.

Patroumpas, Kostas and Sellis, Timos. Event Process-

ing and Real-time Monitoring over Streaming Traffic

Data. Web and Wireless Geographical Information Sys-

tems Lecture Notes in Computer Science Volume 7236,

pp 116-133, 2012.

Schettlinger, K., Fried, R., and Gather, U. Real-time sig-

nal processing by adaptive repeated median filters. In-

ternational Journal of Adaptive Control and Signal Pro-

cessing, 24(5):346–362, 2010. ISSN 1099-1115. doi:

10.1002/acs.1105. URL http://dx.doi.org/10.

1002/acs.1105.

Williams, Billy M, Durvasula, Priya K, and Brown, Don-

ald E. Urban freeway traffic flow prediction: applica-

tion of seasonal autoregressive integrated moving av-

erage and exponential smoothing models. Transporta-

61

ICML Workshop

tion Research Record: Journal of the Transportation Re-

search Board, 1644(1):132–141, 1998.

Yi, B.-K., Sidiropoulos, N.D., Johnson, T., Jagadish, H.V.,

Faloutsos, C., and Biliris, A. Online data mining for co-

evolving time sequences. In Data Engineering, 2000.

Proceedings. 16th International Conference on, pp. 13–

22, 2000.

Zare Moayedi, H. and Masnadi-Shirazi, M.A. Arima model

for network traffic prediction and anomaly detection.

In Information Technology, 2008. ITSim 2008. Interna-

tional Symposium on, volume 4, pp. 1–6, Aug 2008.

Zygouras, Nikolas, Zacheilas, Nikos, Kalogeraki, Vana,

Kinane, Dermot, and Gunopulos, Dimitrios. Insights

on a Scalable and Dynamic Traffic Management System.

EDBT, 2015.

62

Profiling users of the Vélo’v bike sharing system

Albrecht Zimmermann, Mehdi Kaytoue, Céline Robardet, Jean-François Boulicaut FIRSTNAME.NAME@INSA-

LYON.FR

INSA-Lyon, CNRS, LIRIS UMR5205, F-69621, France

Marc Plantevit MPLANTEV@LIRIS.CNRS.FR

Université Lyon 1, CNRS, LIRIS UMR5205, F-69622, France

Abstract

Detecting and characterizing geographical areas

that are attractive places for specific people, in

specific contexts, is an important but challenging

new problem. Mobility traces and their related

circumstances can be modeled thanks to an aug-

mented graph in which nodes denote geographic

locations and edges are represented by a set of

transactions that describe users’ demographic in-

formation (e.g. age, gender, etc.) as well as the

conditions of the movement (e.g. day/night, hol-

iday, transportation mode, etc.). We propose to

extract connected subgraphs that are related to

some user profiles, and use it to understand the

usages of the Vélo’v bike sharing system.

1. Introduction

The problem considered hereafter is how to detect and

characterize geographical areas that are attractive places

and routes for specific contexts. Such areas are frequently

accessed together in certain conditions by users of simi-

lar profiles compared to all contexts and users. Starting

from a relational database that gathers information on peo-

ple movements – such as origin, destination, date and time

of travel, means of transport, reasons for traveling, etc.

– as well as demographic data, we adopt a graph-based

representation that results from the aggregation of individ-

ual travels. In such a graph, the vertices are locations or

points of interest (POI) and the edges stand for user’s co-

visitations. Travel information as well as user demograph-

ics are labels associated to the edges of the graph. Fig-

ure 1 (a) depicts an example of travels undertaken by users

(denoted u1, . . . , u4). For each user, we know her age and

gender, the context of the move (day or night) and the set of

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

movements, identified by a pair origin/destination, that oc-

cur in this context. Capital letters, from A to E, represent

POI. This table can also be viewed as an edge-attributed

graph where edges stand for movements and are labeled by

the attribute values of the context. For instance, we have a

directed edge (A,C) labeled by (F, 20, Day) for the user

u1. Given a specific context, the edge-attributed graph can

be transformed into an aggregate graph whose edges are

weighted by the number of attributed edges that hold for

the context. Three examples of aggregated graphs are given

in Figure 1 (b),(c) and (d). The weights of the aggregated

graph can be seen as the support of the context in the graph.

The problem is thus to identify the contexts and sub-graphs

that are specific to one another. By specific, we mean that

a large proportion of the weight of each sub-graph edge

mainly corresponds to users that satisfy the context. The

adequacy of a context to an edge is assessed by a χ2 test

and some novel quality measures that makes it possible to

identify the so-called demographic and contextualized spe-

cific areas (DCSA). Two DCSA patterns are presented in

Figure 1 (c) and (d) (in bold): The first one identifies a

sub-graph that is traveled during the day , mainly by peo-

ple with age greater than 45. In the second sub-graph, bold

edges are very specific to male persons’ behavior, whatever

the travel time.

2. Travel patterns in the VÉLO’V system

VÉLO’V is the bicycle sharing and renting system run by

the city of Lyon (France) and the company JCDecaux.1

The VÉLO’V dataset contains movement data collected be-

tween Jan. 2011 and Dec. 2012. Each movement includes

both bicycle stations and timestamps for departure and ar-

rival, as well as some basic demographics about the user of

the bike. We aggregated all movements a user performed

between any two stations for the entire time period. Hence,

the VÉLO’V stations are nodes in the graph (342 in total),

1http://www.velov.grandlyon.com/

63

Identifying demographic specific areas from mobility profiles

User Gender Age Time Travels

u1 F 20 Day (A,C),(B,A), (C,B)

u1 F 20 Night
(D,C),(D,E),(E,A),

(E,D)

u2 M 23 Day
(A,B),(B,C),(C,A),

(C,B)

u2 M 23 Night

(A,B),(B,C),(C,B)

(C,D),(D,C),(D,E),

(E,D)

u3 F 45 Day
(A,B),(B,C),(C,D),

(D,A),(D,E),(E,D)

u3 F 45 Night (B,D),(D,B)

u4 M 50 Day

(A,B),(B,C),(C,B),

(C,D),(D,A),(D,E),

(E,D)

u4 M 50 Night (A,C),(C,A)

A

B C

D

E

4
1

1

2
3

2

4

4

4

4

1

2
2

1

A

B C

D

E

2 2

2

2

2

2
A

B C

D

E

3 2
2

1

3

3

2

2

1
1

Figure 1. Example of contextualized trajectories: (a) Transactional view; (b) Aggregate graph w.r.t the most general context ⋆ = (Age ∈
[20, 50], Gender ∈ {F,M}, T ime ∈ {Day, Night}); (c) Aggregate graph w.r.t. context (Age ∈ [45, 50], T ime = Day); (d)

Aggregate graph w.r.t. context (Gender = M);

(a)YoB ≥ 1968,ZIP = 42400 (b)YoB ≥ 1962,CAT = OURA (c)YoB ≥ 1980,TYP = std (d)YoB ≥ 1992,ZIP = 69003

Figure 2. DCSA discovered from VÉLO’V

and edges link two stations if a VÉLO’V customer checked

out a bicycle at the first station and returned it at the second

one. We treat the edges as undirected. Customers are de-

scribed by nominal attributes such as gender, type of mem-

bership card, ZIP code and country of residence, as well as

a numerical one: year of birth. There are a total 50, 601
customers. The data set comprises around 2 million con-

textualized edges.

Given the characteristics of different users, we aim to iden-

tify populations that use the rental bicycles in a particular

manner. Figure 2 shows 4 different DCSA from VÉLO’V.

Pattern (a) identifies people born after 1968, living in a

city (Saint Chamond) located approximately 50km from

Lyon. It is therefore not surprising that the edges involve

the two main train stations of Lyon: Perrache (south-west)

and Part-Dieu (center), from which users take bicycles to

areas that are not easily reached by metro or tram, such as

the 1st and 4th arrondissements. The edges of pattern (b)

radiate from all of Lyon’s train stations, not only the ma-

jor ones. Its description refers to holders of a regional train

subscription, and the pattern notably involves 200 nodes,

almost 60% of the stations. It is very likely that this pattern

identifies commuters. Pattern (c) involves users born after

1980 and we can identify three main areas: the scientific

campus in the north, the Presqu’ile and its pubs, and the

shopping area in the city center. It is notable that several

of the long edges correspond to very comfortable cycling

routes. Pattern (d) does not seem to be very exciting: young

people that live in the 3rd arrondissement use VÉLO’V bi-

cycles to move around in their area. At a second glance,

however, this is the closest that we will come to a ground

truth in real-world data: the ZIP code of users aligns with

the area where the bicycles are used!

3. Conclusion

The problem of finding DCSA in edge-attributed graphs has

many applications in location based social networks and

recommendation systems. It allows to find connected com-

ponents highly characteristic of a given category of users.

The proposed inductive approach is solved thanks to an

efficient data mining algorithm that avoids materializing

all contexts/induced-graph pairs and benefits from pruning

and upper bound computations techniques. Its use for the

analysis of the bicycle sharing system Vélo’v demonstrates

its capabilities to provide new valuable insights. 2

2This work has been partially supported by the projects
GRAISearch (FP7-PEOPLE-2013-IAPP) and VEL’INNOV
(ANR INOV 2012).

64

Accessibility by public transport predicts residential real estate prices:

a case study in Helsinki region

Indrė Žliobaitė INDRE.ZLIOBAITE@AALTO.FI

Michael Mathioudakis MICHAEL.MATHIOUDAKIS@HIIT.FI

Tuukka Lehtiniemi TUUKKA.LEHTINIEMI@HIIT.FI

Pekka Parviainen PEKKA.PARVIAINEN@AALTO.FI

Tomi Janhunen TOMI.JANHUNEN@AALTO.FI

Helsinki Institute for Information Technology (HIIT), Espoo, FINLAND

Aalto University, Dept. of Computer Science, Espoo, FINLAND

Abstract

This pilot study investigates how considering ac-

cessibility could help to model prices of residen-

tial real estate more accurately. We introduce

two novelties from the price modeling point of

view (1) defining accessibility as travel time by

public transport, in addition to geographic dis-

tance, and (2) considering dynamic points of in-

terest from check-ins into social networks, in ad-

dition to fixed location community centers. Our

case study focuses on the Helsinki region. We

model price per square meter as a linear function

of apartment characteristics, and characteristics

of the neighborhood, including accessibility by

public transport and social activities. The result-

ing models show good predictive performance,

as compared to baselines not taking accessibility

into account. We discover that apartment price

relates to the geographical distance from the city

center, but accessibility by public transport to lo-

cal centers of interest is more informative than

just the geographical distance to those centers.

1. Introduction

Modeling real estate prices has long been of interest to re-

searchers and practitioners, and it is employed for various

purposes related to investment, lending or taxation. Ar-

guably all city residents, even non-specialists, intuitively

understand that the price of a residential apartment posi-

tively relates to the size of the apartment, and negatively re-

Proceedings of the 2nd International Workshop on Mining Urban
Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

lates to the distance to the city center. Professional real es-

tate price models include many more features of apartments

and environment, such as age, construction type, floor, or

population characteristics in the neighborhood.

Residential real estate prices are typically modeled using

so called hedonic models (Case & Quigley, 1991; Sirmans

et al., 2005), where the price of a house is assumed to be

affected by the structural characteristics of the house it-

self, characteristics of the neighborhood, and environmen-

tal characteristics. While in real estate domain research

mainly focuses on identifying factors that impact pricing,

in machine learning and data mining research real estate

price modeling mainly focuses on developing sophisticated

predictive models beyond linear regression (Chopra et al.,

2007; Fu et al., 2014).

A literature review on hedonic pricing models

(Bartholomew & Ewing, 2011) finds the structural

characteristics typically include the age and the size of

the house, the number of bedrooms, and the presence of

different amenities such as a garage. The effect of the

location of the house on housing prices is often captured by

physical proximity to a central business district (CBD) or a

regional center. The literature review finds evidence of an

inverse relationship between pricing and distance to CBD

in studies on various cities around the world. Another

access-related characteristic often used in hedonic models

is the proximity of the house to a transit station, measured

in air distance or walking distance. This attribute is used to

capture the effect transit has on relative accessibility of a

CBD or a regional center. Here the results are more mixed,

with the majority of studies suggesting pricing premiums

for housing located near to a transit station, and a higher

premium for transit stations that provide a higher degree of

relative proximity to a CBD.

65

Accessibility predicts real estate prices in Helsinki

The era of big data provides access to new data sources,

such as public transport, traffic and social mobility data,

that potentially relate to real estate prices (at least intu-

itively we know that people consider mobility, and social

factors when buying an apartment). Integrating such data

could help to model residential real estate prices more pre-

cisely, and, as a result, better understand urban mobility

patterns and activities. Such models can contribute to man-

aging, coordinating and long term planning of mobility, and

overall development of modern smart cities.

Our pilot study investigates to what extent accessibility of a

neighborhood relates to residential real estate prices. This

case study focuses on the Helsinki region. We model price

per square meter as a linear function of apartment charac-

teristics, and characteristics of the neighborhood, including

accessibility by public transport and social activities. Our

main hypothesis is that prices are more related to travel

times than travel distances, and local centers of activities

than the city center. The resulting models show good pre-

dictive performance, as compared to baselines not taking

accessibility into account. We discover that an apartment

price relates to the geographical distance from the city cen-

ter, but accessibility by public transport to local centers of

interest is more informative than just the geographical dis-

tance to those centers.

Our study introduces two conceptual novelties in modeling

prices of residential real estate: (1) to measure accessibil-

ity, we consider travel times in addition to distances, and

(2) we consider dynamic local points of interest, defined by

4square1 check-ins (people posting their location and activ-

ity on a social network), in addition to community centers

at fixed locations.

The remainder of the paper is organized as follows. Section

2 describes data acquisition and feature engineering. Sec-

tion 3 presents the results of the experimental case study,

and Section 4 concludes the study.

2. Data acquisition and feature engineering

Our dataset consists of three parts: real estate data describ-

ing characteristics of the apartments, location data describ-

ing points of interest and community centers, and acces-

sibility data describing point-to-point distances and travel

times. We make our dataset publicly available2 for re-

search.

1http://foursquare.com
2http://www.zliobaite.com/datahel.zip

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

● ●●

●

●

●●●

●

●
●

●
●●●●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●

●●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●●

●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●
●

●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●● ●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●●

●

●● ●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●

●
●

●

●

●●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●●

●●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●

●
●

●

●

●

●

●●●●●●

●

●

●

●

●
●

●

●●●●●●●●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●●

●

●

●

●●●●●●

●

●●●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●

●

● ●

●●●●●●●●●●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●

●●●●

●●

●●●●●●

●

●

●

●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●

●

●●●●

●

●

●

●

●●

●

●●●●●●●●●●●● ●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●●

●

●●●●

●

●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●●●

●●●●●●●●

●

●

●

●

●●●●

●

●

●

●
●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●●●●●●●●●●

●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●●●

●

●●

●
●

●

●

●

●●●●●●●

●●

●

●

●

●

●

●

●

●●

●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●●
●

●

●●●●●●

●

●

●●●●●●●●●●●●

● ●●

●

●

●●●

●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●
●●●●●●●

●●●●●●

●

●

●

●●●●●●●●●●●

●●●●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●●●●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●●●●●●

●

●

●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●●●●●●●●●

●●●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●
●

●

Figure 1. Location of apartments in the dataset. The black rect-

angle indicates the area from which point of interest data is col-

lected.

2.1. Real estate data

The sales price data comes from a Finnish web portal

Oikotie3, which is the most popular marketplace for resi-

dential real estates sales and rental. Our dataset consists

of apartments in the capital region (Helsinki, Espoo, Van-

taa and Kauniainen municipalities) advertised for sales on

October 24, 2014. The pricing data is based on sales ads,

as sales transaction prices are not available for the public.

We exclude apartments that do not provide a street address

(hence no coordinates), and for which size is not available.

Moreover, we filter out very large apartments (size more

than 300 m2), very old apartments (built earlier than 1850),

far away apartments (distance to metro more than 20 km),

extremely cheap (price pr square meter less than 1200 eur)

and extremely expensive apartments (price per square me-

ter more than 12000 eur), because we aim at focusing on

modeling prices of mainstream apartments and avoiding

extreme outliers. After filtering our dataset includes 8337

apartments. Figure 1 plots all the apartment locations.

2.2. Location data

We consider two types of location data: fixed location,

and dynamic points of interest. Fixed location data in-

cludes the city center, for which the Stockmann depart-

ment store is used as a proxy (coordinates found by hand

via Google maps), and local community centers, approx-

imated by H&M shop (a chain of clothing shops) loca-

tions in Helsinki region (also found by hand from Google

3http://www.oikotie.fi/

66

Accessibility predicts real estate prices in Helsinki

●

●

●

●

●

●

●

●

HMHMHMHMHMHMHMHMHMHMHMHM

HMHMHMHMHMHMHMHM

HMHMHMHMHMHMHMHMHMHM

HMHMHMHMHMHMHMHMHM

HMHMHMHMHMHMHMHMHMHM

HMHMHMHMHMHMHMHMHMHMHMHM

HMHMHMHMHMHMHMHM

StoStoStoStoStoStoStoStoStoStoStockmckmckmckmckmckmckmckmckmananananananan

Figure 2. Fixed locations: community centers (H&M) and city

center (Stockmann). The black rectangular indicates the area from

which point of interest data is collected.

maps). Stockmann is a well-known location in the centre of

Helsinki. H&M shops are typically present in larger shop-

ping malls. Shopping malls are local centers of attraction.

We hope that H&M serves as a proxy for local centers in

the neighborhoods. Figure 2 plots the community centers

and the city center location.

Dynamic points of interest are obtained from an existing

dataset of 4square check-ins (Le Falher et al., 2015). Each

check-in in the dataset corresponds to one user’s visit to

one venue (restaurant, cafeteria, store, etc) with known ge-

ographic location, at a particular time. The data cover user

activity between March and July 2014 in the inner Helsinki

city. To extract points of interest, we perform k-means

clustering on the geographic locations of check-ins, using

k = 20. Each of the k centroids identified defines one point

of interest. Note that we extract points of interest both on

top of all check-ins contained in the dataset, regardless of

the the time of the day they occur, as well as separately for

check-ins that occur at separate time intervals in the day

(five 4-hour intervals from 2am to 10pm). Figure 3 plots

the points of interest for each time interval.

2.3. Accessibility features

Accessibility data connects apartments with point of inter-

est. We consider two types of accessibility features: air

distance from an apartment to the location of a point of

interest, and travel time by public transport from an apart-

ment to the point of interest (including walking time).

Air distance is measured in kilometers from coordinate of

Figure 3. Dynamic points of interest from 4square: blue 2:00-

6:00, violet 6:00-10:00, red 10:00-14:00, brown 14:00-18:00, or-

ange 18:00-22:00.

the apartment to coordinate of the point of interest, as

D = Re · arccos(s1 + s2),where

s1 = cos(lat1) ∗ cos(lat2) ∗ cos(lon2 − lon1),

s2 = sin(lat1) ∗ sin(lat2),

where Re is the radius of Earth (set to Re = 6371km),

(lat1, lon1) are the coordinates of the apartment, and

(lat2, lon2) are the coordinates of the point of interest.

Travel time by public transport between two coordinates is

measured using a freely available tool Reititin4, developed

by BusFaster Ltd and researchers at University of Helsinki.

We use the default settings.

In addition to accessibility between apartments and points

of interest we also include the distance from an apartment

to the nearest metro station. The address of Metro stations

is listed on Helsinki Metro’s website5 and their geographic

coordinates are collected via manual queries to the Google

Maps API6. Note that in the Helsinki region metro runs

only to the eastern part of the city, therefore, we do not

necessarily expect a regular behavior from this feature. A

regular behavior would be a higher price if there is a metro

stop nearby.

4http://blogs.helsinki.fi/saavutettavuus/

tyokaluja/metropaccess-reititin/
5http://www.hel.fi/hki/hkl/en/HKL+Metro
6https://developers.google.com/maps/

67

Accessibility predicts real estate prices in Helsinki

Table 1. Input features (predictors).

