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Abstract

We analyze the work of urban trip planners and

the relevance of trips they recommend upon user

queries. We propose to improve the planner rec-

ommendations by learning from choices made

by travelers who use the transportation network

on the daily basis. We analyze individual travel-

ers’ trips and convert them into pair-wise prefer-

ences for traveling from a given origin to a des-

tination at a given time point. To address the

sparse and noisy character of raw trip data, we

model passenger preferences with a number of

smoothed time-dependent latent variables, which

are used to learn a ranking function for trips. This

function can be used to re-rank the top planner’s

recommendations. Results of tests for cities of

Nancy, France and Adelaide, Australia show a

considerable increase of the recommendation rel-

evance.

1. Introduction

Most cities and agglomerations around the world propose

their trip planners, in the form of a web or mobile appli-

cation. Upon a user travel request, they recommend trips

using a static library of roads and public transportation net-

work and services. Although these planners are increas-

ingly reliable in their knowledge of transportation network

and available services, they all share the same static-world

assumptions. In particular, they make a general assumption

of constancy and universality (Letchner et al., 2006), that

the optimal trip is independent of the time of day of the

actual journey and of the passengers’ preferences.

In reality, constancy and universality rarely hold. Most

urban travelers can verify that the best trip between work

and home at midnight is not necessarily the best choice to

make between the same locations at 8am. Similarly, differ-

ent passengers may choose different ways to travel between
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the same origin and destination points.

While the personal knowledge plays an important role, in

many cases passengers simply have different preferences

about the trip planning. For example, one passenger may

avoid multiple changes, by extending the duration of her

journey by a few minutes, while another passenger simply

wants to arrive as quickly as possible to the destination.

When a user queries a planner for a journey from origin o

to destination d starting at time ts, there are often a large

number of trips satisfying the query. Planners are designed

to provide the k-top recommendations according to a set

of predefined criteria, such as the minimal transfer time,

the minimal number of changes, etc.. Their work is sim-

ilar to any information retrieval system, where the goal is

to place the most relevant documents among the k-top an-

swers. Therefore, it is highly desirable that a trip planner

behaves intelligently and suggests k-top trips which reflect

the real passengers’ preferences.

In this paper we closely analyze the cases of divergence be-

tween the planner recommendations and real choices made

by urban travelers. We collect two sets of individual trips

extracted from fare collection systems in cities of Nancy,

France and Adelaide, Australia (see Figure 1). We com-

pare these data to the city planners’ recommendations; and

in the of case of divergence, we propose a novel method to

rank the trips that better reflects the reality.

Figure 1. Trip planners of Nancy (left) and Adelaide (right).

Our method relies on two main contributions. First, we

consider any individual trip as a set of explicit preferences

made by the traveler during the trip. We use this set of

pairwise preferences to learn a ranking function of trips.
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This function is then used on the top of the trip planner,

to re-rank the k-top recommendations. Second, we model

passenger preferences of choosing a specific service or a

change point in a way that reflects their dynamic nature. To

address the sparse and noisy character of the raw trip, we

model the user preferences by a set of dynamic latent vari-

ables. We estimate these variables by a smoothed dynamic

non-negative factorization of service and transit counts.

The remainder of this paper is organized as follows. In

Section 2 we briefly review the state of art in urban trip

planning. Section 3 introduces the trip ranking problem

by analyzing individual trips for Nancy city case. Learn-

ing to rank for trip planning is presented in Section 4.

Then Section 5 proposes to model user preferences by dy-

namic latent variables and develop an estimation method

by smoothed dynamic non-negative factorization of service

and transit counts. In Section 6, we report results of eval-

uation on trip re-ranking for two city datasets. Section 7

concludes the paper.

2. Prior Art

Trip planners. Public transport (PT) trip planners are de-

signed to provide information about available journeys in

the transport system. The application prompts a user to in-

put an origin o, a destination d and a departure time ts (or

arrival time tf ), it then deploys a trip planning engine to

find a sequence of available PT services from o to d start-

ing at time ts (or ending at time tf ).

Trip planners often retrieve multiple trips for a user query.

They typically use a variation of the time-dependent short-

est path algorithm to search a graph of nodes (representing

access points to the network) and edges (representing pos-

sible journeys between points) (Casey et al., 2014). Differ-

ent weightings such as distance, cost or accessibility are of-

ten associated with each edge and node. Search may be op-

timized on different criteria, for example, the fastest, least

changes or cheapest ones (Pelletier et al., 2009).