Feature Description Units

size apartment size m2
year year built -
fyear function of year -
east easterness km
north northerness km
dmetro distance to nearest metro km
ametro metro within 1 km (0,1) -
dstock Stockmann distance km
tstock Stockmann travel time min
dhm distance to H&M km
thm travel time to H&M min
d4sq min distance to 4square km
t4sq min travel time to 4square min
d4sq1 distance to center 2-6:00 km
d4sq2 distance to center 6-10:00 km
d4sq3 distance to center 10-14:00 km
d4sq4 distance to center 14-18:00 km
d4sq5 distance to center 18-22:00 km
t4sq1 travel time to center 2-6:00 min
t4sq2 travel time to center 6-10:00 min
t4sq3 travel time to center 10-14:00 min
t4sq4 travel time to center 14-18:00 min
t4sq5 travel time to center 18-22:00 min

2.4. Final set of predictors

Altogether we consider 23 input features (predictors) for

modeling apartment prices. The features are listed in Ta-

ble 1.

Feature fyear is a non-linear transformation of the con-

struction year, which is based on observation that apart-

ments built around 1970 are the least valuable, because a

major pipe renovation is due in about 50 years from initial

construction. Pipe renovation is done for the whole house

at once, and brings substantial expenses for the apartment

owners. We define the derived feature as

fyear = (year − 1970)2, which puts very new and very

old apartments together, while apartments that are around

50 years old are put on the opposite end.

Easternness and northerness features try to capture another

peculiarity of the Helsinki region, where apartments in the

east are on average considered cheaper. South apartments

may be considered more expensive due to proximity to the

sea.

Figure 4 plots the values of selected input features against

the target variable price per square meter for visual inspec-

tion. General tendencies are consistent with common intu-

ition. The smaller the apartment, the higher the price per

m2. Apartments close to metro are more expensive. The

cheapest apartments have been constructed around year

1970. The most expensive apartments are in the city cen-

ter, and apartments near to the local community centers or

points of interest are more expensive.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

50 150 250

2
0
0
0

6
0
0
0

1
0
0
0
0

size

p
ri

c
e
 p

e
r

m
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

2
0
0
0

6
0
0
0

1
0
0
0
0

metro distance

p
ri

c
e
 p

e
r

m
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1900 1950 2000

2
0
0
0

6
0
0
0

1
0
0
0
0

construction year
p
ri

c
e
 p

e
r

m
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 4000 8000 12000

2
0
0
0

6
0
0
0

1
0
0
0
0

f−year

p
ri

c
e
 p

e
r

m
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20 −10 0 10

2
0
0
0

6
0
0
0

1
0
0
0
0

Easternness

p
ri

c
e
 p

e
r

m
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

2
0
0
0

6
0
0
0

1
0
0
0
0

Northernness

p
ri

c
e
 p

e
r

m
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

2
0
0
0

6
0
0
0

1
0
0
0
0

Stockman distance

p
ri

c
e
 p

e
r

m
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

2
0
0
0

6
0
0
0

1
0
0
0
0

Stockman travel time

p
ri

c
e
 p

e
r

m
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10 12

2
0
0
0

6
0
0
0

1
0
0
0
0

HM distance

p
ri

c
e
 p

e
r

m
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

2
0
0
0

6
0
0
0

1
0
0
0
0

HM travel time

p
ri

c
e
 p

e
r

m
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

2
0
0
0

6
0
0
0

1
0
0
0
0

4square distance

p
ri

c
e
 p

e
r

m
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

2
0
0
0

6
0
0
0

1
0
0
0
0

4square travel time

p
ri

c
e
 p

e
r

m
2

Figure 4. Input features against the target variable.

68

Accessibility predicts real estate prices in Helsinki

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

p
ri

c
e
_

p
e
r_

m
2

s
iz

e

y
e
a
r

fy
e
a
r

e
a
s
t

n
o
rt

h

d
m

e
tr

o

a
m

e
tr

o

d
s
to

c
k

ts
to

c
k

d
h
m

th
m

d
4
s
q

t4
s
q

d
4
s
q
1

d
4
s
q
2

d
4
s
q
3

d
4
s
q
4

d
4
s
q
5

t4
s
q
1

t4
s
q
2

t4
s
q
3

t4
s
q
4

t4
s
q
5

price_per_m2

size

year

fyear

east

north

dmetro

ametro

dstock

tstock

dhm

thm

d4sq

t4sq

d4sq1

d4sq2

d4sq3

d4sq4

d4sq5

t4sq1

t4sq2

t4sq3

t4sq4

t4sq5

100

−15

−1

57

−6

−52

−40

23

−62

−52

−37

−29

−43

−50

−45

−44

−45

−43

−43

−53

−52

−50

−48

−52

−15

100

2

−4

−6

−2

11

−9

11

14

7

11

13

19

14

14

14

13

13

19

19

20

19

20

−1

2

100

16

−16

15

32

−29

38

41

18

17

30

35

31

31

30

30

30

35

33

32

36

36

57

−4

16

100

−6

−17

−10

14

−22

−16

−15

−13

−12

−13

−13

−13

−13

−12

−13

−17

−16

−15

−13

−16

−6

−6

−16

−6

100

42

−67

34

−17

−23

6

14

−29

−23

−32

−33

−29

−29

−28

−15

−10

−23

−28

−16

−52

−2

15

−17

42

100

31

−21

61

55

49

54

32

47

31

30

35

32

31

50

50

46

46

46

−40

11

32

−10

−67

31

100

−53

80

74

45

37

77

76

79

79

79

77

76

70

65

74

78

70

23

−9

−29

14

34

−21

−53

100

−38

−41

−30

−28

−26

−33

−26

−27

−27

−26

−25

−30

−25

−31

−36

−30

−62

11

38

−22

−17

61

80

−38

100

80

62

51

91

87

91

91

92

90

90

85

84

84

87

86

−52

14

41

−16

−23

55

74

−41

80

100

54

59

66

87

70

69

69

66

65

87

86

87

87

86

−37

7

18

−15

6

49

45

−30

62

54

100

84

59

52

58

58

60

58

57

53

53

49

53

51

−29

11

17

−13

14

54

37

−28

51

59

84

100

44

54

44

44

47

45

43

56

55

53

55

52

−43

13

30

−12

−29

32

77

−26

91

66

59

44

100

83

99

99

99

100

100

80

79

80

84

83

−50

19

35

−13

−23

47

76

−33

87

87

52

54

83

100

85

85

85

83

82

97

96

98

98

97

−45

14

31

−13

−32

31

79

−26

91

70

58

44

99

85

100

100

100

99

99

82

81

82

85

85

−44

14

31

−13

−33

30

79

−27

91

69

58

44

99

85

100

100

99

99

99

81

82

83

85

85

−45

14

30

−13

−29

35

79

−27

92

69

60

47

99

85

100

99

100

99

99

82

82

83

86

85

−43

13

30

−12

−29

32

77

−26

90

66

58

45

100

83

99

99

99

100

100

79

79

79

84

83

−43

13

30

−13

−28

31

76

−25

90

65

57

43

100

82

99

99

99

100

100

79

79

79

83

83

−53

19

35

−17

−15

50

70

−30

85

87

53

56

80

97

82

81

82

79

79

100

95

96

95

96

−52

19

33

−16

−10

50

65

−25

84

86

53

55

79

96

81

82

82

79

79

95

100

96

93

96

−50

20

32

−15

−23

46

74

−31

84

87

49

53

80

98

82

83

83

79

79

96

96

100

95

96

−48

19

36

−13

−28

46

78

−36

87

87

53

55

84

98

85

85

86

84

83

95

93

95

100

96

−52

20

36

−16

−16

46

70

−30

86

86

51

52

83

97

85

85

85

83

83

96

96

96

96

100

Figure 5. Correlations of features (a number indicates the Pearson

correlation coefficient ×100.

Finally, Figure 5 plots correlations across all the features.

We see that the location features are strongly correlated

with each other, therefore, many may be redundant. Never-

theless, some of those could potentially be expected to be

more informative than others, therefore, we consider them

all. We can also see than most of the location features are

negatively correlated with community centers and dynamic

points of interest. We already have seen similar tendencies

in the scatterplots. This behavior is along with a common

intuition that apartments near points of interest should be

more expensive.

The correlation and scatter plots analyzed features one-by-

one. In the next section we will consider predictive models

that use sets of features for modeling apartment prices.

3. Case study

The goal of this pilot case study is to investigate whether

accessibility information helps to model real estate prices,

as compared to using only geographical location informa-

tion. In addition, we investigate informativeness of dy-

namic points of interest (derived from social networks) as

opposed to stationary fixed points of interest.

3.1. Experimental protocol

We model price per square meter. An alternative would

be to model the total price. We choose the former as the

target variable, because price per square meter is easier to

interpret and compare across neighborhoods.

We limit our analysis to linear regression, which is easily

interpretable. Note, however, that some of the features are

expressed as non-linear functions of simpler features (e.g.

fyear is a non-linear function of a building’s age, as ex-

plained above). The ordinary least squares procedure (the

standard implementation in R) is used for estimating the

model parameters.

For assessing the performance we use two common accu-

racy measures: coefficient of determination (R2) and mean

absolute error (MAE). Coefficient of determination is a rel-

ative accuracy measure, where 1 means the best possible

performance, and 0 means the performance is equivalent to

random. Mean absolute error indicates error in the units of

the target variable, 0 is an ideal performance, the higher the

MAE, the worse the performance.

We report R2 and MAE measured on the whole dataset

used for model fitting (fit) and via 10 fold cross-validation

(cv), which iteratively fits a model on 90% of the data, and

tests on the remaining part. Cross-validation scores provide

an indication of how models would generalize to unseen

data.

3.2. Performance of base models

Base models do not use any accessibility information, and

use only very basic location information. The first base

model (Size-year) does not use location at all, and is based

only on size of the apartment and its construction year

(fyear). The second model in addition uses basic loca-

tion information, encoded as raw geographical coordinates,

centered in the old town of the city.

The resulting models for price per square meter are:

price = 3722− 4.97× size + 0.91× fyear ,

and

price = 5643− 5.14× size + 0.78× fyear +

+ 38.9× east − 147.7× north.

The models are consistent with common intuition: the

larger the apartment, the cheaper the price per square me-

ter; older or newer apartments with respect to 1970 con-

struction year are more expensive; the further to the north

from the sea and the city center, the cheaper. Easterness

has a positive effect, which is somewhat inconsistent with

a common intuition that cheaper neighborhoods are in the

east. However, this can be explained by the range of data

(see Figure 4). Data extends further to the west than to the

east, therefore, western apartments are on average further

from the center, and thus cheaper.

Table 2 reports predictive accuracies of the base models.

We can make two observations. First, Size-year-location

model already performs quite well with the cross-validation

69

Accessibility predicts real estate prices in Helsinki

Table 2. Base models for predicting price per m2. R2 - coefficient

of determination (the higher, the better), MAE - mean absolute

error (the smaller the better).
Model R2 fit MAE fit R2 test MAE test

Size-year 0.34 1062 0.33 1063

Size-year-location 0.56 836 0.55 837

Table 3. Accessibility for predicting price per m2. Size-year-

location model with one additional accessibility feature at a time.

Add feature R2 fit MAE fit R2 test MAE test

Metro distance 0.58 811 0.58 813

Metro access 0.56 835 0.55 836

H&M distance 0.56 837 0.56 838

H&M travel time 0.56 831 0.56 832

Stockmann distance 0.61 781 0.61 782

Stockmann t. t. 0.58 811 0.58 812

4square dist. all 0.58 813 0.58 814

4square t. t. all 0.58 804 0.58 805

4square dist. peak 0.59 807 0.59 809

4square t. t. peak 0.59 799 0.59 800

R2 result 0.55. Second, the fit and the cross-validation per-

formance differs only a little, which suggests that there is

no notable overfitting, and the model could use more infor-

mative input features.

3.3. Predictive power of accessibility

Next we test whether adding accessibility information

helps to predict more accurately. We test accessibility to

the city center (Stockmann), local centers (HM), and dy-

namic centers of interest (4square check-ins) overall and at

morning peak times (from 6:00 to 10:00). We compare in-

formativeness of using air distance as a feature to using the

total travel time by public transport.

We use the base model Size-year-location as a starting

point, add one feature at a time to it, and measure the accu-

racy. Table 3 reports the results.

From the resulting accuracies we can see that accessibil-

ity has some predictive power, as in all cases the predictive

performance improves as compared to the base model. The

results indicate that the distance to the city center (Stock-

mann) is more informative than the travel time by pub-

lic transport. However, accessibility to the local centers

(fixed centers H&M and dynamic centers 4square) by pub-

lic transport is more informative than just the air distance

to those centers. In other words, it seems that an apartment

price relates to the overall geographical location, but acces-

sibility to local centers of interest is more important than

just the geographical distance to those centers. This is an

interesting finding for exploring in detail in future studies.

We report selected models. Metro distance is intuitive - the

closer to metro, the more expensive is the apartment:

price = 5300− 3.94× size + 0.77× fyear −

− 62.2× east − 50.8× north − 158.4×metro.

Adding metro distance shrinks other coefficients, which

suggests that earlier this feature was indirectly captured.

More importantly, adding metro distance changes the di-

rection of the easternness coefficient from positive to neg-

ative. Now it is more intuitive keeping in mind peculiar-

ities of Helsinki residential neighborhoods, where overall

the east is considered cheaper than the west.

Stockmann distance is as well intuitive - the closer to the

center, the more expensive is the apartment:

price = 5698− 3.78× size + 0.72× fyear +

− 3.3× east − 59.8× north − 117.8× dstock .

Shortest H&M travel time is intuitive - the shorter the travel

time to the local center, the more expensive is the apart-

ment:

price = 5681− 5.00× size + 0.78× fyear +

+ 37.0× east − 139.6× north − 39.3× thm.

Shortest 4square travel time is intuitive - the shorter the

travel time to a center of interest, the more expensive is the

apartment:

price = 5659− 3.55× size + 0.77× fyear +

+ 13.5× east − 103.3× north − 31.4× t4sq .

3.4. Final predictive model - everything together

Finally, we collect a set of promising features into one final

model, and test its performance. The final model includes

the base model (Size-year-location), metro distance, Stock-

mann distance (a proxy for distance to the city center), and

travel times to H&M and 4square (peak) local centers.

While the final feature selection is done after seeing the in-

termediate performance results, the fit accuracies have been

very similar to those of cross-validation, therefore the risk

of overfitting is not high.

The final model fitted on all the data is

price = 5729− 4.06× size + 0.71× fyear +

+ 31.6× east − 94.5× north +

+ 73.0×metro − 139.0× dstock +

+ 21.6× thm − 12.5× t4sq2

We can see some interesting relations, reflecting peculiar-

ities of the Helsinki region. First, the longer the metro

70

Accessibility predicts real estate prices in Helsinki

Table 4. Final model for predicting price per m2.

Model R2 fit MAE fit R2 test MAE test

Final model 0.63 752 0.62 753

distance, the higher the price, while one could expect the

opposite. Our interpretation is that the metro distance cap-

tures what was not very successfully captured by the east-

ernness. We observe that the coefficient of easternness

shrinks when metro comes into the equation. In Helsinki

metro runs only to the eastern suburbs, and these sub-

urbs are considered less prestigious neighborhoods than the

west, and, therefore, residential prices there are lower.

Table 4 reports the performance figures. The final model

shows the best performance seen so far, and reasonably

good accuracy in relative and absolute terms (testing R2

= 0.62).

4. Conclusion

We have experimentally explored several models for real

estate prices in Helsinki region, focusing our analysis on

accessibility by public transport and dynamic points of in-

terest, obtained via check-ins into social networks. We

have found that even a basic account for accessibility fea-

tures helps to improve the accuracy of price estimates. We

have discovered that an apartment price relates to the geo-

graphical distance from the city center, but accessibility by

public transport to local centers of interest is more infor-

mative than just the geographical distance to those centers.

Integrating such data could help to model residential real

estate prices more precisely, and, as a result, better under-

stand urban mobility patterns and activities. Such mod-

els can contribute to managing, coordinating and long term

planning of mobility, and overall development of modern

smart cities.

Acknowledgments

The authors thank Antti Ukkonen for insightful discus-

sions. Research leading to these results was partially sup-

ported by the Aalto University AEF research programme

and the Academy of Finland grants 118653 (ALGODAN)

and 251170 (Finnish Centre of Excellence in Computa-

tional Inference Research COIN). Maps are credited to

c©OpenStreetMap contributors, for more information see

http://www.openstreetmap.org/copyright.

References

Bartholomew, Keith and Ewing, Reid. Hedonic price

effects of pedestrian and transit-oriented development.

Journal of Planning Literature, 26(1):18–34, 2011.

Case, Bradford and Quigley, John M. The dynamics of real

estate prices. The Review of Economics and Statistics,

73(1):50–58, 1991.

Chopra, Sumit, Thampy, Trivikraman, Leahy, John, Caplin,

Andrew, and LeCun, Yann. Discovering the hidden

structure of house prices with a non-parametric latent

manifold model. In Proceedings of the 13th ACM

SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, KDD ’07, pp. 173–182, 2007.

Fu, Yanjie, Xiong, Hui, Ge, Yong, Yao, Zijun, Zheng,

Yu, and Zhou, Zhi-Hua. Exploiting geographic depen-

dencies for real estate appraisal: A mutual perspective

of ranking and clustering. In Proceedings of the 20th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’14, pp. 1047–1056,

2014.

Le Falher, Geraud, Gionis, Aris, and Mathioudakis,

Michael. Where is the Soho of Rome? : Measures and

algorithms for finding similar neighborhoods in cities. In

The 9th International AAAI Conference on Web and So-

cial Media, ICWSM, 2015.

Sirmans, Stacy, Macpherson, David, and Zietz, Emily. The

composition of hedonic pricing models. Journal of Real

Estate Literature, 13(1):1–44, 2005.

71

Airvlc: An application for real-time forecasting urban air pollution

Lidia Contreras Ochando LICONOC@UPV.ES

Universitat Politècnica de València. Spain

Cristina I. Font Julián CRIFONJU@EI.UPV.ES

Universitat Politècnica de València. Spain

Francisco Contreras Ochando FRACONOC@GMAIL.COM

Universitat Politècnica de València. Spain

Cèsar Ferri CFERRI@DSIC.UPV.ES

DSIC. Universitat Politècnica de València. Spain

Abstract

This paper presents Airvlc, an application for

producing real-time urban air pollution forecasts

for the city of Valencia in Spain. Although many

cities provide air quality data, in many cases, this

information is presented with significant delays

(three hours for the city of Valencia) and it is lim-

ited to the area where the measurement stations

are located. The application employs regression

models able to predict the levels of four differ-

ent pollutants (CO, NO, PM2.5, NO2) in three

different locations of the city. These models are

trained using features that represent traffic inten-

sity, persistence of pollutants and meteorological

parameters such as wind speed and temperature.

We compare different learning techniques to get

the better performance in the prediction of pollu-

tants. According to our experiments, ensembles

of decision trees (Random Forest) outperforms

the rest of methods in almost all of our tests.

Airvlc incorporates the best regression models

and, by a distance-weighted combination of the

predictions, is able to generate a real-time pollu-

tion map of the city of Valencia. The application

also includes a warning system for sending no-

tifications to users when a nearby risk pollution

concentration is detected.

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

1. Introduction

Air pollution can have important impact (short and long-

term) on the health of people. For instance, urban air pol-

lution increases the risk of suffering respiratory diseases

such as pneumonia, or chronic, such as lung cancer or car-

diovascular disease (World Health Organisation, 2015). A

recent work (Wilker et al., 2015) relates long-term expo-

sure to ambient air pollution to structural changes in the

brain.The SOER 2015 report (The European Environment

Agency , 2015), with data about the European Union coun-

tries’ air quality in 2011, concludes that although the atmo-

sphere in the continent has improved in the last decades,

there are significant traces of the most harmful contami-

nants. In fact, in 2011, the report estimates that 430.000

Europeans died prematurely because of pollution.