Planning high quality realistic trips remains difficult for

several reasons (McGinty & Smyth, 2000). First, avail-

able General Transit Feed Specification (GTFS) sources

rarely contain all information useful for constructing real-

istic plans. Second, the notion of ”service quality” is diffi-

cult to define and is likely to change from person to person.

Consequently, in real-world trip planning, the shortest trip

is rarely the best one for a given user.

Multiple efforts have been made to improve the trip plan-

ning (Lathia & Capra, 2011; Liebig et al., 2014; Mokhtari

et al., 2009; Trepanier et al., 2005; Yuan et al., 2011). Anal-

ysis of trip planner log files (Trepanier et al., 2005) can help

improve transit service by providing better knowledge on

transit users. Log files were useful for identifying new lo-

cations to be assessed for better understanding user behav-

iors, and for guiding updates of the PT information system.

Personalization of trip planning took into account user pref-

erences and tries to identify the best trips among a set of

possible answers. In (Mokhtari et al., 2009), the fuzzy set

theory was used to model complex user preferences. A ty-

pology of preferences was proposed to explicitly express

the preferences and integrate them in a query language.

Trip personalization by mining public transport data has

been addressed in (Lathia & Capra, 2011). It established a

relation between urban mobility and fare purchasing habits

in London public transport network (Seaborn et al., 2010),

and proposed personalized ticket recommendations based

on the estimated future travel patterns and matching travel-

ers to the best fare.

Integrating real time information in trip planners has been

another research trend. (Yuan et al., 2011) presented a

cloud-based system computing customized and practically

fast driving routes for an end user using (historical and real-

time) traffic conditions and driver behavior. GPS-equipped

taxicabs are used as mobile sensors constantly probing the

traffic rhythm of a city and taxi drivers’ intelligence in

choosing driving directions. The real time trip planning has

also been extended to multi-modality (Casey et al., 2014;

Seaborn et al., 2010). It used data from GPS-enabled vehi-

cles to produce more accurate plans in terms of time and

transit vehicles.It incorporates the delays into the transit

network at real-time to minimize the gap with respect to

the prediction model.

Learning to Rank. In document retrieval, to ranking doc-

uments based on their degrees of relevance to a query has

been the key question for decades. Much effort has been

placed on developing document ranking functions. Early

methods used a small number of document features (e.g.,

term frequency, inversed document frequency, and docu-

ment length), with an empirical tuning of the ranking func-

tion parameters. To avoid the manual tuning, the doc-

ument retrieval was proposed to be regarded as learning

to rank (Burges et al., 2005; 2006; Cao et al., 2006; Liu,

2011). Click-through data are used to deduce pair-wise

training data for learning ranking functions.

In learning to rank, a number of categories are given and a

total order is assumed to exist over the categories. Labeled

instances are provided, and each instance is represented by

a feature vector, and each label denotes a rank. Existing

methods can be categorized as point-wise, pair-wise and

list-wise (Liu, 2011). In point-wise methods, each instance

with its rank is used as an independent training example.

The goal of learning is to correctly map instances into in-

tervals. In pair-wise methods, each instance pair is used as

a training example and the goal of training is to correctly
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find the differences between ranks of instance pairs, and

ranking is transformed into pairwise classification or pair-

wise regression (Herbrich et al., 2000). This model formal-

izes learning to rank as learning for classification on pairs

of instances and can deploy any classification method. In

list-wise methods, the loss function is defined on a ranked

list with respect to a query (Xia et al., 2008).

3. Individual trips analysis

We consider a public transportation system that offers a

number of services (buses, trams, trains, etc.) to urban

travelers. Any individual passenger trip J represents a se-

quence of PT services and changes between the services.

Service legs of J form a sequence SJ = {l1, . . . , ln}, n ≥
1, where leg li is a tuple (si, bi, ai, t

b
i , t

a
i ), si is a service

identifier (a bus number, for ex.); bi and ai are boarding

and alighting stops, tbi and tai are boarding and alighting

timestamps. Trip is direct if n = 1, and transit otherwise.