Although some governments are introducing restriction

policies that limit the use of vehicles (main source of pol-

lution in most cases), only in Europe, important cities such

as Paris, Naples, Moscow, Milan or Barcelona still report

significant levels of urban pollution in 2015 (The European

Environment Agency , 2015). In this context, it is impor-

tant for citizens of urban agglomerations to reduce the ex-

position to urban air pollution as much as possible. This is

especially relevant for high risk population such as: kids,

elderly people, asthmatics or people suffering respiratory

diseases.

In this work we present an application that predicts urban

air pollution in real time by employing historical data. The

application is based on the city of Valencia in Spain. This

city can be considered a medium size urban agglomeration

(around 1.000.000 inhabitants). The city provides an open

data site containing real-time information about the city in

different aspects such as traffic data, noise sensors, pollen

72

Airvlc: An application for real-time forecasting urban air pollution

sensors... Although different sensors of urban pollution air

are included in the site, this information needs to be care-

fully verified and it is published with a delay of three hours.

This delay can represent a problem since risky high levels

of pollutions are not detected in real-time. Additionally, the

network of sensors is limited (six in the city of Valencia).

Considering these limitations, we have developed an ap-

plication able to display in real-time foreseeable levels of

pollution in a wide number of points of the city. The ap-

plication is based on the predictions of regression models

that are trained using features that represent traffic inten-

sity, persistence of pollutants and meteorological parame-

ters.

The paper is organised as follows. Section 2 details the

process of data recollection of pollution particles and the

factors that affect the generation, concentration or disper-

sion of these pollutants. Experiments in learning regres-

sion models for predicting the pollutant concentrations are

included in Section 3. The Airvlc application is detailed

in 4. Related works are discussed in Section 5. Finally,

Section 6 closes the paper with a discussion of the main

conclusions and some plans for future work.

2. Data collection

Different particles are associated with urban air pollution.

In order to measure air contamination, pollutant parameters

found in the lower levels of the troposphere are controlled.

Air quality sensors measure concentrations of particles that

have an anthropogenic origin and produce effects during

or after the inhalation by humans. The historical pollu-

tion data for this work has been obtained from the open

data web of the Generalitat Valenciana1. Following the

recommendations of (The European Environment Agency

, 2015), we concentrate on the following particles:

• PM 2.5 (Suspended particles below 2.5 microns):

This parameter has been chosen because of its pol-

lutant power. It is one of the most dangerous parti-

cles, since its size makes it almost unstoppable by the

natural filters of the body. This fact means that the

PM 2.5 are usually able to reach the pulmonary alve-

oli and in some cases, these particles are attached to

these alveoli with a consequent reduction of lung ca-

pacity; in worst cases, the particles cross the alveolar

membranes and reach the blood stream. Considering

that PM 2.5 particles have its origin in anthropogenic

activities (especially in the use of fuels in motor ve-

hicles), it is not surprising that its atomic structure

contains heavy metals, extremely toxic to the human

1http://www.cma.gva.es/cidam/emedio/

atmosfera/jsp/historicos.jsp

body. Atmospheric conditions in the Mediterranean

coast of Spain can influence the particle levels, due

to lower rainfall and wind action with respect to other

northern Europe countries, and the North African par-

ticles (Saharan dust), PM10 and PM2.5.

• NO (Nitrogen monoxide): Nitrogen monoxide is a

highly unstable compound; it causes nitrogen dioxide

by quickly reacting in the atmosphere. This instability

makes the nitrogen monoxide a radical, namely, a high

reactive power molecule, whose effects on the body

are abnormal DNA, lipids and proteins. This kind

of changes derives in the medium and long term as

a greater chance of developing cancer.Its origin stems

largely from vehicle engines.

• NO2 (Nitrogen dioxide): Nitrogen dioxide is not a

directly generated pollutant, since its presence in the

atmosphere is caused by the oxidation of nitrogen

monoxide. In the presence of moisture, this com-

pound results in nitric acid, and its inhalation, even

in low concentrations, can cause lung tissue degrada-

tion, as well as can reduce the efficacy of the immune

system, especially in children.

• CO (Carbon monoxide): Carbon monoxide is a pri-

mary pollutant. CO is toxic; it prevents oxygen trans-

port by poisoning the blood, since it replaces the

haemoglobin. People with cardiovascular and cere-

brovascular problems could suffer heart attacks or

strokes because of problems related to high concen-

trations of CO.

The distribution of air pollution is decisively influenced

by climatic conditions. We have collected Climatological

observations for the meteorological data of Valencia city

from Meteorological Agency of the Government of Spain

(AEMET)2. We consider the following parameters:

• Temperature: In an ordinary atmosphere situation,

temperature decreases with altitude, favouring ascen-

sion of warmer (and less dense) air, and dragging con-

taminants upwards. In a situation of thermal inversion,

a warmer layer of air is over the colder surface air and

prevents the rise of this last (denser), so the contami-

nation is confined and increases.

• Humidity: Humidity is a weather factor to be consid-

ered; in its presence, nitrogen dioxide derives in nitric

acid, harmful to human health.

• Wind speed: Strong winds can disperse pollutants

and transport them away from their emission point.

2http://www.aemet.es/

73

Airvlc: An application for real-time forecasting urban air pollution

• Precipitations Precipitations wash contaminants and

can dissolve substances and gases.

The two main sources of pollution in developed countries

are motor vehicles and industry. Vehicles release large

amounts of nitrogen oxides, carbon oxides, hydrocarbons

and particulates when burning gasoline and diesel. There-

fore, we need to measure the level of traffic in the city in

order to predict the air pollution. For this purpose, the City

of Valencia provides a network of sensors (electromagnetic

coils) that measure the intensity of traffic (Vehicles/hour)

in the city. This data can be found in the open data site of

the Valencia City Council3.

3. Experiments

With all the selected parameters, we have built datasets

aimed to predict the concentration of pollutants from the

intensity of traffic and weather parameters. Concretely, we

have collected data for a period of two years (2013 and

2014). Data was collected every 60 minutes, 24 hours a

day during those two years. Although Valencia city has

six stations for the detection and measurement of air pollu-

tion, three of them have not sufficient data for the analysed

period and were discarded. In this way we collected data

from these stations: Molı̀, Avd Francia and Pista de Silla.

These three stations are located inside the urban agglomer-

ation, and thus most of the pollutants measured in the sen-

sors should be generated by urban activities (mainly traf-

fic). For each one of these stations, we create a dataset with

the level of the pollutants measured and parameters that can

affect these measurements, we concentrate on traffic level

(measured by electromagnetic coils), weather conditions.

In order to measure the traffic related to each air pollution

station, we average the traffic intensity of the closest six

traffic measurament sensors. This is a simplification since,

certainly, all the traffic of the city has effect on the mea-

sured level of all the stations in the city.

We can see a summary of the three datasets in Table 1. This

table includes averages and standard deviation for the three

stations of the pollutant particles measured and the inten-

sity of traffic associated with each station. If we analyse

traffic intensity, Avd Francia is the busiest station, while

the other two have similar values. With regard to pollution

levels Pista de Silla station presents the maximum levels

for three parameters. The only exception is PM2.5. This

behaviour can probably be associated with the specific lo-

cation of the stations: While Pista de Silla station is located

in a the central part of the city, and therefore more vulner-

able to the overall city pollution, the other two are in the

suburbs of the city where external air streams can reduce

3http://www.valencia.es/ayuntamiento/

DatosAbiertos.nsf/

the levels of pollutants.

We first study the weekly evolution of pollutants in the

three stations. Figure 1 shows the evolution of the aver-

age of the four parameters of pollution analysed and the

average traffic intensity for Molı̀ station depending on the

day of the week. Figure 2 presents the same plot for Avd

Francia station and Figure 3 corresponds to Pista de Silla

station. In order to make the values comparable in the plot

we normalise each parameter by the maximum value of

that parameter. The level of pollutants and traffic reach the

maximum levels during the working days of the week for

the three stations (Friday seems to be the worst day). We

can clearly see the dependency of the four parameters of

pollution on the traffic intensity level. During the week-

end days, the level of traffic drastically descends and as-

sociated with this reduction the levels of pollutants signifi-

cantly drop. Again, the exception is PM2.5. This behaviour

can be caused because these particles can be generated by

all types of combustion activities (motor vehicles, power

plants, wood burning, etc.) and certain industrial processes

(US Environmental Protection Agency , 2015).

We have performed a similar analysis considering the evo-

lution of pollutants, traffic intensity and meteorological

variables during a day (humidity and wind). Figure 4 shows

the evolution of the daily average of these parameters for

Molı̀ station depending on the hour of the day . Figure 5

corresponds to Avd Francia station and Figure 6 to Pista

de Silla station. Again, we normalise each parameter by

the maximum value of that parameter. If we observe traf-

fic intensity, we can discover in all the three plots a similar

behaviour, there are three peaks in traffic intensity corre-

sponding to the hours where workers travel to their work

places (around 9 am), lunch time (around 2 pm) and an

evening period (around 8 pm). In the three stations the

maximum of pollution parameters is found at the same pe-

riod of the first peak in traffic intensity (around 9 am). In

the second peak of traffic intensity (around 2 pm) the lev-

els of pollutants does not follow the increase in traffic. In

fact, after the maximum period around 9 am, pollutants de-

crease their levels until around 4 pm where they change the

behaviour and start an increasing of the values. The second

peak in pollutant values is found around 9 pm. Our intu-

ition with respect to this behaviour is that wind disperses

part of the pollutant in the most sunny hours. Valencia is

in the Mediterranean coast and in this city it is easy to find

(especially in summer) sea breezes. These kind of winds

are created over bodies of water (usually sea or big lakes)

near land due to differences in air pressure created by their

different heat capacity. This phenomenon can be detected

in the plots if we observe the increase in wind strength dur-

ing the midday hours. Finally, we observe a strange and

different behaviour of the CO particle in Molı́ station. For

this pollutant there is a second peak in the midday period.

74

Airvlc: An application for real-time forecasting urban air pollution

This behaviour probably corresponds to an extra source of

pollution that needs to be further studied.

As stated previously, we are interested in predicting pollu-

tion levels in real time. Since these levels are only made

public with a delay of three hours, we need to produce a

prediction model from real time features. We extract the

following set of features from the data collected from dif-

ferent sources (detailed in the previous section):

• Climatological features: Temperature (Celsius de-

grees), Relative humidity (Percentage), Pressure

(hPa), Wind speed (km/h), Rain (mm/h)

• Calendar features: Year, Month, Day in the month,

Day in the week, Hour

• Traffic intensity features: Traffic level in the sur-

rounding stations (vehicles/hour), traffic level 1, 2, 3

and 24 hours before

• Pollution features: Pollution level in the target sta-

tion 3 and 24 hours before

With this goal we compare several regression learning tech-

niques from R (R Core Team, 2015) in order to identify the

technique that is able to better predict the levels of pollu-

tion. To test the prediction ability of different models, we

learn the models using as training data the registers of 2013

and the first nine months of 2014. We test the models with

the last three months of 2014. We use Mean Squared Error

(MSE) as a performance measure. Concretely, we employ

the following techniques for learning regression models (all

of them with the default parameters, unless stated other-

wise): Linear Regression (lr) (Hornik et al., 2009), quan-

tile regression (qr) (Koenker, 2015) with lasso method, K

nearest neighbours (IBKreg) with k = 10 (Hornik et al.,

2009) , a decision tree for regression (M5P) (Hornik et al.,

2009), Random Forest (RF) (Liaw & Wiener, 2002), Sup-

port Vector Machines (SVM) (Meyer et al., 2014) and Neu-

ral Networks (Venables & Ripley, 2002). In order to com-

pare the predictive performance of these models, we also

introduce three baseline models: A model that always pre-

dicts the mean of the train data (TrainMean), a model that

always predicts the mean of the test data (TestMean), and a

basic model that predicts the same value of the target pol-

lutant 3 hours before (X3H).

Table 2 contains the MSE of the regression models for the

prediction of the four target pollution levels of the Molı́ sta-

tion. Results for Pista de Silla station and Avd Francia sta-

tion are shown in Table 4 and 3 respectively. If we analyse

these results, we can conclude that learned models are im-

proving the performance of the basic baseline models in al-

most all cases. When we compare the learning techniques

in the three tables, the ensemble of decision trees technique

(random forest) is the best model in almost all of cases.

These results are in concordance with (Singh et al., 2013)

where ensembles of trees outperformed other approaches

such as SVMs.

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Molí

L
e
v
e
ls

Sunday Monday Tuesday Weds. Thursday Friday Saturday

Traffic

CO

NO

NO2

PM2.5

Figure 1. Average weekly traffic intensity and pollution parame-

ters measured in Molı́ station.
0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Avd Francia

L
e
v
e
ls

Sunday Monday Tuesday Weds. Thursday Friday Saturday

Traffic

CO

NO

NO2

PM2.5

Figure 2. Average weekly traffic intensity and pollution parame-

ters measured in Avd Francia station.

4. Airvlc

In the previous section we have analysed how to obtain

real-time air pollution predictions from a given set of fea-

tures. In this section we summarise Airvlc, a mobile app for

Android and iOS and a web application4. This application

generates from the regression models a map of the city of

Valencia showing the predicted intensity of pollution lev-

els. The application also allows the user to configure a set

of automatic warnings every time a pollution threshold is

reached near the position of the mobile device.

4http://airvlc.lidiacontreras.com/

75

Airvlc: An application for real-time forecasting urban air pollution

Table 1. Averages and standard deviation of the three pollution detection sensors.
Traffic CO NO NO2 PM2.5

ave sd ave sd ave sd ave sd ave sd

Molı́ 442.333 339.489 0.116 0.093 8.642 20.311 26.608 21.003 10.650 6.926

Francia 631.569 431.412 0.185 0.122 9.092 19.271 27.840 23.992 7.909 4.235

Silla 484.722 298.768 0.228 0.187 23.559 33.024 45.631 25.376 8.309 6.020

Table 2. Results in MSE of different regression models for Molı́ Station. The best prediction model is highlighted in bold.
TrainMean TestMean X3h lr qr IBkreg M5p RF SVM NN

CO 0.086 0.061 0.067 0.057 0.060 0.068 0.071 0.057 0.063 0.182

NO 30.202 28.739 36.516 25.200 29.805 27.821 25.555 20.655 25.870 32.944

NO2 19.918 19.914 25.258 19.680 17.370 15.683 31.242 14.877 14.488 32.152

PM2.5 8.803 8.803 8.634 6.889 6.564 6.674 7.248 6.072 6.135 13.089

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Pista Silla

L
e
v
e
ls

Sunday Monday Tuesday Weds. Thursday Friday Saturday

Traffic

CO

NO

NO2

PM2.5

Figure 3. Average weekly traffic intensity and pollution parame-

ters measured in Pista Silla station.

4.1. Contamination intensity map

Results of Section 3 show that random forest models ob-

tain the best performance in most cases. Therfore, twelve

random forest models are implemented in the Airvlc ap-

plication. These models are able to predict every hour the

level of the four analysed particles at the three pollution

detection stations. We want, however, to predict pollution

levels at the points of the city where the traffic is measured

(1245 points around the city). For that purpose, given any

of these points, we extract the features related to traffic in-

tensity from the six nearest traffic sensors. The meteoro-

logical features are the same for all the city. The predic-

tions of pollutants in that exact location is computed by

the combination of the models corresponding to the three

stations. The combination is weighted with respect to the

distance of the target point with respect to the measurement

stations giving more importance to the closest models. A

simpler approach could be to learn a single model from the

concatenation of the data from the three stations and then

apply this in all the set of target points.

By computing the pollution predictions for a set of strate-

gic and well-distributed locations we are able to estimate a

real-time pollution map of the city. The map is generated

with Google Maps technology. This map shows for each lo-

0 5 10 15 20

0
.2

0
.4

0
.6

0
.8

1
.0

Molí

Hours

L
e
v
e
ls

Traffic

Humidity

Wind

CO

NO

NO2

PM2.5

Figure 4. Average daily traffic intensity and pollution parameters

measured in Molı́ station.

cation its pollution level as a dot which colour varies among

green, yellow and red depending on the calculated pollution

level. If the user selects one of these dots, an extended win-

dow is opened where the exact predicted levels are shown.

Figure 7 includes a screen-shot of the pollution map of the

Airvlc application. The user can also select a second frame

in the window of the Airvlc application where he/she can

introduce a specific location and then the application com-

putes the predicted pollution levels for that selection. An

example of this process is included in Figure 8.

4.2. Risk levels

Figure 8 shows how the pollution levels are presented to

users. However, showing just a concentration value of each

parameter is not very useful for most users, since most of

them are not experts in pollutants and they could not in-

terpret correctly these numbers. In order to improve the

comprehensibility of the predictions we have established

three ranges of risk represented as speedometer: Low risk

(green) corresponds to a measurement that is safe; Medium

risk (yellow) when concentrations reach levels to cause

harmful effects in people sensitive to air pollution expo-

sure (kids, elderly people...); High risk (red) when concen-

76

Airvlc: An application for real-time forecasting urban air pollution

Table 3. Results in MSE of different regression models for Avd. Francia Station. The best prediction model is highlighted in bold.
TrainMean TestMean X3h lr qr IBkreg M5p RF SVM NN

CO 0.195 0.165 0.224 0.159 0.163 0.168 0.160 0.153 0.156 0.324

NO 35.493 33.634 44.955 32.992 36.049 34.092 30.350 29.517 33.364 38.262

NO2 23.443 20.900 27.162 16.299 16.718 18.494 23.782 14.851 19.100 41.929

PM2.5 3.721 3.718 3.879 3.326 3.132 3.523 4.655 3.214 3.265 7.974

Table 4. Results in MSE of different regression models for Pista Silla Station. The best prediction model is highlighted in bold.
TrainMean TestMean X3h lr qr IBkreg M5p RF SVM NN

CO 0.278 0.222 0.304 0.221 0.227 0.221 0.235 0.218 0.268 0.278

NO 49.149 46.232 60.353 39.863 43.524 42.760 44.150 36.332 52.438 58.798

NO2 23.135 23.122 30.167 20.861 19.031 18.487 25.972 16.722 23.313 49.699

PM2.5 6.911 6.660 7.119 5.663 5.342 5.750 7.189 5.339 7.368 11.061

0 5 10 15 20

0
.2

0
.4

0
.6

0
.8

1
.0

Avd Francia

Hours

L
e
v
e
ls

Traffic

Humidity

Wind

CO

NO

NO2

PM2.5

Figure 5. Average daily traffic intensity and pollution parameters

measured in Avd Francia station.

trations can cause acute and chronic effects to anyone, es-

pecially those with sensitivity.

The ranges of risk shown by the application from the pre-

dicted values of the four pollutants are based on the recom-

mendations of the Directive 2008/50/EC (European Comis-

sion, 2008). The variable as NOx (oxides of nitrogen)

refers to NO or NO2, since the normative establishes the

same limits for both levels.

• Green level: [NOx] < 14.0 µg/m3 ∧ [CO] < 30.0

mg/m3 ∧ [PM 2.5] < 7.5 µg/m3.

• Yellow level: We establish medium risk (yellow level)

if the levels do not satisfy the conditions of the green

level and the red level.

• Red level: [NOx] ≥190.0 µg/m3 ∨ [CO] ≥ 55.0

mg/m3 ∨ [PM 2.5] ≥ 25.0 µg/m3

4.3. Risk warnings

Airvlc mobile application can be configured to send warn-

ings to users if the device is near to a zone (200 meters

approximately) where a high risk level is predicted. These

warnings can be personalised by the user in different ways.

0 5 10 15 20

0
.2

0
.4

0
.6

0
.8

1
.0

Pista Silla

Hours

L
e
v
e
ls

Traffic

Humidity

Wind

CO

NO

NO2

PM2.5

Figure 6. Average daily traffic intensity and pollution parameters

measured in Pista Silla station.

For example, the user can establish personal limits for

warnings or modify the range of distance for the detection

of high risk levels of pollutant concentration. Obviously,

the user needs to allow the application to know the actual

GPS location of the device

In the case of the web application, given that here it is more

complex to know the exact location of the user, we adopt a

different strategy. We are working in an automated warning

system where the user needs to fix a set of areas, and then

the system sends an electronic email whenever a dangerous

situation (high risk level by default) is detected.