A transit trip includes n − 1 changes which refer to wait-

ing and/or walking between the services. The sequence of

changes is defined as CJ = {c1, . . . , cn−1}, n ≥ 1, where

ci is uniquely defined by two successive service legs li and

li+1, as ci = (ai, bi+1, t
a
i , t

b
i+1).

We make the following association between individual trips

and trip recommendations. We consider a trip J as an ex-

plicit answer to an implicit travel query Q = (o = b1, d =
en, ts = tb1) or Q = (o = b1, d = an, tf = tan).

Figure 2. a) Minimal travel time vs average travel time. b) Trip

uncertainty.

We analyze sets of individual trips collected from the auto-

mated fare collection systems (Mezghani, 2008) installed

in Nancy, France and Adelaide, Australia; we mined these

data to understand how passengers’ choices differ from the

planner recommendations.

For every pair of locations (o, d) in a network, we extract

all real trips from o to d and analyze their travel time dis-

tribution. Figure 2.a shows the distribution of the minimal

versus the average travel time for every (o, d) pair in Nancy.

The high density zone suggests that the average travel time

is far longer than the minimal time which is conventionally

assumed by the planners.

Trip datasets expose a very large variety of paths for any

(o,d) pair; the maximum number of different paths ob-

served is 46 for Nancy and 37 for Adelaide; the average

number of paths between two locations is 2.71 and 3.12,

respectively. We measure the uncertainty of choosing one

or another path from an origin o to a destination d, by using

the Kullback-Leibler divergence KL(q||p) of the trip dis-

tribution q from the uniform distribution p. The higher KL

values indicate the higher certainty and a clear domination

of one trip over others. Figure 2.b plots the KL divergence

values for all (o,d) pairs in Nancy using the log-log scale.

Again, the high density zone suggests that a large part of

(o,d) pairs is dominated not by one but by 2 to 5 different

paths of high frequency.

Figure 3. a) 5-top trips for one (origin, destination) pair in Nancy.

b) The travel time and trip count distributions for top 5 trips.

It is important to recall that travelling preferences change

during the day. Figure 3.a shows 5-top transit trips for an

example (o, d) location pair in Nancy. Figure 3.b shows the

travel time and average trip counts for 5-top trips for this

example. All 5 trips are transit ones with one change. The

figure reveals how the user preferences vary during the day.

The trip planner recommends the trip shown in red for the

fastest trip query. First, this recommended trip is not the

fastest nor the most frequent one. Second, the trip shown

in green is the most frequent during the lunch, despite it is

far from being fast.

Figure 4 gives a more general picture. It shows 240 most

frequent (o,d) pairs in Nancy. For each pair, Figure 4.a uses

the different colors to show changing user preferences. The

most frequent trip is colored in dark blue. Second, third,

forth and fifth preferences are shown in blue, green, orange

and brown colors, respectively. Trips are sorted by the dis-

tance between the origin and destination (see Figure 4.b).

Short trips expose a higher variability than longer ones. As

the figure shows, the second choices are more visible (blue
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color) during the morning rush hours. Figure 4.c shows

the trip planner recommendations for the same pairs. The

recommendations are static and do not reflect the user pref-

erences.

Figure 4. a) Changing user preferences for most frequent (o,d)

pairs in Nancy. b) Trip distances. c) Trip recommendations by the

planner.

We conclude this section by Figure 5 which shows how the

user preferences vary between the PT services. It presents

the total passenger counts for all Nancy change points, at

8am, 1pm and 6pm.

Figure 5. Change counts in Nancy at 8am, 1pm and 6pm.

4. Learning to rank trips

When a passenger travels from an origin o to a destination

d at time ts, she implicitly prefers the trip J she takes to

all other trips J ′,J ′ 6= J . Our approach is to transform

this implicit feedback into an explicit set of pair-wise trip

preferences and to learn the ranking function f from them.

Algorithm 1 below uses the trip planner and a set T of indi-

vidual passengers’ trips. For any trip J ∈ T matching the

query Q = (o, d, ts), the algorithm retrieves the k-top can-

didates for Q and retains thatJ has been preferred to any of

these candidates, except J itself if it happens to be in this

set. Real trip J matches a recommended trip J ′, if it has

the same number of legs and following the same sequence

of services. If SJ = {l1, . . . , ln} and SJ ′ = {l′1, . . . , l
′
n},

then J matches J ′ iff si = s′i ∧ bi = b′i ∧ ai = a′i, for all

i = 1, . . . , n.