5. Related work

A wide number of works employs machine learning tech-

niques or statistical approaches for predicting pollution lev-

els. A classical work is (Yi & Prybutok, 1996). In this pa-

per, the authors propose ozone prediction models. Specifi-

cally, they develop a neural network model for forecasting

daily maximum ozone levels and compare it to previous

approaches by regression, and Box-Jenkins ARIMA. The

results show that the neural network model improves the

performance of the regression and Box-Jenkins ARIMA

models tested. Neural networks models have been widely

77

Airvlc: An application for real-time forecasting urban air pollution

Figure 7. Airvlc application. Real-time pollution map.

employed in this field, a review of these approaches can be

found in (Khare & Nagendra, 2006).

A more related work is (Karppinen et al., 2000a). Here

the authors propose a modelling system for predicting the

traffic volumes, emissions from stationary and vehicular

sources, and atmospheric dispersion of pollution in an ur-

ban area. They employ four monitoring stations in the

Helsinki metropolitan area in 1993. The paper compares

the predicted NOx and NO2 concentrations with the results

of an urban air quality monitoring network. The agreement

of model predictions was better for the two suburban mon-

itoring stations, compared with two urban stations. Some

applications of these models are introduced in (Karppinen

et al., 2000b). A similar work for the city of Izmir in Turkey

is (Elbir, 2003). Here, the authors compare The CAL-

MET meteorological model and its puff dispersion model

CALPUFF for predicting dispersion of the sulphur dioxide

emissions from industrial and domestic sources.

Another related work, and in this case very recent, is (Don-

nelly et al., 2015). This paper presents a model for real

time air quality forecasts. The predictions are concentrated

in nitrogen dioxide (NO2) and they are used to estimate

air quality 48 hours in advance. The model is based on

a multiple linear regression which uses linearised factors

describing variations in concentrations together with mete-

orological parameters and persistence as predictors.

Our comparison of regression techniques obtains similar

Figure 8. Frame where the user can introduce specific locations to

know the predicted levels of pollution.

conclusions to the work presented in (Singh et al., 2013).

In this study, principal components analysis (PCA) is per-

formed to identify air pollution sources. From the extracted

features, tree based ensemble learning models are induced

to predict the urban air quality of Lucknow (India) together

with the air quality and meteorological databases for a pe-

riod of five years.

6. Conclusions

Air pollution can decrease life expectancy since contami-

nation rises the risk of suffering respiratory diseases. Al-

though policies motivating the reduction of emissions of

pollutant particles have been introduced in the last years,

many cities frequently still present risky levels of air pol-

lution. In these situations, the reduction of the exposure to

ambient air pollution is highly recommended. In this work,

we have presented Airvlc, an application that predicts in

real-time the levels of four dangerous pollutants in a wide

set of points in the city of Valencia. The system is able to

predict these pollution levels by applying regression mod-

els trained from data containing information traffic inten-

sity, persistence of pollutants and meteorological parame-

ters. Airvlc can be a useful tool for avoiding risky locations

in terms of air pollution.

As future work we propose the integration of the applica-

tion in middleware platforms such as Fi-Ware5, this could

help to extend the applicability of the system to other cities

or regions. We also are interested in the incorporation of

additional features in order to improve the prediction mod-

els: wind direction, sand storms, forest wildfires and agri-

cultural burnings... Finally, the use of the tool for the rec-

ommendation of routes that minimise the exposure to air

pollution.

5http://www.fiware.org/

78

Airvlc: An application for real-time forecasting urban air pollution

Acknowledgments

We thank the anonymous reviewers for their comments,

which have helped to improve this paper significantly.

We are also grateful to Ajuntament de València, InnDEA

València and specially to Ramón Ferri, Ruth López and

Paula Llobet for their help in providing traffic data. This

work was supported by the REFRAME project, granted by

the European Coordinated Research on Long-term Chal-

lenges in Information and Communication Sciences &

Technologies ERA-Net (CHIST-ERA), and funded by the

Ministerio de Economı́a y Competitividad in Spain (PCIN-

2013-037). It also has been partially supported by the EU

(FEDER) and the Spanish MINECO project ref. TIN2013-

45732-C4-01 (DAMAS), and by Generalitat Valenciana

ref. PROMETEOII/2015/013 (SmartLogic).

References

Donnelly, Aoife, Misstear, Bruce, and Broderick, Brian.

Real time air quality forecasting using integrated para-

metric and non-parametric regression techniques. Atmo-

spheric Environment, 103:53–65, 2015.

Elbir, Tolga. Comparison of model predictions with the

data of an urban air quality monitoring network in izmir,

turkey. Atmospheric Environment, 37(15):2149–2157,

2003.

European Comission. Directive 2008/50/ec of the european

parliament on ambient air quality and cleaner air for

europe. http://ec.europa.eu/environment/

air/quality/legislation/directive.htm,

2008.

Hornik, Kurt, Buchta, Christian, and Zeileis, Achim. Open-

source machine learning: R meets Weka. Computa-

tional Statistics, 24(2):225–232, 2009. doi: 10.1007/

s00180-008-0119-7.

Karppinen, A, Kukkonen, J, Elolähde, T, Konttinen, M, and

Koskentalo, T. A modelling system for predicting urban

air pollution:: comparison of model predictions with the

data of an urban measurement network in helsinki. At-

mospheric Environment, 34(22):3735–3743, 2000a.

Karppinen, A, Kukkonen, J, Elolähde, T, Konttinen, M,

Koskentalo, T, and Rantakrans, E. A modelling sys-

tem for predicting urban air pollution: model description

and applications in the helsinki metropolitan area. Atmo-

spheric Environment, 34(22):3723–3733, 2000b.

Khare, Mukesh and Nagendra, SM Shiva. Artificial neural

networks in vehicular pollution modelling, volume 41.

Springer, 2006.

Koenker, Roger. quantreg: Quantile Regression,

2015. URL http://CRAN.R-project.org/

package=quantreg. R package version 5.11.

Liaw, Andy and Wiener, Matthew. Classification and

regression by randomforest. R News, 2(3):18–22,

2002. URL http://CRAN.R-project.org/

doc/Rnews/.

Meyer, David, Dimitriadou, Evgenia, Hornik, Kurt,

Weingessel, Andreas, and Leisch, Friedrich. e1071:

Misc Functions of the Department of Statistics (e1071),

TU Wien, 2014. URL http://CRAN.R-project.

org/package=e1071. R package version 1.6-4.

R Core Team. R: A Language and Environment for Sta-

tistical Computing. R Foundation for Statistical Com-

puting, Vienna, Austria, 2015. URL http://www.

R-project.org/.

Singh, Kunwar P, Gupta, Shikha, and Rai, Premanjali.

Identifying pollution sources and predicting urban air

quality using ensemble learning methods. Atmospheric

Environment, 80:426–437, 2013.

The European Environment Agency . Soer 2015 — the eu-

ropean environment — state and outlook 2015. http:

//www.eea.europa.eu/soer, 2015.

US Environmental Protection Agency . Particulate

matter (pm) regulations. http://www.epa.gov/

airquality/particlepollution/index.

html, 2015.

Venables, W. N. and Ripley, B. D. Modern Applied

Statistics with S. Springer, New York, fourth edi-

tion, 2002. URL http://www.stats.ox.ac.uk/

pub/MASS4. ISBN 0-387-95457-0.

Wilker, Elissa H., Preis, Sarah R., Beiser, Alexa S.,

Wolf, Philip A., Au, Rhoda, Kloog, Itai, Li, Wenyuan,

Schwartz, Joel, Koutrakis, Petros, DeCarli, Charles, Se-

shadri, Sudha, and Mittleman, Murray A. Long-Term

Exposure to Fine Particulate Matter, Residential Prox-

imity to Major Roads and Measures of Brain Struc-

ture. Stroke, April 2015. doi: 10.1161/strokeaha.114.

008348. URL http://dx.doi.org/10.1161/

strokeaha.114.008348.

World Health Organisation. Public health, environmental

and social determinants of health. http://www.

who.int/phe/health_topics/outdoorair/

databases/health_impacts/en/, 2015.

Yi, Junsub and Prybutok, Victor R. A neural network

model forecasting for prediction of daily maximum

ozone concentration in an industrialized urban area. En-

vironmental Pollution, 92(3):349–357, 1996.

79

Stresscapes: Validating Linkages between Place and Stress Expression

on Social Media

Martin Sykora M.D.SYKORA@LBORO.AC.UK

Centre for Information Management, SBE, Loughborough University UK

Colin Robertson

Geography and Environmental Studies, Wilfried Laurier University CANADA

Ketan Shankardass

Psychology Department, Wilfried Laurier University CANADA

Rob Feick

School of Planning, University of Waterloo CANADA

Krystelle Shaughnessy

Psychology Department, University of Ottawa CANADA

Becca Coates

CIM, SBE, Loughborough University UK

Haydn Lawrence

Geography and Environmental Studies, Wilfried Laurier University CANADA

Thomas W. Jackson

CIM, SBE, Loughborough University UK

Abstract

Understanding how individuals and groups per-

ceive their surroundings and how different phys-

ical and social environments may influence their

state-of-mind has intrigued re-searchers for some

time. Much of this research has focused on in-

vestigating why certain natural and human-built

places can engender specific emotive responses

(e.g. fear, disgust, joy, etc.) and, by extension,

how these responses can be considered in place-

making activities such as urban planning and de-

sign. Developing a better understanding of the

linkages between place and emotional state is

challenging in part because both cognitive pro-

cesses and the concept of place are complex, dy-

namic and multi-faceted and are mediated by a

confluence of contextual, individual and social

processes. There is evidence to suggest that so-

cial media data produced by individuals in situ

and in near real-time may provide novel insights

into the nature and dynamics of individuals’ re-

sponses to their surroundings. The explosion

of user-generated digital data and the sensoriza-

tion of environments, especially in urban set-

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

tings, provide opportunities to build knowledge

of place and state-of-mind linkages that will in-

form the design and promotion of vibrant place-

making by individuals and communities.

In this paper we present a novel study, to be un-

dertaken this summer within the Greater Toronto

area in Canada, with 140 recruited participants

who are frequent, geo-tagging, Twitter users.

The goal of the study will be to assess emo-

tional, acute and chronic stress experienced in ur-

ban built-environments and as expressed during

daily activities. An existing automated seman-

tic natural language processing tool will be vali-

dated through this study, and it is hoped that the

methodology developed can be extrapolated to

other urban environments as well, with a second

validation study already planned to take place

next year in London, United Kingdom.

1. Introduction

In recent years automated processing of rich, geo-tagged,

social media text streams, such as Tweets and Facebook

status updates is receiving considerable attention in the lit-

erature. This is largely motivated by the insights and value

that such datasets were shown to provide (Chew & Eysen-

bach, 2010; O’Connor et al., 2010; Tumasjan et al., 2010;

Abel et al., 2012). Social-media streams, in general, al-

80

Stresscapes: Validating Linkages between Place and Stress Expression on Social Media

low for observing large numbers of spontaneous, real-time

interactions and varied expression of opinion, which are

often fleeting and private (Miller, 2011). Miller (2011)

further points out that some social scientists now see an

unprecedented opportunity to study human communication

with various applications and contexts, which has been an

obstacle up until recently. O’Connor et al. (2010) demon-

strated how large-scale trends can be captured from Twitter

messages, based on simple sentiment word frequency mea-

sures. The researchers evaluated and correlated their Twit-

ter samples against several consumer confidence and polit-

ical opinion surveys in order to validate their approach, and

have pointed out the potential of social-media as a rudimen-

tary yet powerful polling and survey methodology. In her

position paper De Choudhury (2013) suggests that mental

health studies would benefit from employing social media,

as it provides an unbiased collection of an individuals lan-

guage and behaviour, and Coppersmith et al. (2014) fur-

ther highlight how social media enables large scale anal-

yses, which has not been previously possible with tradi-

tional methods. Eichstaedt et al. (2015) propose a strong

argument in favor of employing social media to study heart

disease mortality based on psychological characteristics

gleaned from Twitter language use. Especially negative

emotional language and expressions of stress play an im-

portant role. They argue that traditional approaches that

use household visits and phone surveys are costly and have

limited spatial and temporal precision.

Motivated by this initial evidence we will be investigating

emotional acute and chronic stress as expressed in geo-

tagged, in-situ social media language. Our primary fo-

cus will be the connection between expressions of stress

and the geography of urban built environments; applying

geo-spatial analysis methods to define dynamic stress land-

scapes, or stresscapes that will help us to understand how

stress varies from place-to-place and from time-to-time

within urban centres. As Schwartz and Germaine (2014)

rightly point out, studies concerning the combination of so-

cial media, identity performance, and place are still rare.

Hence, we particularly seek to contribute to recent research

related to the linkages between place and expressions of

personal or social stress. Research on this topic has tra-

ditionally focused on the role of either individual or con-

textual factors; however, it is necessary to investigate the

interplay between individuals and the nature of their im-

mediate surroundings. Assessment of stress is normally

overly general, which makes it hard to compare the experi-

ence of stress across individuals; whereas focusing on the

emotional dimensions of the stress response offers a more

specific measure for analysis. We will recontextualize so-

cial media expressions through spatial modelling and inte-

gration with contextual geospatial datasets describing par-

ticipants’ immediate surroundings. This will lead to new

in-sights into how emotional stress is related to particular

conditions (e.g. traffic congestion), place types and designs

(e.g. public versus private places, high versus low density)

and times (e.g. commuting rush hours) within urban com-

munities.

As far as the authors are aware this is the first study of its

kind, which will be looking at various forms of stress, link-

ages to urban environments, and validation of a computa-

tional social media analysis tool against ’real’ experiences

of acute and chronic stress, using already well established

and validated measures from literature.

The remainder of the paper is organised as follows. Section

2 introduces some background and prior work on stress in

urban environments and the computational tool for emotion

based stress detection. Method details and overall valida-

tion study design are presented in section 3. Section 4 con-

cludes the paper and suggestions for future work are made.

2. Background

Intensive acute and chronic psychological stress appears to

play a causal role in the onset of multiple chronic disease

outcomes, such as asthma and obesity (Shankardass et al.,

2009; 2014), engendering significant costs related to eco-

nomic productivity, and health and social service spending

(Daar et al., 2007). A body of evidence suggests that the

built environment shapes how we experience and respond

to stress (Shankardass, 2012). However, there is a critical

gap in our understanding of how our environments shape

our experience of stressors (e.g., social disorder) and influ-

ence how we cope with our perceived stress because of the

availability (or lack thereof) of resources, e.g., safe park

space (Shankardass, 2012). There is a lack of place-based

measures of stress to facilitate research on these interrela-

tionships.

This study uses a conceptual framework recently proposed

by Shankardass (2012), which builds on Pearlin’s stress

process heuristic (Pearlin, 1999), where sources of stress

that are perceived as stressful can manifest emotion-al, be-

havioural and physiological responses (e.g., negative affect,

smoking and endocrine activation, respectively). Two criti-

cal mediators of these responses are resource appraisal and

coping behaviours, while the neighbourhood built environ-

ment can present stressors and offer resources that con-

dition how we cope in space and time. This conceptual

framework guides our hypotheses about which confounders

and moderators ought to be considered in building a predic-

tion model of emotional stress on stress-related endocrine

activation. These include personality differences, such as

trait anxiety and pessimism (Chang, 2002) - which may

confound the relationship - and low self-esteem (Dumont

& Provost, 1999) - which may increase the effect of per-

81

Stresscapes: Validating Linkages between Place and Stress Expression on Social Media

ceived stress on chronic endocrine activation, as well as

low social support (ibid.) - which may increase the effect of

perceived stress on chronic endocrine activation, and sex

and gender (Baum & Grunberg, 1991) with hard-to-predict

moderating effects on the relationship. Chronic endocrine

activation may be more likely where individuals adopt cop-

ing styles that do not effectively deal with stressors (e.g.,

avoidance coping, rather than approach coping or problem-

oriented coping.

Taking all this into account, our overall goal is to further

develop and validate an ontology of emotional stress (based

on presence of negative and the lack of positive affect) that

will facilitate measurement through semantic analysis of

geo-tagged Twitter posts (Sykora et al., 2013) and assess

the predictive validity of perceived psychological stress.

2.1. Detection of Stress from Tweets

There are numerous systems for effective, efficient and

accurate sentiment and emotion detection from language.

A broader overview of the various approaches is avail-

able in Thelwall et al. (2012). One of the popular tech-

niques is based on the use of words and phrase dictionar-

ies with known associated sentiment polarities or emotion

categories; however, these dictionaries, although some-

times combined and semi-automatically generated for bet-

ter cross-domain performance, are relatively flat and lack

semantic expressivity. Even more recently Eichstaedt et al.

(2015) still used a combination of simple dictionaries to

perform their automated tweet analysis.

In this work we employ an ontology based approach,

which is essentially a map of words and phrases with a

much richer semantic representation than simple dictio-

naries. The system we will use is called EMOTIVE and

is based on (1) a custom Natural Language Processing

(NLP) pipeline, which parses tweets and classifies parts-of-

speech tags, and (2) an ontology, in which emotions, related

phrases and terms (including a wide set of intensifiers, con-

junctions, negators, interjections), and linguistic analysis

rules are represented and matched against (Sykora et al.,

2013). EMOTIVE automatically detects expressions of

eight well recognised and fine-grained emotions in sparse

texts (e.g. Tweets). The system discovers the following

range of emotions; anger, disgust, fear, happiness, sadness,

surprise (also known as Ekman’s basic emotions - Ekman

and Davidson, (1994)), and confusion and shame, but at the

same time differentiates emotions by strength (also known

as activation level, e.g. fear - ’uneasy’, ’fearful’, ’petri-

fied’). An evaluation of the system against other bench-

marks performed in Sykora et al. (2013) showed excellent

results, with a very high f-measure of .962. Given the rich

representation of emotions and the ontology this is based

on, we will link and extended this system into representing

stress in its various shapes and forms, with the intention to

validate this system against real experiences of stress (see

next section for details on this validation study).

3. Methodology and Study Design

Emotional stress has been conceptualized in different ways,

including in terms of negative affect and as a state of dis-

tress. Two criteria will be utilized as criteria for validation

in this study, including;

• The single-item distress thermometer, which is a sim-

ple Likert scale shaped like a vertical thermometer that

asks the subject to select a number corresponding to

their level of distress (Zwahlen et al., 2008).

• The 10-item negative affect scale from the expanded

version of the Positive and Negative Affect Schedule

(PANAS-X) will also be used (Watson & Clark, 1994).

These measures will be framed using moment instructions,

i.e., we will ask whether participants have experienced dis-

tress/negative affect ”right now”, that is, at the present mo-

ment. The aim will be to collect at least 10 measures of

each during the two week follow-up (see section on overall

design). An algorithm will be used to scan a series of dis-

crete stress-related terms (still being compiled) in real-time

for all participants and randomly trigger the study follow-

up survey via SMS / text message. This survey will be

triggered roughly at evenly-spaced time points across the

two-week follow-up period, based on the rate of tweets by

the study participants. In order to understand the context of

Tweets, a series of questions will also be asked, to assess

what activity mode the participant was in (e.g., work, play,

commute, domestic, study) at the time of the Tweet, and

whether and how the surrounding environment influenced

the Tweet in any way. Participants will also be requested to

automatically geo-tag their Tweets by default, for the dura-

tion of the study follow-up.

3.1. Recruitment

The study population will include long-term (>3 months at

study entry) active (>4 posts per week) Twitter users who

are free from anxiety disorders. The planned sample size is

140 participants, which was calculated based on Bland and

Altman (1986) and scaled up by 40% for anticipated drop-

outs. A pool of potential study participants (i.e. long term,

active Twitter users) will be identified from a database of

several million collected Tweets, geo-tagged in the Toronto

area. The study will also be limited to participants who live

and work in the greater Toronto area.

82

Stresscapes: Validating Linkages between Place and Stress Expression on Social Media

3.2. Overall Design

The study can be broken-up into three phases:

• a. Running enrollment of study participants (1 month,

begins mid-May 2015)

• b. Follow-up period (2 months) each participant 2

weeks

• c. Study exit and hair sampling (running in parallel to

b), and ultimately study takedown by mid-September.

Data about participants will be collected at study entry,

specifically socio-demographic and psychological informa-

tion. Information about the experience of emotional stress

and relationship with place will be collected at approxi-

mately 10 time points during the follow-up period. Sub-

sequently in the study exit participants will be asked to

complete a checklist of potentially stressful events, in or-

der to understand the influence of major life events during

the follow-up period.

3.3. Assessment of Chronic Psychological Stress

The research team has also secured additional funding to

augment this summer’s study with a collection of hair sam-

ples for cortisol analysis in order to examine how our de-

vised measure of stress predicts chronic activation and al-

lostatic load (i.e. physiological dysfunction). Participants

who agreed to this will provide a 0.95 cm hair sample (from

the root) at study exit, which will be analysed using im-

munoassay analysis following a validated protocol (Gow

et al., 2010). Because hair grows at a rate of approximately

1.25 cm per month, cortisol embedded in this sample length

will reflect a retrospective record of approximately three

prior weeks. Hair cortisol level will be considered an out-

come in regression models from our measure of stress.

4. Conclusion and Future Work

There are several key benefits of our study. First, a

place-based measure of physiological stress will signifi-

cantly broaden the potential for research to examine how

the neighbourhood environment affects human health and

well-being. This could lead to studies that inform the de-

sign of neighbourhoods that facilitate stronger prevention

and management of stress-related illnesses. Second, the

final predictive validation model will create empirical evi-

dence of the inter-relationship amongst emotional and psy-

chological stress, endocrine activation and a range of de-

mographic and psychological traits. The study described in

this paper will be repeated, with lessons learned, next year

in the city of London. It is hoped that this will strengthen

the model and validation, and will also provide a cultur-

ally different built environment, with its own characteris-

tics. We hope this will lend itself to some interesting anal-

yses.

Acknowledgments

We are grateful for this work to be supported by an SSHRC

(Social Sciences and Humanities Research Council) Part-

nership Development grant and partly by an internal Wil-

frid Laurier University grant.

References

Abel, F., Hauff, C., Houben, G., Stronkman, R., and Tao,

K. Semantics + filtering + search = twitcident exploring

information in social web streams. In Proceedings of the

23rd ACM International Conference on Hypertext and

Social Media, Milwaukee, USA, 2012.

Baum, A. and Grunberg, N. E. Gender, stress, and health.

Health Psychology, 10(2):80–85, 1991.

Bland, J. M. and Altman, D. G. Statistical methods for as-

sessing agreement between two methods of clinical mea-

surement. Lancet, 327(8476):307–310, 1986.

Chang, E. C. Optimismpessimism and stress appraisal:

Testing a cognitive interactive model of psychological

adjustment in adults. Cognitive Therapy Research, 26

(5):675–690, 2002.

Chew, C. and Eysenbach, G. Pandemics in the age of twit-

ter: content analysis of tweets during the 2009 h1n1 out-

break. PLOS One, 5(11):e14118, 2010.

Choudhury, M. De. Role of social media in tackling chal-

lenges in mental health. In Proceedings of the 2nd Inter-

national Workshop on Socially-aware Multimedia, pp.

49–52, New York, USA., 2013.

Coppersmith, G., Harman, C., and Dredze, M. Measuring

post traumatic stress disorder in twitter. In Proceedings

of the 8th International AAAI Conference on Weblogs

and Social Media, Ann Arbor, USA, 2014.

Daar, A. S., Singer, P. A., Persad, D. L., Pramming, S. K.,

Matthews, D. R., Beaglehole, R., ..., and Bell. Grand

challenges in chronic non-communicable diseases. Na-

ture, 450(7169):494–496, 2007.

Dumont, M. and Provost, M. A. Resilience in adolescents:

Protective role of social support, coping strategies, self-

esteem, and social activities on experience of stress and

depression. Journal of Youth Adolescence, 28(3):343–

363, 1999.

83

Stresscapes: Validating Linkages between Place and Stress Expression on Social Media

Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G.,

Labarthe, D. R., Merchant, R. M., ..., and Seligman,

M. E. Psychological language on twitter predicts county-

level heart disease mortality. Psychological Science, 26

(2):159–169, 2015.

Ekman, P. and Davidson, R. J. (eds.). The Nature of Emo-

tion: Fundamental Questions. Affective Science. Ox-

ford University Press, 1994.

Gow, R., Thomson, S., Rieder, M., Uum, S. Van, and Ko-

ren, G. An assessment of cortisol analysis in hair and

its clinical applications. Forensic Science International,

196(1):32–37, 2010.

Miller, G. Social scientists wade into the tweet stream.

Science, 333(6051):1814–1815, 2011.

O’Connor, B., Balasubramanyan, R., Routledge, B., and

Smith, N. From tweets to polls: Linking text sentiment

to public opinion time series. In Proceedings of the 4th

International AAAI Conference on Weblogs and Social

Media, Washington D.C., USA, 2010.

Pearlin, L. I. The stress process revisited: Reflections on

concepts and their interelationships. Handbook on The

Sociology of Mental Health. Plenum Press, New York,

1999.

Schwartz, R. and Germaine, R. H. The spatial self:

Location-based identity performance on social me-

dia. New Media & Society, 2014. doi: 10.1177/

1461444814531364.

Shankardass, K. Place-based stress and chronic disease: A

systems view of environmental determinants. In Rethink-

ing Social Epidemiology, pp. 113–136. Springer, Nether-

lands, 2012.

Shankardass, K., McConnell, R., Jerrett, M., Milam, J.,

Richardson, J., and Berhane, K. Parental stress in-

creases the effect of traffic-related air pollution on child-

hood asthma incidence. In Proceedings of the National

Academy of Sciences, volume 106, pp. 12406–12411,

USA, 2009.

Shankardass, K., McConnell, R., Jerrett, M., Lam, C.,

Wolch, J., Milam, J., Gilliland, F., and Berhane, K. 2014.

parental stress increases body mass index trajectory in

preadolescents. Pediatric Obesity, 9(6):435–442, 2014.

Sykora, M., Jackson, T. W., O’Brien, A., and Elayan,

S. Emotive ontology: Extracting fine-grained emotions

from terse, informal messages. IADIS International

Journal on Computer Science and Information Systems,

8(2):106–118, 2013.

Thelwall, M., Buckley, K., and Paltoglou, G. Sentiment

strength detection for the social web. Journal of the

American Society for Information Science and Technol-

ogy, 63(1):163–173, 2012.

Tumasjan, A., Sprenger, T. O., and Welpe, I. M. Predicting

elections with twitter: What 140 characters reveal about

political sentiment. In Proceedings of the 4th Interna-

tional AAAI Conference on Weblogs and Social Media,

Washington D.C., USA, 2010.

Watson, D. and Clark, L. A. The panas-x. manual for the

positive and negative affect schedule: expanded form.

Technical report, University of Iowa, Iowa City, IA,

USA, 1994. URL http://www2.psychology.

uiowa.edu/faculty/clark/panas-x.pdf.

Zwahlen, D., Hagenbuch, N., Carley, M., Recklitis, C., and

Buchi, S. Screening cancer patients’ families with the

distress thermometer (dt): a validation study. Psycho-

Oncology, 17(10):959–966, 2008.

84

Car-traffic forecasting: A representation learning approach

Ali Ziat, Gabriella Contardo, Nicolas Baskiotis, Ludovic Denoyer FIRSTNAME.LASTNAME@LIP6.FR

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

Abstract

We address the problem of learning over multiple

inter-dependent temporal sequences where de-

pendencies are modeled by a graph. We propose

a model that is able to simultaneously fill in miss-

ing values and predict future ones. This approach

is based on representation learning techniques,

where temporal data are represented in a latent

vector space. Information completion (missing

values) and prediction are then performed on this

latent representation. In particular, the model al-

lows us to perform both tasks using a unique for-

malism, whereas most often they are addressed

separately using different methods. The model

has been tested for a concrete application: car-

traffic forecasting where each time series char-

acterizes a particular road and where the graph

structure corresponds to the road map of the city.

1. Introduction

Traffic data has particular characteristics that can not be

fully handled by classical sequential and temporal models:

they contain multiple missing values, and one has to con-

sider simultaneously multiple sources that can be somehow

related, by spatial proximity for example.

We propose a novel method that aims at integrating these

aspects in one single model. The proposed approach is

based on representation learning techniques aiming at

projecting the observations in a continuous latent space,

each sequence being modeled at each time-step by a

point in this space. It has many advantages w.r.t existing

techniques: it is able to simultaneously learn how to fill

missing values and to predict the future of the observed

temporal data, avoiding to use two different models, and

it naturally allows one to deal with information sources

that are organized among a graph structure. Moreover,

the model is based on continuous optimization schemes,

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

allowing a fast optimization over large scale datasets.

2. Context and Model

2.1. Notations and Tasks

Let us consider a set of n temporal sequences x1, ..xn such

that x
(t)
i ∈ X is the value of the i-th sequence at time t

defined by xi = (x
(1)
i , .., x

(T)
i) . In the case where X is

R
m, the context corresponds to multiple multivariate time

series. The sequences contain missing values so we also

define a mask m
(t)
i such that m

(t)
i = 1 if value x

(t)
i is ob-

served - and thus available for training the system - and

m
(t)
i = 0 if x

(t)
i is missing - and thus has to be predicted

by the model. In addition, we consider that there exists a

set of relations between the sequences which correspond to

an external information, like spatial proximity for example

when X is discrete. The sequences are thus organized in a

graph G = {ei,j} such that ei,j = 1 means that xi and xj

are related, and ei,j = 0 elsewhere.

2.2. Model

The RepresentAtIoN-baSed TempOral Relational Model

(RAINSTORM) is a loss-based model which is described

through a continuous derivable loss function that will be

optimized using classical optimization techniques.

Let us define L(θ, γ, z) the loss function to minimize where

z is the set of all the vectors z
(t)
i for i ∈ [1..n] and t ∈

[1..T], T being the size of the observed time windows i.e.

the history of the time series. We define L as:

L(θ, γ, z) =
1

O

n∑

i=1

T∑

t=1

m
(t)
i ∆(fθ(z

(t)
i), x

(t)
i) (term 1)

+ λdyn

n∑

i=1

T−1∑

t=1

||z
(t+1)
i − hγ(z

(t)
i)||2 (term 2)

+ λstruct

∑

i,j∈[1..N]2

T∑

t=1

ei,j ||z
(t)
i − z

(t)
j ||2 (term 3)

(1)

where O is the number of observed values i.e. values such

85

Car-traffic forecasting: A representation learning approach

that m
(t)
i = 1.

This loss function contains three terms, each one associ-

ated with one of the constraints that have been presented

previously:

• Term 1 aims at simultaneously learn z and a function

fθ - called decoding function - such that, from z
(t)
i ,

fθ can be used to predict the value x
(t)
i . The function

fθ(z
(t)
i) is defined as fθ : RN → X . ∆ is used to

measure the error between predicting fθ(z
(t)
i) instead

of x
(t)
i , m

(t)
i playing the role of a mask restricting to

compute this function only on the observed values.

• Term 2 aims at finding values z
(.)
i and a dynamic

model hγ such that, when applied to z
(t)
i , hγ allows us

to predict the representation of the next state of time

series i i.e. z
(t+1)
i . hγ is the dynamic function which

models the dynamicity of each series directly in the

latent space: hγ : RN → R
N . The parameters γ will

be learned to minimize the mean square error between

the prediction hγ(z
(t)
i) and z

(t+1)
i .

• At last, term 3 corresponds to a structural regular-

ity over the graph structure that encourages the model

to learn closer representations for time series that are

related. This will force the model to learn representa-

tions that reflect the structure of the considered graph.

λdyn and λstruct are manually defined coefficients that

weight the importance of the different elements in the loss

function.

The learning problem aims at minimizing the loss function

L(θ, γ, z) simultaneously on θ, γ and z. By restricting the

fθ and hγ to be continuous derivable functions, we can use

gradient-descent based optimization approaches.

3. Traffic Forecasting and Experiments

Experiences have been made on two datasets from the

cities of Beijing and Warsaw. The dataset are provided by

(Zheng, 2011) and (ICDM) and are not described here for

sake of space.

3.1. Models

We propose to compare the RAINSTORM approach to the

following baseline models, some baselines being used for

data completion, and some others for prediction. For the

completion problem we consider the following models:

MF: This correspond to the classical matrix factorization

framework for data completion.

MF-with geographic context: This method is the one

named TSE (traffic speed estimation) in (Shang et al.,

2014).

For the prediction task, we consider:

NeuralNetwork: This is the classical baseline method

used in traffic forecasting based on a neural network archi-

tecture, described for instance in (Dougherty & Cobbett,

1997).

SAE: This is the method described in (Lv et al., 2014).

We also compare RAINSTORM with a model based on a

heuristic able to perform both completion and prediction

that we call RoadMean and can be described as follow:

this model predicts and fills missing value with the mean

of observed values on the sequence.

3.2. Experiments and Results

We compare our model with baselines approach for the two

tasks of completion and prediction. Results are reported in

Table 1. and Table 2.

Table 1. Prediction at T +1, comparison between described base-

lines models and the RAINSTORM model for different size of

latent space N with a root mean square error (RMSE)

N Model/Dataset Beijing Warsaw

Volume Volume Speed

RoadMean 5.51 5.09 11.02

NeuralNetwork 4.77 4.27 8.05

SAE 4.75 4.27 7.85

5 RAINSTORM 4.82 4.28 7.74

10 RAINSTORM 4.78 4.20 7.21

20 RAINSTORM 4.54 4.21 7.19

50 RAINSTORM 4.66 4.20 7.60

Table 2. Completion for 50% missing data, comparison between

described baselines models and the RAINSTORM model for dif-

ferent sizes N of the latent space with a root mean square error

(RMSE)

N Model/Dataset Beijing Warsaw

Volume Volume Speed

RoadMean 5.55 5.00 11.10

MF 3.58 3.16 6.80

MF-Geo 3.24 2.99 6.49

5 RAINSTORM 2.99 3.12 6.49

10 RAINSTORM 3.03 3.00 6.24

20 RAINSTORM 3.22 2.94 6.23

50 RAINSTORM 2.97 2.93 6.70

4. Conclusion

We have presented a new way to learn over incomplete

multiple sources of temporal relational data sources. The

RAINSTORM approach is based on representation learn-

ing techniques and aims at integrating in a latent space the

observed information, the dynamicity of the sequences of

86

Car-traffic forecasting: A representation learning approach

data, and their relations. In comparison to baselines mod-

els that have been developed for prediction only or com-

pletion only, our approach shows interesting performance

and is able to simultaneously complete missing values and

predict the future evolution of the data.

References

Dougherty, Mark S and Cobbett, Mark R. Short-term inter-

urban traffic forecasts using neural networks. Interna-

tional journal of forecasting, 13(1):21–31, 1997.

ICDM. I.E.E.E icdm contest: Tomtom traffic prediction for

intelligent gps navigation.

Lv, Yisheng, Duan, Yanjie, Kang, Wenwen, Li, Zhengxi,

and Wang, F-Y. Traffic flow prediction with big data: A

deep learning approach. 2014.

Shang, Jingbo, Zheng, Yu, Tong, Wenzhu, Chang, Eric, and

Yu, Yong. Inferring gas consumption and pollution emis-

sion of vehicles throughout a city. In Proceedings of the

20th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, 2014.

Zheng, Yu. T-drive trajectory data sample, August

2011. URL http://research.microsoft.

com/apps/pubs/default.aspx?id=152883.

87

On Predicting Traveling Times in Scheduled Transportation (Abstract)

Avigdor Gal AVIGAL@IE.TECHNION.AC.IL

Avishai Mandelbaum AVIM@IE.TECHNION.AC.IL

Francois Schnitzler FRANCOIS@EE.TECHNION.AC.IL

Arik Senderovich SARIKS@TX.TECHNION.AC.IL

Technion - Israel Institute of Technology, Haifa, Israel

Matthias Weidlich WEIDLIMA@INFORMATIK.HU-BERLIN.DE

Humboldt-Universität zu Berlin, Berlin, Germany

Traveling time prediction

Urban mobility impacts urban life to a great extent. People,

living in cities, plan their daily schedule around anticipated

traffic patterns. Some wake-up early to “beat” rush hour.

Others stay at home and work during days when a conven-

tion comes to town.

To enhance urban mobility, much research was invested

in traveling time prediction, see (Wu et al., 2004). That

is, given an origin and destination, provide a passenger

with an accurate estimation of how long a journey lasts. In

particular, the ability to predict traveling time in scheduled

transportation, e.g., buses, was shown to be feasible (Chien

et al., 2002).

In this work, we address the problem of online travel time

prediction in the context of a bus journey. That is, a journey

may be ongoing in the sense that journey events already

indicated the progress of the bus on its route. For such an

ongoing journey, we are interested in the current prediction

of the traveling time from the current bus stop to some des-

tination via a particular sequence of stops, which is defined

by the respective journey pattern.

Prediction Approach

To address the problem of online travel time prediction, we

investigate a novel use of methods from Queueing Theory

and Machine Learning in the prediction process. We pro-

pose a prediction engine that, given a scheduled bus journey

(route) and a ‘source/destination’ pair, provides an estimate

for the traveling time, while considering both historical data

and real-time streams of information that are transmitted by

buses. To do so, we model buses as clients that go through

a journey of segments that are interpreted as a network of

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

queues. We propose a model that uses natural segmentation

of the data according to bus stops and a set of predictors,

some use learning while others are learning-free, to estimate

traveling time.

The model of journey segments. As the foundation of our

approach, we propose to model each bus trip by using a

segmentation model as follows. A trip between two stops

consists of segments, with each segment being represented

by a ‘start’ stop and an ‘end’ stop, see Figure 1. Given the

first stop of a trip ω1 and the last stop of a trip ωn, the inter-

mediate stops are known in advance since each bus follows

a predefined journey pattern. Therefore, a trip can be de-

scribed by segments that are characterized by a pair of stops

of the form 〈ωi, ωi+1〉 (Figure 1). This segmented model,

in turn, allows for fine-granular grounding of the prediction

of traveling time T (〈ω1, . . . , ωn〉, tω1
) for a sequence of

stops 〈ω1, . . . , ωn〉 when departing at time tω1
: instead of

considering only journeys that follow the same sequence of

stops 〈ω1, . . . , ωn〉, all journeys that share some segments

can be used for prediction.

��� ����������� ��	�

Figure 1. A segmented model of traveling times

Using information on bus stops, the prediction of the journey

traveling time T (〈ω1, . . . , ωn〉, tω1
) is traced back to the

sum of traveling times per segment. The traveling time per

segment is assumed to be independent of a specific journey

pattern and, thus, also independent of a specific journey:

T (〈ω1, . . . , ωn〉, tω1
) =

n−1∑

i=1

T (〈ωi, ωi+1〉, tωi
),

where tωn−1
= tω1

+ T (〈ω1, ωn−1〉, tω1
).

Prediction based on the snapshot principle. A first set

of predictors is grounded in heavy-traffic approximations

88

On Predicting Traveling Times in Scheduled Transportation

in Queueing Theory. It is non-learning, in the sense that it

does not generalize prediction from historical events, but

rather uses recent events to predict future traveling times.

Applied to our context, the main idea is that a bus that passes

through a segment, will experience the same traveling time

as another bus that has just passed through that segment

(not necessarily of the same type, line, etc). Following this

line, we define a single-segment snapshot predictor, called

Last-Bus-to-Travel-Segment (LBTS).

To use this predictor to address the online travel time predic-

tion problem, it needs to be lifted to a network setting. To

this end, we exploit the fact that the snapshot principle holds

for networks of queues, when the routing through this net-

work is known in advance (Reiman & Simon, 1990). Clearly,

in scheduled transportation, this is the case, so that we de-

fine a multi-segment (network) snapshot predictor, called

Last-Bus-to-Travel-Network. It is derived by summing up

the LBTS predictions for the segments of the respective

journey pattern of the bus for which the prediction is made.