Algorithm 1 Rank learning algorithm.

Require: Collection T of passenger trips J = (S, C)
Require: Trip planner P with k-top recommendations

1: S = ∅ ; set of pairwise preferences

2: for each J ∈ T do

3: Form a query Q = (o = b1, d = an, ts = tb1)
4: Query the planner P with query Q

5: Retrieve k-top trips as a list L

6: for each J ′ ∈ L,J ′ 6= J do

7: Add (Q,x(J ) ≻ x(J ′)) to S

8: end for

9: end for

10: Learn the ranking model f from S

Ensure: f

Once the ranking function f is learned, it can be used to im-

prove the relevance of trip planner recommendations acord-

ing to the re-ranking scenario. The trip planner does not

change the way it works. And for a new user query Q,

the trip planner first generates k-top candidate trips. Then

these candidates are re-ranking using the function f .

To learn a ranking function f , Algorithm 1 requires every

trip J be described by a feature vector x(J ). In the fol-

lowing sections, we first describe a method for learning the

ranking function f and then how to extract relevant and dy-

namic features from individual trips.

4.1. Gradient Boosting Rank

We used individual trips to form a set pairwise preferences,

a ranking function f can be learned from. For each in-

dividual trip J ∈ T , we generate a set of labeled data

(xi,1, yi,1), . . . , (xi,mi
, yi,mi

), i = 1, . . . , |T |, which are

preference pairs of feature vectors. If xi,j has a higher

rank than xi,k (yi,j > yi,k), then xi,j ≻ xi,k is a pref-

erence pair, which means that xi,j is ahead of xi,k. The

preference pairs can be viewed as instances and labels in a

new classification problem, where xi,j ≻ xi,k is a positive

instance.

Any classification method can be used to train a classifier

f(x) which is then used for ranking. Trips are assigned

scores by f(x) and sorted by the scores. Learning a good
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ranking model is realized by training of a model for pair-

wise classification. The loss function in learning is pairwise

because it is defined on a pair of feature vectors.

The pairwise approach is adopted in many methods, includ-

ing Ranking SVM (Herbrich et al., 2000), RankBoost (Fre-

und et al., 2003), RankNet (Burges et al., 2005), IR

SVM (Tsai et al., 2007), GBRank (Zheng et al., 2007),

LambdaRank (Burges et al., 2006), and others. In the fol-

lowing we adopt GBRank as one of popular pairwise meth-

ods currently used.

GBRank takes preference pairs as training data,

{x1
i ,x

2
i },x

1
i ≻ x

2
i , i = 1, . . . , N . and uses the para-

metric pairwise loss function

L(f) =
1

2

N∑

i=1

(max{0, τ − (f(x1
i )− f(x2

i )})
2,

where f(x) is the ranking function and τ is a parameter,

0 < τ ≤ 1. The loss is 0 if f(x1
i ) is larger than f(x2

i ) + τ ,

otherwise, the incurred loss is 1

2
(f(x2

i )− f(x1
i ) + τ)2.

To optimize the loss function with respect to the training in-

stances, the Functional Gradient Decent is deployed. Treat-

ing all f(x1
i ), f(x

2
i ), i = 1, . . . , N as variables; the gradi-

ent of L(f) is computed with respect to the training in-

stances as follows

−max{0, f(x2
i )− f(x1

i ) + τ},max{0, f(x2
i )− f(x1

i ) + τ},
i = 1, . . . , N.

If f(x1
i ) − f(x2

i ) ≥ τ , the corresponding loss is zero, and

there is no need to change the ranking function. If f(x1
i )−

f(x2
i ) < τ , the loss is non-zero, and the ranking function

is updated using the Gradient Descent:

fk(x) = fk−1(x)− ν∆L(fk(x)),

where fk(x) and fk−1(x) denote the values of f(x) at k-th

and (k−1)-th iterations, respectively, ν is the learning rate.

At the k-th iteration of the learning, GBRank collects

all the pairs with non-zero losses {(x1
i , fk−1(x

2
1) +

τ), (x2
i , fk−1(x

1
i ) − τ)} and employs Gradient Boosting

Tree (Friedman, 2000) to learn a regression model gk(x)
that can make prediction on the regression data. The

learned model gk(x) is then linearly combined with the

existing model fk−1(x) to create a new model fk(x) as

follows

fk(x) =
kfk−1(x) + βkgk(x)

k + 1
,

with βk as a shrinkage factor (Zheng et al., 2007).

5. Trip feature extraction

We now describe each real trip J by a set of relevant and

dynamic features x(J ). There may exist explicit and im-

plicit factors which influence the passenger choice. Pas-

sengers make their choices in the function of location and

time.

We mention two groups of trip features. First, global fea-

tures describe the whole trip; they are the travel time, the

number of changes, the usage of specific types of transport

(bus, train, tram, etc.), multi-modality, etc. Second, much

more relevant and specific are local features that describe

each service leg and change that compose a given trip. For

each PT service, we may extract the estimated means and

variance of the speed when using this line at this time pe-

riod, the average delay with respect to the schedule. For

each change point, we can estimate the walking distance if

any, the closeness to a commercial zone or transportation

hub, etc.

Unfortunately, raw features of services and change counts

are generally sparse, noisy and prone to many errors. Main

reasons for errors are due to incorrect setup of ticket valida-

tion machines, lack of alignment between ticket validation

machines and GPS localization, and card misuse by travel-

ers.

So we intend to extract such latent features from sparse and

noisy counts that be able to represent user preferences and

their dynamic character.

We split all trips J ∈ T in two collections of service and

change observations, As = {li|li ∈ SJ ,J ∈ T } and

Ac = {ci|ci ∈ CJ ,J ∈ T }. In the following we as-

sume for brevity working with a set of observations A; it

may indicate service or change observations, or their sum.

If we split all observations in A in T time periods,

so we obtain a sequence of count matrices At, t =
1, . . . , T,At ∈ R

p×p
+ at time period t, where aij is the

service or change count during the period t. and p is the

number of stops.

The full diagram of latent feature extraction for individual

trips and learning the ranking function is given in Figure 6.

5.1. Collapsed matrices

We first consider the static case when T is 1 and all obser-

vations from A are collapsed in one matrix A.

Both service and change data are sparse non-negative

counts, and we can use the non-negative matrix factor-

ization (NNMF) as a method giving a great low-rank ro-

bust interpretation of data (Lee & Seung, 2001). They can

be efficiently computed by formulating the penalized opti-

mization problem and using modern gradient-descent algo-

rithms (Hoyer, 2004).

Matrix A is approximated with a product ot two low-rank

matrices that is estimated through the following minimiza-
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Figure 6. Preference features and re-ranking function learning.

tion

minU≥0,V≥0||A−UV
T ||2F ,

where U and V are n × K non-negative matrices. The

rank or dimension of the approximation K corresponds to

the number of latent factors; it is chosen to obtain a good

data fit and interpretability, where U give latent factors for

origin stops and V does for destination stops.

The factorized matrices are obtained by minimizing an ob-

jective function that consists of a goodness of fit term and

a roughness penalty

minU≥0,V≥0||A−UV
T ||2F + λ(||U||1 + ||V||1), (1)

where the parameter λ ≥ 0 indicates the penalty strength;

a larger penalty encourages sparser matrices U and V.

Adding penalties to NMF is a common strategy since they

not only improve interpretability, but often improve numer-

ical stability of the estimation.

5.2. Smoothed Dynamic NNMF

In the general case T > 1, we have a sequence of matrices

{At}
T
t=1 for time periods t = 1, . . . , T . To produce a se-

quence of low-rank matrix factorizations {Ut,Vt}
T
t=1, we

can extend the factorization in (1) to the case T > 1 by in-

dependent factorization of T matrices {At}. However, we

additionally impose a smoothness constraint on both Ut

and Vt, in order to force the latent factors to be similar to

the previous time periods, in both boardings and alightings.

The objective function then becomes

minUt≥0,Vt≥0||At −UtV
T
t ||

2
F

+µ
∑T

t=2
(||Ut −Ut−1||

F
2 + ||Vt −Vt−1||

F
2 )

+λ(
∑T

t=1
||Ut||1 + ||Vt||1),

(2)

where parameters λ, µ are set by the user. The objective

function imposes smoothing Ut and Vt on two successive

time periods, but it can be generalized to a larger window.