Prediction using Machine Learning methods. A second

set of predictors comes from Machine Learning and is based

on regression trees. They exploit past journey logs to learn

a prediction model, and then use this model to make a

prediction on new instances of the problem, in our case,

traveling times as part of current journeys.

As a first step, we formalize the traveling times prediction

problem as a regression problem. Features considered for

the regression include the travel time of the last bus that

used that segment (LBTS, as introduced above); the interval

between the time the last bus left the segment and the esti-

mated time to enter the segment; the day of the week; and

the time of the day. For the resulting regression model, vari-

ous generic algorithms are applied to derive an ensemble of

regression trees that is then used to solve the prediction prob-

lem. Specifically, random forests, extremely randomized

forests, AdaBoost, and gradient tree boosting are leveraged.

In a final step, the above methods originating from Queueing

Theory and Machine Learning are combined. That is, we

rely on the boosting algorithms and modify them such that

the first model considered in the boosting is the snapshot

predictor model.

Evaluation

To demonstrate the value of our approach, we tested the

proposed predictors using bus data that comes from the bus

network in the city of Dublin.1 The data includes location

of buses that is sampled in intervals of 5 to 300 seconds,

depending on the current location of the bus.

Using this data, we empirically evaluated the prediction

1See also http://www.dublinked.ie/ and http://

www.insight-ict.eu/

accuracy of the presented methods. The main results of our

experiments have been:

• Prediction methods that combine the snapshot princi-

ple and Machine Learning techniques are superior in

quality of prediction to both snapshot predictors and

Machine Learning methods (that do not include the

snapshot predictor).

• The prediction error increases with the number of bus

stops per journey. However, when considering the

relative error, it is stable for all trip lengths, i.e. the pre-

dictors do not deteriorate proportionally to the length

of the journey (in stops).

• Surprisingly, the snapshot predictor does not deteri-

orate for longer trips, therefore contradicting the hy-

pothesis that the snapshot predictor would be more

precise for journeys with higher temporal proximity to

the current journey.

Conclusion

In this work, we presented a novel approach towards predict-

ing travel time in urban public transportation. It is grounded

in a partitioning of the travel time into stop-based segments,

and combines the use of Machine Learning and Queueing

Theory predictors to model traveling time in each segment.

Our empirical evaluations confirmed that the combination

of methods indeed improves performance. Moreover, we

observed that the snapshot predictor is, counter-intuitively,

unaffected by the length of a journey. This leads to positive

evidence in favor of applying mixed Queue and Machine

Learning predictors in similar settings.

This work was supported by the EU INSIGHT project (FP7-

ICT 318225).

References

Chien, Steven I-Jy, Ding, Yuqing, and Wei, Chienhung.

Dynamic bus arrival time prediction with artificial neural

networks. Journal of Transportation Engineering, 128

(5):429–438, 2002.

Reiman, Martin I and Simon, Burton. A network of priority

queues in heavy traffic: One bottleneck station. Queueing

Systems, 6(1):33–57, 1990.

Wu, Chun-Hsin, Ho, Jan-Ming, and Lee, Der-Tsai. Travel-

time prediction with support vector regression. Intelligent

Transportation Systems, IEEE Transactions on, 5(4):276–

281, 2004.

89

Report from Dagstuhl:

SocioPaths - Multimodal Door-to-Door Route planning via Social Paths

Thomas Liebig THOMAS.LIEBIG@TU-DORTMUND.DE

University of Dortmund, 44221 Dortmund, Germany

Sabine Storandt STORANDT@INFORMATIK.UNI-FREIBURG.DE

University of Freiburg, 79110 Freiburg, Germany

Peter Sanders SANDERS@KIT.EDU

University of Karlsruhe, 76128 Karlsruhe, Germany

Walied Othman WALIED.OTHMAN@GMAIL.COM

Triade systems

Stefan Funke FUNKE@FMI.UNI-STUTTGART.DE

University of Stuttgart, 70569 Stuttgart, Germany

Abstract

Individual multi-modal trip planning is a ma-

jor task in transportation science. With increas-

ing availability of new means of transportation

personal constraints (e.g. elevator phobia or

fear of flying) and preferences (e.g. train over

bus) gain higher impact. Existing trip planners

are mostly based on static time-tables and road-

network data. Furthermore an objective function

that covers individual constraints and preferences

on route choice is hard to find for existing trip

planners.

In this position paper we present an approach

that incorporates the ‘wisdom of the crowd’ by

construction of a transfer graph based on previ-

ously successfully performed trips of other per-

sons. By this approach personal constraints and

preferences may easily be taken under consider-

ation by filtering those routes which were per-

formed by people with similar restrictions. Also

regular congestions may be taken into consider-

ation as these are already in the data. In case of

hazards or blockages corresponding connections

can be removed in the transfer graph and alter-

natives are provided. With a sufficiently large set

of initial routes, we expect the method to produce

reasonable route suggestions.

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

1. Introduction

The upcoming means of transportation (e.g. autonomous

or flying cars) enable a more flexible individual mobility.

Moreover some of these transportation means can be car-

ried within the other (as we do nowadays with bikes in

buses or trains on ferries). This leads to novel options

when travelling to some location. At the same time per-

sonal constraints (e.g. elevator phobia, fear of flying) have

a stronger impact on personal route choices. The task to

plan a route from one start location to a target location is

called trip planning, when multiple means of transporta-

tion (also called ‘travel modes’) are involved this becomes

multi-modal trip planning.

Existing trip planning algorithms operate on a graph repre-

sentation of the road network the so-called traffic network

G consisting of vertices V and connecting edges E: Every

edge e ∈ E of the traffic network represents a segment (e.g.

a street, a flight corridor, or the connection among sub-

sequent bus stops) The vertices V represent junctions be-

tween segments and therefore locations where decisions on

travel directions can be made. A cost function maps each

edge to a positive number that denotes how much it would

‘cost’ to travel the corresponding segment. The cost func-

tion needs to be consistent throughout the traffic network,

but can be defined in several ways, such that it holds the

most important aspects: for example length of the segment,

travel time, or comfortableness. With a given start and end

location in the traffic network, trip planning searches the

path that connects start and goal and minimizes the cost.

90

SocioPaths - Multimodal Door-to-Door Route planning via Social Paths

Many trip planning algorithms exist in literature, for a brief

overview we point the reader to (Bast et al., 2015) and

(Delling et al., 2009). To summarize, the shortcomings of

existing route planners are:

• They are mostly based on static time-table and road

network data,

• The objective functions to produce routes people actu-

ally use are surprisingly hard to find. Current solutions

either list all pareto-optimal routes, which is time con-

suming and results in a too large solution space for the

end user, or, use an ad-hoc restriction to some routes

without any validation via user experience.

• Not all public transit timetable information is avail-

able,

• modelling transfer buffers or walking times is hard

even with complete timetable information,

• routes people prefer are often also determined by un-

known factors like traffic congestion and overcrowd-

ing

In contrast, the hereby presented approach bases on the

main idea to stitch real, recorded (historic) travel segments

of other travelers together into a travel plan. This stitching

approach poses the following challenges that are detailed

in this paper. Initially, historical data is needed for boot-

strapping. The approach has to stitch together a travel plan

at query time that also reflects the user’s preferences. In

addition the practicality of this plan has to be validated.

Historical, real-time and predicted traffic knowledge (e.g.

blocked roads, need to be incorporated). While we identify

these challenges, and provide solution sketches for some

challenges in this position paper, we leave solving of a few

points for future work.

Our approach constructs a transfer graph from given routes

and filters the connections in case of constraints. The re-

sulting transfer graph can be used for routing. This pro-

cedure is carried out in four steps: a) Sourcing routes, b)

Constructing the transfer graph, c) Adjust in case a depar-

ture time is specified, d) Adjust in case current traffic con-

ditions make a transfer impossible.

This paper is a position paper that presents an outline of

our approach and is an introduction to our current work on

route computations. Application of this algorithm to real

routes is in preparation but this description is not included

in this paper.

This position paper is structured as follows. Section 2 starts

with a brief primer on trip planning and highlights current

literature in multi-modal trip planning. Section 3 provides

details on our approach, followed by Section 4 on a discus-

sion and future research directions.

2. Related Work

A popular algorithm for trip computation is A∗ (Hart et al.,

1968), this method searches the minimal connecting path

iteratively, beginning at the goal. Not traversing all possi-

ble detours, A∗ tests the most promising ones first, based on

a lower-bound heuristic on the cost function that estimates

the minimal travel costs between any two locations. An

example for such a heuristic is the geographical distance,

which is always lower than the road based distance and

therefore a suitable heuristic in case path length is the cost

function. In multi-modal trip planning multiple of these

traffic networks (one for each mode) are linked together at

locations where it is possible to switch from one mode to

another (transfer vertices). Multi-modal trip planning re-

quires a consistent cost function which is applicable to all

parts of the traffic network and thus to all modes of trans-

portation.

Let us briefly highlight two currently very popular speed-

up techniques for queries in road networks as well as pub-

lic transportation networks. For a road network with static

cost functions, contraction hierarchies (Geisberger et al.,

2008) are a speed-up scheme that improves considerably

upon the A∗ algorithm and enables trip calculation with

guaranteed optimality in large traffic networks at European

scale within few milliseconds. By augmenting the original

road network with so-called shortcuts in a preprocessing

phase, the search space is restricted to a tiny fraction of the

whole network, hence improving the query times by sev-

eral orders of magnitudes compared to Dijkstra or any A∗

variant. For public transportation networks, a very popular

and powerful technique is that of so-called transfer patterns

(Bast et al., 2010). In a preprocessing step, all possible

sequences of transfers on optimal routes are precomputed

and based on that a condensed graph structure is created

which allows for the almost instant answering of source-

target queries.

A comprehensive comparison of existing trip planning

methods is provided in (Bast et al., 2015). Recent work

incorporates user constraints in multi-modal trip planning

(Dibbelt et al., 2015), in addition to their approach our

method incorporates knowledge on regularly occurring

congestions. The approaches in (Niu et al., 2015) and

(Liebig et al., 2014) utilize predictions to avoid upcoming

traffic hazards, but their method has no incorporation of

user preferences nor multi-modality. In (Bast & Storandt,

2014) trip guidebooks are created which are suitable for a

long period of time, e.g., “Take Bus 10 to the main station,

from there take Tram 11 or 13 (whichever comes next) to

your target station. Trip duration: 30 minutes. Frequency:

every 20 minutes.’

91

SocioPaths - Multimodal Door-to-Door Route planning via Social Paths

A B C D E

F

G

H

I J

A-B-C-D-E

B-C-F-G

H-F-G-I-J

B1

B2

B3

B4

T2

T1

T5

T6 T7

B1 B2 T1

B3

T2

B4

T5 T6 T7

B I

Transfer Graph

Query: B → I

Figure 1. Stitch Network for multi-modal trip planning. Based on sourced trips (blue,green,red) nodes are travel legs and edges are

uni-modal routes. An edge exists when a transfer between legs has actually been executed (and its popularity is counted). We query this

graph to obtain a travel plan from B to I (black dotted line).

3. Socio-Paths routing method

In previous section we provided an introduction to trip

planning and highlighted latest research for multi-modal

and large-scale trip computation. But, as previously stated

in the introduction, most of these approaches have the fol-

lowing shortcomings: (1) The computation is mostly based

on static time-table and road network data. (2) It is hard

to find the objective functions to produce routes people ac-

tually use. Current solutions either list all pareto-optimal

routes, which is time consuming and results in a too large

solution space for the end user, or, use an ad-hoc restric-

tion to some routes without any validation via user expe-

rience. (3) Public transit timetable information is incom-

plete. (4) Even with complete timetable information, mod-

elling transfer buffers or walking times is hard. (5) Of-

ten, also unknown factors like traffic congestion and over-

crowding determine routes that people prefer. In practice

these limitations anticipate delivery of route suggestions

that fit to personal preferences (e.g. preference of train over

bus) and constraints (e.g. seasickness) upon a trip calcula-

tion request.

To overcome these limitations, we propose a novel four-

step method for stitching travel plans from previously

recorded and bootstrapped routes. By utilization of these

heterogeneous data sources the wisdom of multiple oracles

(trip planners and prediction models) and local experts (e.g.

via crowdsourcing) can be considered.

The four steps our method comprises are (1) Sourcing

routes, (2) Constructing the transfer graph, (3) Adjust in

case a departure time is specified, and (4) Adjust in case

current traffic conditions make a transfer impossible are

summarized in Algorithm 1. In the following we explain

each step in more detail.

92

SocioPaths - Multimodal Door-to-Door Route planning via Social Paths

Algorithm 1 SocioPath Algorithm

Input: D = Source Routes

Input: hazards,

Input: query: (start, goal, constraints),
Gsource =Construct Transfer Graph(D)

Gcurrent = Adjust Transfer Graph(Gsource, hazards)

G = Filter Transfer Graph(Gcurrent, constraints)

Compute Route(G, start, goal)

3.1. Sourcing routes

Our approach bases on some initially sourced routes. These

routes are ideally real travelled routes that represent the ex-

pert knowledge of local experts, e.g., shortcuts that avoid

congestions or possible connections among several means

of public transport that are not stored in schedules and ex-

isting trip planners. This real-world data can be obtained in

three ways: (1) via an active participation app for a persons

smartphone (crowdsourcing), via a passive tracking system

(e.g. cellular phone networks (Andrienko et al., 2013)) or

via questionnaires (Janssens et al., 2012). Obviously this

step processes sensitive data, as personal travel plans eas-

ily reveal individual habits and preferences of the person.

Therefore these methods have to be designed such that re-

identification is prohibited and no vulnerable data can be

accessed by the system. Possible approaches for protection

of individual data in this setting are (Boutsis & Kalogeraki,

2013) and (Liebig, 2015).

In case no real routes are available, or they do not provide

sufficient coverage of the traffic network, routes can also be

retrieved from existing route planners. This allows joining

the information of various special-purpose or incomplete

trip planners in a single system.

3.2. Constructing the transfer graph

Based on previously sourced routes a transfer graph is

constructed that represents travel alternatives and possible

changes of transport mode. The transfer graph G consists

of edges E and nodes V . The nodes are travel legs, i.e.

uni-modal routes. An edge e ∈ E ⊂ V × V among two

nodes (vi, vj) exists when a transfer from the leg vi to vj
has actually been executed (and its popularity is counted).

This transfer graph is queried to obtain a travel plan from

location A to B. An example for the transfer graph con-

struction is provided in Figure 1. In the figure the sourced

trips are depicted in blue, green, and red. The correspond-

ing multi-modal traffic network is in the upper part of the

figure. At the edge the travel mode is depicted by small pic-

tograms. Based on these routes and the corresponding traf-

fic network the transfer graph is constructed as described

above. The resulting transfer graph is shown in the lower

part of Figure 1. Nodes of this graph are travel legs and

edges are uni-modal routes. An edge exists iff a transfer

between legs has actually been executed. Finally, we query

this transfer graph to obtain a travel plan from location B

to I in Figure 1. The resulting trip is marked by the black

dotted line.

Possible additions to this process is, similar to transfer pat-

terns (Bast et al., 2010), the annotation with concrete time

information to provide time depending trip calculations. It

is also easily possible to extend the criteria for path selec-

tion in the transfer graph according to the user preferences

(including length or duration, number of transfers, price,

robustness, waiting times, and, popularity) once these fea-

tures were annotated at the nodes during previous sourcing

of the routes.

3.3. Adjustments

The transfer graph, constructed in previous section, pro-

vides a useful data structure for trip computations from a

set of initially given routes. Based on this graph a route can

be stitched together from the information other people pro-

vided. The resulting route can be adjusted, once the exact

travel time is given. This comprises two cases (1) if pos-

sible, validate all transfers in the route with the data (Find

a route where that transfer was possible), and, (2) if no ev-

idence is found that this transfer is possible, validate the

transfers with timetable and road network data. This step

leads to more data that may be added to the transfer graph,

in a similar way as the initially sourced routes.

In case current traffic conditions make a transfer impos-

sible, we temporarily “disable” that specific transfer node

in the graph. In case of frequent problems, good alterna-

tives should already be in the data and generated routes will

avoid the regularly occurring transfer problem.

4. Conclusion and Future Work

In this position paper we sketched a novel idea for route

planning based on routes people really used. The method

can be bootstrapped using routes from ordinary route plan-

ners. We expect our approach to be particularly useful for

route planning with special needs (e.g. disabled persons,

bikers).

One could remark that the provided routes have no opti-

mality guarantee and detours might be provided. How-

ever, if the graph construction was initially bootstrapped

with ordinary trip planners or large sets of recorded routes

this limitation will diminish. An open issue is that the

proposed trip planner is deterministic and provides same

output with same queries. Though this approach provides

user-centric trip queries including individual preferences

and constraints, guiding all persons selfishly to travel via

some leg with limited capacity (e.g. a bus or a narrow

93

SocioPaths - Multimodal Door-to-Door Route planning via Social Paths

street) could lead to congestions (Roughgarden & Tardos,

2002). Future work therefore has to study how load balanc-

ing can be included directly in trip planning without caus-

ing too long detours for individuals, we will study usage of

auction models (Dütting et al., 2012) for this problem.

Acknowledgments

This work results from a group discussion at Dagstuhl Sem-

inar 13512. The authors received funding from the Euro-

pean Union’s Seventh Framework Programme under grant

agreement number FP7-318225, INSIGHT.

References

Andrienko, Gennady, Gkoulalas-Divanis, Aris, Gruteser,

Marco, Kopp, Christine, Liebig, Thomas, and Rechert,

Klaus. Report from dagstuhl: the liberation of mobile

location data and its implications for privacy research.

ACM SIGMOBILE Mobile Computing and Communica-

tions Review, 17(2):7–18, 2013.

Bast, H., Delling, D., Goldberg, A., Müller-Hannemann,

M., Pajor, T., Sanders, P., Wagner, D., and Werneck, R. F.

Route Planning in Transportation Networks. ArXiv e-

prints, April 2015. URL http://arxiv.org/abs/

1504.05140.

Bast, Hannah and Storandt, Sabine. Flow-based guide-

book routing. In McGeoch, Catherine C. and Meyer, Ul-

rich (eds.), 2014 Proceedings of the Sixteenth Workshop

on Algorithm Engineering and Experiments, ALENEX

2014, Portland, Oregon, USA, January 5, 2014, pp.

155–165. SIAM, 2014. ISBN 978-1-61197-319-8. doi:

10.1137/1.9781611973198.15.

Bast, Hannah, Carlsson, Erik, Eigenwillig, Arno, Geis-

berger, Robert, Harrelson, Chris, Raychev, Veselin, and

Viger, Fabien. Fast routing in very large public trans-

portation networks using transfer patterns. In Algorithms

- ESA 2010, 18th Annual European Symposium. Pro-

ceedings, Part I, pp. 290–301, 2010.

Boutsis, Ioannis and Kalogeraki, Vana. Privacy preser-

vation for participatory sensing data. In 2013 IEEE

International Conference on Pervasive Computing and

Communications, PerCom 2013, San Diego, CA, USA,

March 18-22, 2013, pp. 103–113. IEEE Computer Soci-

ety, 2013.

Delling, Daniel, Sanders, Peter, Schultes, Dominik, and

Wagner, Dorothea. Engineering route planning algo-

rithms. In Algorithmics of Large and Complex Networks

- Design, Analysis, and Simulation [DFG priority pro-

gram 1126], pp. 117–139, 2009.

Dibbelt, Julian, Pajor, Thomas, and Wagner, Dorothea.

User-constrained multimodal route planning. J. Exp. Al-

gorithmics, 19:3.2:1.1–3.2:1.19, April 2015. ISSN 1084-

6654. doi: 10.1145/2699886.

Dütting, Paul, Henzinger, Monika, and Weber, Ingmar.

Maximizing revenue from strategic recommendations

under decaying trust. In Proceedings of the 21st ACM

international conference on Information and knowledge

management, pp. 2283–2286. ACM, 2012.