To estimate matrices Ut and Vt, we use an extended

version of the multiplicative updating algorithm for

NNMF (Gillis & Glineur, 2012; Lee & Seung, 2001;

Mankad & Michailidis, 2013), based an adaptive gradient

descent.

Temporal extensions of matrix factorization techniques

have been studied in (Elsas & Dumais, 2010; Mankad &

Michailidis, 2013; Saha & Sindhwani, 2012; Sun et al.,

2014). (Elsas & Dumais, 2010) analyzed the temporal dy-

namics of Web document content. To improve the rele-

vance ranking, it developed a probabilistic document rank-

ing algorithm that allows differential weighting of terms

based on their temporal characteristics. (Sun et al., 2014)

addressed recommendation systems with significant tem-

poral dynamics; it developed the collaborative Kalman fil-

ter which extends probabilistic matrix factorization in time

through a state-space model. Community detection in time-

evolving graphs is analyzed in (Mankad & Michailidis,

2013). The latent structure of overlapping communities is

discovered through the sequential matrix factorization.

To solve (2), we follow (Mankad & Michailidis, 2013) and

consider the Lagrangian as follows

L = ||At −UtV
T
t ||

2
F+

+µ
∑T

t=2
(||Ut −Ut−1||

F
2 + ||Vt −Vt−1||

F
2 )

+
∑T

t=1
(λ(||Ut||1 + ||Vt||1) + Tr(ΦUt) + Tr(ΨVt)),

(3)

where Φ,Ψ are Lagrange multipliers. The method works

as an adaptive gradient descent converging to a local mini-

mum. Kuhn-Tucker (KKT) optimality guarantees the nec-

essary conditions for convergence [44]. The KKT optimal-

ity conditions are obtained by setting ∂L
∂Ut

= 0; ∂L
∂Vt

=
0, t = 1, . . . , T. It can be shown that the KKT optimality

conditions are obtained by

Φt = −2AtVt + 2UtV
T
t Vt − 2µ(Ut−1 −Ut) + 2λ,

Ψt = −2A
T
t Ut + 2VtU

T
t Ut − 2µ(Vt−1 −Vt) + 2λ,

(4)

which after matrix algebra manipulations lead to the multi-

plicative updating rules presented in Algorithm 2.

The convergence of the multiplicative updating algorithm

is often reported slow. In practice we obtain meaningful

factorizations after a handful of iterations, which we tend

to explain by the sparseness of input matrices At. In the

future, when working with the dense data, faster meth-

ods like active set version of the alternating non-negative

least squares (ANLS) algorithm (Kim & Park, 2008) will

be more appropriate.
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Algorithm 2 Dynamic Smoothing NNMF algorithm.

Require: Matrices At, t = 1, . . . , T , constants λ ,µ

1: Initialize Ut,Vt as dense, positive random matrices

2: repeat

3: for t = 1,. . . ,T do

4: Ut ← Ut(UtV
T
t Vt + λAUt)

−1(AtVt +
µUt−1)

5: Vt ← Vt(VtU
T
t Ut + λAVt)

−1(AT
t Ut +

µVt−1)
6: end for

7: until Convergence

Ensure: Ut,Vt, t = 1, . . . , T

5.3. Dynamic trip features

Algorithm 2 finds sparse factorized matrices for a se-

quence of input matrices At, t = 1, . . . , T . We first ap-

ply the algorithm to sequences of service matrices As
t and

change matrices Ac
t , extracted from the full trip collection.

We thus obtain smoothed factorized matrices Us
t ,V

s
t , and

U
c
t ,V

c
t , t = 1, . . . , T for services and changes, respec-

tively. At time period t, a boarding stop b has latent factors

given by a corresponding row in U
s
t this row is denoted

U
s
t (b). For an alighting stop a, row V

s
t (a) gives the latent

factors at time t. We then apply the algorithm to the sum

matrices, A
f
t = A

c
t + A

s
t , t = 1, . . . , T . The smoothed

factorized matrices for A
f
t are denoted U

f
t ,V

f
t .