Geisberger, Robert, Sanders, Peter, Schultes, Dominik, and

Delling, Daniel. Contraction hierarchies: Faster and sim-

pler hierarchical routing in road networks. In Proceed-

ings of the 7th International Conference on Experimen-

tal Algorithms, WEA’08, pp. 319–333, Berlin, Heidel-

berg, 2008. Springer-Verlag. ISBN 3-540-68548-0, 978-

3-540-68548-7.

Hart, Peter E., Nilsson, Nils J., and Raphael, Bertram. A

formal basis for the heuristic determination of minimum

cost paths. IEEE Transactions on Systems, Science, and

Cybernetics, SSC-4(2):100–107, 1968.

Janssens, Davy, Knapen, Luk, Körner, Christine, Mon-

reale, Anna, Panis, Luc Int, Rinzivillo, Salvatore,

Schulz, Daniel, Simini, Filippo, Ardanuy, Jesùs Fraille,

Dhulst, Reinhilde, Pelekis, Nikos, and Theodoridis, Yan-

nis. D1.1 report on big data available and privacy

aspects. Technical Report D1.1, Universiteit Hasselt

Transportation Research Institute, 8 2012.

Liebig, Thomas. Privacy preserving centralized counting

of moving objects. In Bacao, Fernando, Santos, Mari-

bel Yasmina, and Painho, Marco (eds.), AGILE 2015,

Lecture Notes in Geoinformation and Cartography, pp.

91–103. Springer International Publishing, 2015. ISBN

978-3-319-16786-2.

Liebig, Thomas, Piatkowski, Nico, Bockermann, Christian,

and Morik, Katharina. Route planning with real-time

traffic predictions. In Proceedings of the 16th LWA Work-

shops: KDML, IR and FGWM, pp. 83–94, 2014.

Niu, Xiaoguang, Zhu, Ying, Cao, Qingqing, Zhang, Xin-

ing, Xie, Wei, and Zheng, Kun. An online-traffic-

prediction based route finding mechanism for smart city.

International Journal of Distributed Sensor Networks,

501:970256, 2015.

Roughgarden, Tim and Tardos, Éva. How bad is selfish

routing? Journal of the ACM (JACM), 49(2):236–259,

2002.

94

Modelling Time and Location in Topic Models

Christian Pölitz CHRISTIAN.POELITZ@TU-DORTMUND.DE

TU Dortmund University, Artificial Intelligence Group,

Otto Hahn Str. 12, 44227 Dortmund, Germany

Abstract

Many text collections like news paper or social

media blog archives contain texts that often refer

to special dates and/or locations. These informa-

tion can be valuable to investigate topics in cer-

tain regions and time spans. We use topic models

that integrate time and geographical information

extracted from the texts to find such topics. In

this extended abstract, we motivate our approach

and shortly describe the method. Experimental

evaluations and detailed description are in prepa-

ration to a full paper.

1. Introduction

Topic models (see for instance (Blei et al., 2003)) have

been used extensively to summarize text collections into

semantic clusters. Such text collections can contain for in-

stance news paper articles, Blog entries, tweets or any writ-

ten social media content. The documents in these collec-

tions contain often information about locations and dates.

These information are valuable for extracting topics for cer-

tain regions or time spans. In order to integrate temporal

and positional information, we need the corresponding time

and location information for our text corpus. Previous ap-

proaches assumed that we either directly have information

about time and position for each document in the corpus or

that a named entity recognition tool finds geographic loca-

tions. We propose a hybrid approach that extends standard

Latent Dirichlet Allocation (LDA (Blei et al., 2003)) topic

models. We assume that the documents can have multiple

dates and positions. In order to integrate multiple infor-

mation for single documents, we propose to extract parts

(or chunks) in the documents that contain only informa-

tion about one location and one date. For example, a docu-

ment might contain the sentence: ”The weather was nice

in Berlin last Sunday, but next day at home in Cologne

it was cloudy.”. In order to reflect all temporal and posi-

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

tional information, NLP tools would divide the sentence

in: ”The weather was nice in Berlin last Sunday” and ”but

next day at home in Cologne it was cloudy” and label the

words in the first chunk with the time stamp of that corre-

sponding Sunday and the geographical location of Berlin.

The words in the second chunk are labeled with the time

stamp of that corresponding Monday and the geographical

location of Cologne.

2. Related Work

There are several previous approaches that integrate tem-

poral and positional information into topic models. In (Yin

et al., 2011) Yin et al. discuss methods to find and com-

pare topics in documents that have associated GPS coordi-

nate. Speriosu et al. propose in (Speriosu et al., 2010) to

use topic models that use non-overlapping regions as latent

topics. By this, they model each document as distribution

over these regions. Further approaches use topic models

with geographic information on social media data to ex-

tract activity patterns of users. Hasan and Ukkusuri for in-

stance use in (Hasan & Ukkusuri, 2014) topic models that

integrate sequences of activities rather than documents. In

(Hong et al., 2012) Hong et al. introduce a sparse genera-

tive topic model and in (Kurashima et al., 2013) Kurashima

et al. propose a geographic topic model that use Twitter

tweets to extract user activities in terms of movement and

interests.

3. Method

While the standard topic models group only words and doc-

uments in semantically related topics, we are further in-

terested in the distribution of the topics over time and ge-

ographic position. In order to extract the distribution of

word senses over time and positions, we use topic models

that consider temporal information about the documents as

well as locations in form of numerical vectors that represent

the geographic position. This means, each document has at

least one time stamp and one geographic position. The time

stamps are assumed to be Beta distributed and the position

Normally distributed. The two distributions are simply in-

95

Modelling Time and Location in Topic Models

tegrated in an LDA topic model under the assumption that

given the latent topics, the words, the time stamps and ge-

ographic positions are independent. We combine the meth-

ods by Wang and McCallum (Wang & McCallum, 2006)

introduced as topics over time and supervised LDA intro-

duced by Blei et al. (Blei & McAuliffe, 2007).

The generative process of the words, dates and location is:

1. For each topic t:

(a) Draw θt ∼ Dir(β)

2. For each document d:

(a) Draw φd ∼ Dir(α)

(b) For each chunk c(d):

i. For each word i in c(d):

A. Draw zi ∼Mult(φd)

B. Draw wi ∼Mult(θti)

C. Draw tc ∼ Beta(ψzi)

D. Draw lc ∼ N(η′ ˆzc(d), ρ
2)

Assuming a number of topics we draw for each of them a

Multinominal distribution over words in this topic from a

Dirichlet distribution Dir(β) with metaparameter β. For

each document we draw a Multinominal distribution of

the topics in this document from a Dirichlet distribution

Dir(α) with metaparameter α. For each word in the docu-

ment we draw a topic with respect to the topic distribution

in the document and a word based on the word distribution

for the drawn topic. Additionally, we draw a time stamp

ti ∼ Beta(ψzi) with ψzi = (a, b) the shape parameters of

the Beta distribution and the location li ∼ N(η′ ˆzc(d), ρ
2)

with ˆzc(d)
′ the empirical topic frequencies for document

d. The shape parameters ψ are estimated by the method

of moments. For each topic z we estimate the mean m̂

and sample variance s2 of all time stamps from the doc-

uments that have been assigned this topic. We set a =

m̂ · (m̂·(1−m̂)
s2

− 1) and b = (1 − m̂) · (m̂·(1−m̂)
s2

− 1)
for each topic. Finally, for the Normal distribution, η

is estimated via EM methods, that minimize the likeli-

hood during the estimation of the topic model: L(η) =
− 1

2ρ

∑
d (yd − η′ẑd)

2 −− 1
2σ

∑
k η

2
k

Integrating the time stamp as Beta distributed random vari-

able and the geographic location as Normal distributed ran-

dom variable, we get for the probability of a topic zi, given

a word w in a chunk c(d) with time stamp t and location l

and all other topic assignments:

p(zi|w, t, l, z1, · · · zi−1, zi+1, · · · zT)

∝
Nw,zi − 1 + β

Nzi − 1 +W · β
· (Nd,zi + α) ·

(1− tc(d))
a−1 · tb−1

c(d)

Beta(a, b)
· exp(−

‖lc(d) − µw,d‖
2

2ρ
) (1)

Using this, we can estimate the topic model via Gibbs sam-

pling.

References

Blei, David M. and McAuliffe, Jon D. Supervised topic

models. In Advances in Neural Information Process-

ing Systems 20, Proceedings of the Twenty-First Annual

Conference on Neural Information Processing Systems,

Vancouver, British Columbia, Canada, December 3-6,

2007, pp. 121–128, 2007.

Blei, David M., Ng, Andrew Y., and Jordan, Michael I.

Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–

1022, March 2003. ISSN 1532-4435.

Hasan, Samiul and Ukkusuri, Satish V. Urban activity pat-

tern classification using topic models from online geo-

location data. Transportation Research Part C: Emerg-

ing Technologies, 44(0):363 – 381, 2014. ISSN 0968-

090X. doi: http://dx.doi.org/10.1016/j.trc.2014.04.003.

Hong, Liangjie, Ahmed, Amr, Gurumurthy, Siva, Smola,

Alexander J., and Tsioutsiouliklis, Kostas. Discover-

ing geographical topics in the twitter stream. In Pro-

ceedings of the 21st International Conference on World

Wide Web, WWW ’12, pp. 769–778, New York, NY,

USA, 2012. ACM. ISBN 978-1-4503-1229-5. doi:

10.1145/2187836.2187940.

Kurashima, Takeshi, Iwata, Tomoharu, Hoshide, Takahide,

Takaya, Noriko, and Fujimura, Ko. Geo topic model:

Joint modeling of user’s activity area and interests for

location recommendation. In Proceedings of the Sixth

ACM International Conference on Web Search and Data

Mining, WSDM ’13, pp. 375–384, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-1869-3. doi: 10.1145/

2433396.2433444.

Speriosu, M., Brown, T., Moon, T., Baldridge, J., and Erk,

K. Connecting Language and Geography with Region-

Topic Models. 2010.

Wang, Xuerui and McCallum, Andrew. Topics over time:

A non-markov continuous-time model of topical trends.

In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

KDD ’06, pp. 424–433, New York, NY, USA, 2006.

ACM. ISBN 1-59593-339-5. doi: 10.1145/1150402.

1150450.

Yin, Zhijun, Cao, Liangliang, Han, Jiawei, Zhai, Chengx-

iang, and Huang, Thomas. Geographical topic discov-

ery and comparison. In Proceedings of the 20th Interna-

tional Conference on World Wide Web, WWW ’11, pp.

247–256, New York, NY, USA, 2011. ACM. ISBN 978-

1-4503-0632-4. doi: 10.1145/1963405.1963443.

96

Evaluating distance measures for trajectories in the mobile setting

Nikolaos Larios NLARIOS@DI.UOA.GR

University of Athens

Christos Mitatakis CMITATAKIS@DI.UOA.GR

University of Athens

Vana Kalogeraki VANA@AUEB.GR

Athens University of Economics and Business

Dimitrios Gunopulos DG@DI.UOA.GR

University of Athens

Abstract

Mobile devices, such as smartphones allow us

to use computationally expensive algorithms and

techniques. In this paper, we study algorithms in

order to solve the problem of finding the most

similar trajectory within a number of trajecto-

ries. We built a framework that enables the user

to compare a trajectory Q with trajectories that

have been generated and stored on mobile de-

vices. The system returns to the user the most

similar trajectory based on the algorithm that has

been selected. The algorithms for the measure-

ment of the trajectory similarity have been imple-

mented for mobile devices running Android OS.

We evaluate our algorithms with real geospatial

data.

1. Introduction

The study of the similarity between trajectories is important

in a plethora of application domains (e.g. Traffic manage-

ment, Video analysis, Molecular Design, Similarity of Me-

teorological Phenomena etc.). More specifically, the tra-

jectory similarity between moving objects is useful for ap-

plications in intelligent traffic systems, such as traffic navi-

gation and traffic prediction, both of which require mining

of past trajectories patterns, etc. The identification of simi-

larities between moving objects is a challenging task, since

not only their locations change but also because their speed

and semantic features vary. Mobile devices and smart-

phones, in particular are rapidly emerging as a dominant

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

computing and sensing platform. They are equipped with

a variety of sensors such as GPS, cameras and accelerom-

eters. This gives birth to several unique opportunities for

data collection and analysis such as finding trajectory sim-

ilarities between trajectories generated and stored on dis-

tributed smartphones. We developed a framework that al-

lows users to find similar trajectories in a distributed en-

vironment. Our framework requires the participation of a

number of users in order to find a solution of a query. In

order to specify the way in which our framework works,

every query is assigned by a user of our system and it is ad-

dressed to all the available users of our platform. The goal

of our platform is to generate and store trajectory data on

mobile devices (smartphones) and compare a query trace

Q against the crowd of trajectories that is distributed on a

large number of mobile devices.

1.1. Related Work

There are many methods and techniques related to search-

ing for similar moving object trajectories. Some previous

methods were based on Euclidean distance space, but this

is not suitable for road network space because is difficult

to apply the distance of Euclidean space to road network

space. Other methods considered only spatial similarity

without considering temporal similarity to search for sim-

ilar moving object trajectories. The methods that interest

us the most are those that are used for measurement of the

spatio-temporal similarity between trajectories. Although

in this work we do not consider the privacy issues that come

up when data from users become available in the system,

there is work in the area that can be leveraged in a real

system. In ”Select-Organize-Anonymize”(Giorgos Poulis,

2013), the authors find similar trajectories, by using Z-

ordering and data projections on subtrajectories. Then they

97

Evaluating distance measures for trajectories in the mobile setting

organize the selected trajectories into clusters which they

anonymize after that. Another work that the researchers

propose a method to compare trajectories of moving ob-

ject is in ”Shapes based trajectory queries for moving ob-

jects”.(Lin & Su, 2005) In this work, the writers intro-

duce a new distance function and the evaluate the simi-

larity measurement by using a grid representation to de-

scribe trajectories. The most similar work is the paper

Crowdsourced Trace Similarity with Smartphones paper

(Zeinalipour-Yazti et al., 2013) where the writers try to

solve efficiently the problem of comparing a query trace

against a number of traces generated by smartphones. They

developed the SmartTrace+ framework which consists a

distributed data storage model that trajectories are stored

and top-K query processing algorithms that exploit trajec-

tory similarity measures, elastic to spatial and temporal

noise.

1.2. Our Contributions

In this paper, we build a distributed mobile platform that

uses algorithms to search for trajectory similarity among a

number of trajectories that are stored in distributed mobile

devices. The trajectories which are stored have been col-

lected by monitoring the movement of the mobile devices.

The users choose whether their movement will be recorded

by the application. So our platform consists of two parts,

the one is where the users gather the trajectory data, so that

can be created a distributed database where the trajectories

are stored.

The second contribution of our platform is the mechanism

that given a query trajectory Q, we want to find any trajec-

tories of the mobile devices using our platform that follow a

motion similar to Q. We initiate an experimental evaluation

of three different trajectory similarity measures, namely

Dynamic Time Warping (DTW), Longest Common Subse-

quence (LCSS), and Fréchet distance. Intuitively, Dynamic

Time Warping (DTW) is the equivalent of the L2 distance

when stretching of the trajectories is allowed since DTW

takes into account the individual differences of all matched

points in the stretched sequences. Similarly, Longest Com-

mon SubSequence (LCSS) can be thought of as the equiva-

lent of L0 since it counts how many elements are the same.

Completing the analogy, the Fréchet distance is equivalent

to Linf since it considers the maximum of the individual

differences of the matches in the stretched sequences. Here

we perform an evaluation on their relative accuracy and

performance.

2. Problem Definition

Trajectory: Trajectory or trace of a moving object is a set

of consecutive positions in space as a function of time. Due

to limitations on the acquisition and storing of data, is very

difficult and expensive to accurately record an entire tra-

jectory. In spatio-temporal databases a trajectory is repre-

sented as a set of discrete samples of the positions of the

moving object of the form (x, y, t), i.e. a sequence of or-

dered pairs (x, y), each characterized by a timestamp. As

described above our goal is to develop a distributed plat-

form for spatio-temporal similarity search between trajec-

tories generated and stored on distributed mobile devices.

Specifically, given a query trajectory Q, we want to find

any trajectories of the mobile devices using our platform

that follow a motion similar to Q.

The mobile application should be able to store locally the

trajectories that follow the mobile device, to receive a query

Q from another mobile device, through the server of the

platform, to evaluate if the mobile device has followed a

similar trajectory to Q and return its result back to the spe-

cific user through the server again. The platform should

be able to compare a query trajectory Q that is submitted

by a user, simultaneously against a number of trajectories

that is stored on a large crowd of mobile devices. The most

similar trajectory of every user with the query Q should

be received and managed from the server application en-

suring the privacy of the users of the platform. Then the

server finds the most similar trajectory within the results

that have been collected and sends it back to the user who

submitted the query Q. Our approach exploits the fact that

nowadays, mobile devices have exceptional computational

power and storing capabilities. Running the algorithms in

a distributed mobile environment grants our platform the

necessary performance and scalability in order to support a

great number of users and spatio-temporal data. Moreover,

having the trajectories stored in the mobile devices the pri-

vacy of the users is protected. The definition of the term

similarity between trajectories may vary between different

problem cases. For example in most cases the most sim-

ilar trajectory should be determined by using not only the

spatial shape of the trajectories but also their evolution in

time. In other cases the timing of the recording of the tra-

jectory or the time intervals between points of interest that

are defined by the query may be of greater importance.

3. System Overview

The system has two basic functionalities. The first one

consists from the monitoring procedure, where the user

can monitor his movement. With this procedure, the users

trajectories are stored in the mobiles database creating

the necessary data. The second functionality contains the

query submission from one user and the search for results,

using a selected algorithm, in the devices registered in the

system. The architecture of our system is described by fig-

ure 1.

98

Evaluating distance measures for trajectories in the mobile setting

Figure 1. System’s architecture

3.1. System Components

The goal of the system is to record and store efficient (in

time and resources) large amounts of data from N mobile

devices and support the communication between them and

a main server in order to send queries on the data recorded

and send their results. The way that data are stored must

be defined, i.e. the structures that will be used in mobile

devices and in the server for data storage. Our system con-

sists by the following: A main application server, which is

responsible for receiving and forwarding queries between

mobile devices using the application. Furthermore, it is re-

sponsible for the registration of mobile devices in the sys-

tem. This application is hosted on an Ubuntu server. As

mentioned above in the system will be registered N mo-

bile devices using the application’s mobile platform which

is responsible for data recording, sending queries, receiv-

ing and handling queries other devices and send data if the

query result was successful.

3.2. Users

The system consists of N users and those users participate

in it through their devices (mobile, tablets, etc.). For the

efficient operation and acceptable results of the system, it

requires a sufficient number of users. The more users reg-

ister to our platform the precision of the system will be in-

creased due to the available set of data for each geographic

area and time. User data are generated by the sensors of the

devices and are stored locally on each device. Since users

are not constantly connected to the system due to intermit-

tent connectivity for their mobile devices respectively no

data will be offered to our system without their agreement.

3.3. Data Storage

Each device (mobile, tablet, etc.) can produce tuples of

data through its sensors (eg GPS sensors, accelerometer,

camera, microphone, etc.).The data that are stored in the

mobile devices corresponds to the trajectories that have

been performed by the device while the user have selected

to record his movement.

The form and amount of data depend on the application

of the general form to is <Id, Latitude, Longitude, Times-

tamp>where:

• The Id refers to the unique code that corresponds to

the current trajectory that is recorded. Every time the

user selects to monitor his movement, a new id is ini-

tialized which define the recording.

• The Latitude and Longitude determine the geographi-

cal location of the tuple.

• The Timestamp refers to the time of recording the cur-

rent tuple.

Examples of data form is: <1, 23.32134, 37.566643, 2014-

10-24 16:52:01>

Every trajectory consists of a number of tuples like the ex-

ample above. Each tuple is recorded periodically every 2

seconds. This period can be changed accordingly to our

preferences or the storage capabilities of the device. The

trajectories that are recorded are stored in the devices inter-

nal memory. For the storage of data in the mobile devices

is used SQLite which is the default SQL database engine

for android powered devices.

3.4. Querying component

The Android application we have developed is responsible

for the collection and storing of trajectory data by record-

ing the movement of the mobile devices. Moreover, the

algorithms that we use for the measurement of trajectory

similarity have been implemented in the Android applica-

tion.

A query Q when is formed by a user of our platform is

forwarded by the server to other registered mobile devices.

When a mobile device receives a query it runs the selected

algorithm and searches the data that has been collected for

the most similar trajectory, according to the selected algo-

rithm. Let m1,m2,,mi denotes a set of i mobile de-

vices. The server sends the query Q to this set of mobile

devices where Q is a sequence of points {p1, p2, ..., pj} that

describes a trajectory. The application compare the trajec-

tory Q with each trajectory that is stored in the database of

the device (e.g. {T1, T2, T3, ..., Tk}), in order to find the

99

Evaluating distance measures for trajectories in the mobile setting

most similar one. All devices that have a result sends their

answers to the server.

3.5. Server

The server of our platform is the middle-ware responsi-

ble for the communication between the mobile devices and

stores vital data in its database. The server application for-

wards the queries of the users to the mobile devices which

are registered to our platform. Then it receives the results of

each device and the best one, according to the algorithm’s

results, is sent back to the user who submitted the Query.

4. Trajectory Similarity Measures

In this section we review the trajectory similarity algo-

rithms we use in the system to find the most similar tra-

jectories to the query. Dynamic Time Warping: The Dy-

namic Time Warping (DTW) (Donald J. Berndt, 1994) is

an algorithm for measuring similarity between two tempo-

ral sequences which may vary in time or speed. The DTW

is widely used in the comparison of time series, appropri-

ately aligns the sequence of points of the two rails, so that

the total distance as a sum of individual distances is mini-

mized.

DTW (P1..n, Q1..n) =

|Pn −Qn|+min

DTW (P1..n−1, Q1..m−1)
DTW (P1..n−1, Q1..m)
DTW (P1..n, Q1..m−1)

where P1 .. n-1 the subsequence P1 .. n that include ele-

ments (points) for time periods of 1 up to n-1.

Longest Common SubSequence: The Longest Common

SubSequence (LCSS) (Michail Vlachos, 2002)problem is

to find the longest subsequence common to all sequences

in a set of sequences (often just two). The LCSS algorithm,

using dynamic programming fits best points of the two tra-

jectories based on a tolerance parameter time and a toler-

ance parameter space ε. It considers that the points do not

exceed the tolerance parameters fit and attaches similarity

value equal to 1. If they do not match they are assigned the

value 0. Specifically, the LCSS distance between two real-

valued sequences S1 and S2 of length m and n respectively

is computed as follows:

Lcss(Pδ,s(S1, S2)) =

0, if n = 0 or m = 0
1 + Lcssδ,s(HEAD(S1), HEAD(S2))
max(Lcssδ,s(HEAD(S1), S2),
Lcssδ,s(S1, HEAD(S2)))
otherwise

where HEAD(S1) is the subsequence

[S1,1, S1,2, ..., S1,m−1] and δ is an integer that con-

trols the maximum distance in the time axis between

two matched elements and is a real number 0<ε<1 that

controls the maximum distance that two elements are

allowed to have to be considered matched. One drawback

of this measurement is that it ignores distance gaps

between subsequences, that allows to obtain some points

of the track when alignment. Consequently, it can lead to

inaccuracies in the similarity analysis.

5. Fréchet Distance

Given two curves, A, B in a metric space, the Fréchet dis-

tance, dF (A,B) is defined as

dF (A,B) = inf
α,β

max
t∈[0,1]

{d(A((t)), B((t)))}

where , range over all monotone reparameterizations and

d(,) represents the Euclidean distance, and inf is the infi-

mum. The discrete Fréchet distance dF between two polyg-

onal curves a : [0,m]→ Rk and b : [0, n]→ Rk is defined

as:

dF (a, b) =

min
σ:[1:m+n]→[0:m],
β:[1:m+n]→[0:n]

max
s∈[1:m+n]

{d(a(σ(s)), b(β(s)))}

where σ and β range over all discrete non-decreasing onto

mappings of the form σ : [1 : m + n] → [0 : m], β : [1 :
m+ n]→ [0 : n].

We first consider the corresponding decision problem. That

is, given δ > 0, we wish to decide whether δ+F (A,B) ≤ δ.

Consider the matrix M as defined in the subsection 5.1.

In the two-sided version of Discrete Fréchet Distance with

Shortcuts (DFDS), given a reachable position (ai, bj) of

two pointers, the A-pointer can make a skipping upward

move, as in the one-sided variant, to any point ak, k > i,

for which Mk,j = 1. Alternatively, the B-pointer can go to

any point bl, l > j, for which Mi,l = 1; this is a skipping

right move in M from Mi,j = 1 to Mi,l = 1, defined anal-

ogously. Determining whether δ+F (A,B) ≤ δ corresponds

to deciding whether there exists a sparse staircase of ones

in M that starts at M1,1, ends at Mm,n, and consists of

an interweaving sequence of skipping upward moves and

skipping right moves (see Figure 2)..

5.1. Basic Algorithm

The implementation of the algorithm of Fréchet Distance

relied on the publication ”The Discrete Fréchet Distance

with Shortcuts via Approximate Distance Counting and

Selection” (Anne Driemel),(Rinat Ben Avraham, 2014).

100

Evaluating distance measures for trajectories in the mobile setting

Specifically, the algorithm which was implemented is the

two side - DFDS who faces the problem of outliers which is

sensitive the Fréchet Distance. The result of the algorithm

is the lowest Fréchet distance which satisfies the two tra-

jectories. The pseudocode of the algorithm is represented

in Algorithm 1. The steps of the basic algorithm are the

following:

1. Implementation of binary search and sequential exe-

cutions of the algorithm of Fréchet Distance until the

optimal distance e is found. The initial value which

is given to the middle in the binary search is 0.025.

The binary search is terminated when the distance be-

tween low and high values of the middle is smaller

than 0.001.

2. Then the table is created, whose columns correspond

the points (latitude, longitude) of trajectory A and the

lines the points of the trajectory B. The values taken

by the M matrix is either 0 or 1 depending on the dis-

tance apart of these two points together, and are given

by the following formula:

E+
δ =

((ai, bj), (ak, bj))|k > i, ||ai − bj ||, ||ak − bj || ≤ δ

∪((ai, bj), (ai, bl))|l > j, ||ai − bj ||, ||ai − bl|| ≤ δ

3. Forthwith after, the directed graph G is created, based

on the table M which was formed above. The nodes

of the graph are the positions of the table M. Corre-

spondingly it is created an edge between two nodes if

the nodes are in the same row or column of the table

and their values are 1 (from the previous to the next).

Figure 2. M table

4. In the figure 2, the algorithm Shortest Path is per-

formed to see if there is a path from the first position

of the table (0,0) to the last (N, M) wherein N and M

are the dimensions of the two trajectories which were

compared. If the algorithm of Shortest Path has a so-

lution we check if the value of is between the limits

we have set. In case it is the binary search terminates.

Otherwise, it will perform again with latest prices. If

not the execution of the algorithm terminates.

6. Evaluation

6.1. Fréchet Distance Performance

To measure the performance of the algorithm of the Fréchet

Distance we performed experiments comparing time series

with length ranged from 20000 to 100000 points. From

the paper of Rinat Ben Avraham et all know that the com-

plexity of the algorithm of Fréchet Distance with Shorcuts

(DFDS) is O((m2/3n2/3 + m + n)log3(m + n)). The

main difference with the previous version of the algorithm

is that we calculate table T and simultaneously create also

the graph G. In addition we set a parameter δ which rep-

resents the percentage of table points that we wish to com-

pare. In this way, we improved the time execution of the

algorithm of Fréchet Distance. Also due to the sampling of

δ points in all time series, the complexity of the algorithm

is reduced to linear.

The figure below shows the performance of the implemen-

tation of the Fréchet Distance algorithm compared with the

length of the trajectories. In our experiment that is summa-

rized by figure 3 we compared 50 trajectories with lengths

from 20,000 points to 100,000 points. This experiment was

performed 10 times and for each length of trajectories it

was chosen the average execution time. Also, the chart

shows the dispersion of runtime for any length of time se-

ries on error bars. From figure 3, we can conclude that the

complexity of the algorithm is linear.

Figure 3. Frechet performance

101

Evaluating distance measures for trajectories in the mobile setting

Algorithm 1 Fréchet Distance

Input: trajectory ti, trajectory query,int delta

Binary Search

repeat

rightTable[0..trajectory.length][0..1] = null

downTable[0..trajectory.length][0..1] = null

for i = 1 to ti.length do

start← i− delta

if start < 0 then start← 0

stop← i+ delta

if start > query.length then stop← query.length

for j = start to stop do

if xi > xi+1 then

M [i][j]← 1

if firstExecution then

if M[0][0] == 0 then

return

else

graph.addV ertex(0, 0)
end if

firstExecution← false

end if

if rightTable[i][0] != ll and rightTable[i][1] !=

null then

graph.addV ertex((i, j))
graph.addV ertex((rightTable[i][0],
rightTable[i][1]))
graph.addEdge((i, j),
(rightTable[i][0], rightTable[i][1])))
rightTable[i][0]← i

rightTable[i][1]← j

else

rightTable[i][0]← i

rightTable[i][1]← j

end if

if downTable[i][0] != null and downTable[i][1]

!= null then

graph.addEdge((i, j), (downTable[i][0],
downTable[i][1])))
downTable[i][0]← i

downTable[i][1]← j

else

downTable[i][0]← i

downTable[i][1]← j

end if

else

M [i][j]← 0

end if

end for

end for

// Find the shortest path if exists on graph from the

// first to the last position of table M

graph.findShortestPath()
until shortestPath is false and frechetDistance ∈
BinarySearchRange

6.2. Algorithm Comparison

In this section we show preliminary experimental results

that compare the three different trajectory similarity meth-

ods we have described. The focus of our evaluation is to

show that all methods can be used in the limited resources

environment of a smartphone. For this reason we also com-

pare the run time results with the simpler (easier to imple-

ment and efficient to run) Euclidean distance that serves as

a basic comparison point. It is difficult to compare the three

methods because they have been implemented with differ-

ent optimizations, and also our Fréchet distance implemen-

tation computes only a bound, and necessitates the use of

several runs to compute the exact Fréchet distance. We use

two different datasets for the comparisons. We also show a

sample result of a query and the most similar answers that

we get using the three methods.

The datasets which were used in the experiments are from

the chorochronos.org and Dublin Bus GPS sample data

from Dublin City Council (Insight Project). The param-

eters with which we will compare the algorithms perfor-

mance are their time execution and their results. The name

of the dataset from chorochronos.org is Trucks and con-

tains 50 trajectories. The name of the dataset from In-

sight project is Siri and contains 30 bus trajectories. For

the experiments, the first trajectory of the dataset was used

as a query and compared with the remaining 49 trajecto-

ries. The experiments were performed for trajectories with

length 2048 points each.

At the end of each experiment the program returns the

graphs of execution time of each algorithm and the most

similar trajectory chosen by each algorithm. The algo-

rithms we compare are:

• Dynamic Time Warping (DTW)

• Longest Common Subsequence (LCSS)

• Fréchet Distance: DFDS to find the smaller Fréchet

distance. In order for DFDS to find the smaller

Fréchet distance, the algorithm should be executed

multiple times for each trajectory that is compared as

the algorithm described above suggests. (DFDS)

• Fréchet Distance - one execution of the algorithm

(DFDS one time)

Bellow we present the results from the data provided by

Insight Project. This dataset containts trajectories recorded

from Dublin buses across Dublin City. In comparison with

2048 points per trajectory, the execution time of the algo-

rithms is presented in figure 4.

102

Evaluating distance measures for trajectories in the mobile setting

Figure 4. Algorithms execution time for 2048 points (Dublind

Bus GPS sample)

The results of each algorithm that correspond to the most

similar trajectory are listed below.

In figure 5 is the most similar trajectory according to Dis-

crete Fréchet Distance algorithm.

Figure 5. DFDS most similar trajectory for 2048 points (Dublind

Bus GPS sample)

In figure 6 is the most similar trajectory according to LCSS

algorithm.

In figure 7 is the most similar trajectory according to DTW

algorithm.

Figure 6. LCSS most similar trajectory for 2048 points (Dublind

Bus GPS sample)

Figure 7. DTW most similar trajectory for 2048 points (Dublind

Bus GPS sample)

We conducted the same experiments with the dataset pro-

vided by chorocronos.org. Specifically with trajectories

that contain 2048 points. In comparison with 2048 points

per trajectory the execution time of the algorithms are pre-

sented in figure 8.

103

Evaluating distance measures for trajectories in the mobile setting

Figure 8. Algorithms execution time for 2048 points

(chorochronos.org)

The results of each algorithm that correspond to the most

similar trajectory are listed below.

In figure 9 is the most similar trajectory according to Dis-

crete Fréchet Distance algorithm

Figure 9. DFDS most similar trajectory for 2048 points

(chorochronos.org)

In figure 10 is the most similar trajectory according to

LCSS algorithm

In figure 11 is the most similar trajectory according to

DTW algorithm

Figure 10. LCSS most similar trajectory for 2048 points

(chorochronos.org)

Figure 11. DTW most similar trajectory for 2048 points

(chorochronos.org)

We observe that the distance measurement that have been

implemented (Fréchet Distance) have similar execution

time with the implementation of the LCSS algorithm.

However, the final results of the algorithm differ. The ex-

ecution time of a single run of Fréchet Distance algorithm

is similar to the LCSS’s algorithm execution time. The re-

sults of Fréchet Distance algorithm are based on the sim-

ilarity of the shape of each trajectory in contrast with the

other algorithm which are restricted to specific points com-

parison. Furthermore, we avoid the problem of outliers that

Fréchet distance is sensitive to, thereby improving signif-

104

Evaluating distance measures for trajectories in the mobile setting

icantly the final results. Thus, we see that in comparison

that we are interested more at having a similar shape rather

than smaller distance of each point from the points of the

query trajectory, Fréchet Distance produces better results

than the other algorithms. Hence, Fréchet Distance is ideal

for similarity measurement of the shape of trajectories This

conclusion can be valuable for later implementations and

research.

7. Conclusion

In conclusion, the trajectory similarity search problem have

a plethora of applications, fact that gives the platform de-

scribed in this work great potentials. Our system allows

the user to send a query that contains a trajectory in or-

der to receive a number of the most similar trajectories that

have been recorded by other mobile devices that are regis-

tered to our system. We described the algorithms that the

mobile application uses in order to measure the similarity

between trajectory and finally search for the most similar

ones. Moreover, the distributed architecture of our sys-

tem grants it great capabilities such as scalability. We have

evaluated our platform and the implemented algorithms us-

ing real spatio-temporal data. Our experiments prove the

satisfying performance of our implementation. We com-

pared each algorithm that we implemented and we evalu-

ate both their performance and their final results accord-

ing to the similarity between the selected trajectory and the

query. We extracted useful conclusions about each algo-

rithm’s functionality and results, such as the different cases

where the Fréchet distance algorithm is more suitable than

the other distance measures. To sum up the final system

that was implemented gives a number of final responses to

queries submitted by its users, according to the selected al-

gorithm in a satisfying time. A future goal is to extend the

number of distance measurements that are implemented in

order for the system to have more reliable and accurate final

results.

8. Acknowledgements

We would like to thank Demetris Zeinalipour-Yazti, ”Uni-

versity of Cyprus” for his assistance by providing us the

source code of the implementation of LCSS algorithm.

This research was supported by the ARISTEIA MMD, FP7

INSIGHT, ERC IDEAS NGHCS and THALIS GeomComp

projects.

References

Anne Driemel, Sariel Har-Peled, Carola Wenk. Approxi-

mating the Frchet Distance for Realistic Curves in Near

Linear Time.

Donald J. Berndt, James Clifford. Using dynamic time

warping to find patterns in time series. In KDD Work-

shop, pp. 359–370. AAAI Press, 1994.

Giorgos Poulis, Spiros Skiadopoulos, Grigorios Loukides

Aris Gkoulalas-Divanis. Select-organize-anonymize: A

framework for trajectory data anonymization. In Data

Mining Workshops (ICDMW), 2013 IEEE 13th Interna-

tional Conference on, pp. 867 – 874, Dallas, TX, 2013.

IEEE.

Lin, Bin and Su, Jianwen. Shapes based trajectory queries

for moving objects. In Proceedings of ACM GIS, pp.

21–30. IEEE, 2005.

Michail Vlachos, Dimitrios Gunopulos, George Kollios.

Discovering similar multidimensional trajectories. In

Data Engineering, 2002. Proceedings. 18th Interna-

tional Conference on, pp. 673 – 684, San Jose, CA, 2002.

IEEE.

Rinat Ben Avraham, Omrit Filtser, Haim Kaplan Matthew

J. Katz Micha Sharir. The discrete frchet distance with

shortcuts via approximate distance counting and selec-

tion. In SOCG’14 Proceedings of the thirtieth annual

symposium on Computational geometry, pp. 377, New

York, NY, USA, 2014. ACM.

Zeinalipour-Yazti, Demetrios, Laoudias, Christos, Costa,

Constandinos, Vlachos, Michail, Andreou, Maria I., and

Gunopulos, Dimitrios. Crowdsourced trace similarity

with smartphones. In EEE Transactions on Knowledge

and Data Engineering (TKDE ’13), IEEE Computer So-

ciety, pp. 1240–1253, Los Alamitos, CA, USA, 2013.

IEEE.

105

	2nd International Workshop on Mining Urban Data (Preface)
	Ioannis Katakis, François Schnitzler, Thomas Liebig

	Analyzing Open Data from the City of Montreal
	Joelle Pineau and Pierre-Luc Bacon

	Improved Trip Planning by Learning from Travelers' Choices
	Boris Chidlovskii

	Automatic Extrapolation of Missing Road Network Data in OpenStreetMap
	Stefan Funke, Robin Schirrmeister and Sabine Storandt

	Distributed Traffic Flow Prediction with Label Proportions: From in-Network towards High Performance Computation with MPI
	Thomas Liebig, Marco Stolpe and Katharina Morik

	Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts
	Axel Schulz, Petar Ristoski, Johannes Fürnkranz and Frederik Janssen

	Towards detection of faulty traffic sensors in real-time
	Nikolas Zygouras, Nikolaos Panagiotou, Nikos Zacheilas, Ioannis Boutsis, Vana Kalogeraki, Ioannis Katakis and Dimitrios Gunopulos

	Profiling users of the Velo`v bike sharing system
	Albrecht Zimmermann, Mehdi Kaytoue, Marc Plantevit, Céline Robardet and Jean-François Boulicaut

	Accessibility by public transport predicts residential real estate prices: a case study in Helsinki region
	Indrė Žliobaitė, Michael Mathioudakis, Tuukka Lehtiniemi, Pekka Parviainen and Tomi Janhunen

	Airvlc: An application for real-time forecasting urban air pollution
	Lidia Contreras Ochando, Cristina I. Font Julián, Francisco Contreras Ochando and Cèsar Ferri

	Stresscapes: Validating Linkages between Place and Stress Expression on Social Media
	Martin Sykora, Colin Robertson, Ketan Shankardass, Rob Feick, Krystelle Shaughnessy, Becca Coates, Haydn Lawrence and Thomas W. Jackson

	Car-traffic forecasting: A representation learning approach
	Ali Ziat, Gabriella Contardo, Nicolas Baskiotis and Ludovic Denoyer

	On Predicting Traveling Times in Scheduled Transportation (Extended Abstract)
	Avigdor Gal, Avishai Mandelbaum, François Schnitzler, Arik Senderovich and Matthias Weidlich

	Report from Dagstuhl: SocioPaths - Multimodal Door-to-Door Route planning via Social Paths
	Thomas Liebig, Sabine Storandt, Peter Sanders, Walied Othman and Stefan Funke

	Modelling Time and Location in Topic Models
	Christian Pölitz

	Evaluating distance measures for trajectories in the mobile setting
	Nikolaos Larios, Christos Mitatakis, Vana Kalogeraki and Dimitrios Gunopulos