To generate a feature vector x for a trip J , we may use

its decomposition into service legs and changes, J =
(S, C). The vector x(J ) is then composed of a general

feature vector xg and four latent components, x(J ) =
{xg,x

s
b,x

s
a,x

c
b,x

c
b}, where

• x
s
b , xs

a are latent feature vectors averaged over the trip

boarding and alighting places, respectively,

x
s
b =

1

n

n∑

i=1

U
s
tb
i

(bi);x
s
a =

1

n

n∑

i=1

V
s
ta
i

(ai);

• x
c
b, x

c
a are latent feature vectors averaged over the

change places (alighting and boarding), respectively,

x
c
b =

1

n− 1

n−1∑

i=1

U
c
tb
i

(bi);x
c
a =

1

n− 1

n−1∑

i=1

V
c
ta
i

(ai).

In the case of sum latent matrices U
f
t ,V

f
t , x(J ) is com-

posed of a general feature vector xg and two latent compo-

nents, x(J ) = {xg,x
f
b ,x

f
a} obtained from U

f
t and V

f
t .

6. Evaluation

To test our method for learning a ranking function from

individual trips, we processed 5.2M individual trips col-

lected in Nancy, France during 3 months in 2012. Nancy

PT network includes 1129 nodes/stops and offers 107 bus

and tram services to travelers. We also processed 12.5M

trips from Adelaide, Australia collected during 2.5 months

in 2013. Adelaide network offers 312 bus and tram service

variations, and accounts for 3524 stops.

To evaluate the impact of modeling user preferences

from actual trips, we selected 240 most frequent origin-

destination pairs in Nancy (see Figure 4) and 160 most fre-

quent pairs in Adelaide.

When generating temporal sequences of count matrices, we

test two cases of T = 24 and T=48, when any matrix in-

cludes all passenger counts during one hour or 30 minutes.

Once a matrix sequence is generated, any matrix is ran-

domly split into 70% for training data and the remaining

30% for testing. All results below are means and variances

over 10 independent runs.

We retrieved the trip planner recommendations for Nancy1

and Adelaide2. We learn the ranking function and use it to

re-rank the trip recommendations, using different options

described in previous sections. To understand the effect of

raw count factorization, we consider several options. First,

we collapse matrices so disregarding the temporal aspect.

Second, we consider either the service A
s
t and change ma-

trices Ac
t separately, or sum them up A

f
t = A

s
t+A

c
t before

the factorization. Third, we study the effect of temporal

smoothing, when factorization is done either independent

or by smoothing over successive time periods. Finally, we

test different values K for the factorization.

In all experiments with GBRank (see Section 4.1), parame-

ter τ was set to τ = 0.3 and shrinkage factors βk to 0.8. For

smoothed dynamic NNMF, optimal values of µ and λ have

been determined by cross-validation. For evaluating the

results of ranking methods, we use a measure commonly

used in information retrieval, Normalized Discounted Cu-

mulative Gain (NDCG). We choose the perfect ranking’s

NDCG score 1 which is the error rate of the 1-top recom-

mendation.

Table 6 reports the evaluation results for 12 different meth-

ods and compares them to the trip planner baseline for both

cities. The analysis of these results provide some interest-

ing insights. First, results are globally better for smaller

Nancy than for bigger Adelaide, for both T = 24 and

T = 48 cases. Second, collapsed matrices improve the

baseline somewhat, but only taking into account temporal

user preferences does really boost the performance. More-

over, smoothed matrix factorization improves considerably

over the independent one. Third, the change latent vari-

ables appear to be more relevant than services ones. In-

1http://www.reseau-stan.com/
2https://www.adelaidemetro.com.au/
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City Nancy Adelaide

Method T = 24 T = 48 T = 24 T = 48

Baseline: Trip Planner 24.91 ± 1.20 24.91 ± 1.28 38.17 ± 2.28 38.17 ± 2.28

Collapsed:Services 24.73 ± 1.17 24.73 ± 1.22 29.97 ± 2.11 29.97 ± 2.11

Collapsed:Changes 19.69 ± 1.01 19.69 ±1.09 28.63 ± 2.29 28.63 ± 2.29

Collapsed:Services+Changes 19.30 ± 1.14 19.30 ± 1.03 28.05 ± 2.32 28.05 ± 2.32

Collapsed:Sum 19.59 ± 1.13 19.59 ± 1.10 28.17 ± 2.18 28.17 ± 2.18

Indep: Services 14.08 ± 0.92 15.33 ± 0.97 25.33 ± 2.07 24.87 ± 1.87

Indep: Changes 9.55 ± 0.90 9.89 ± 0.86 23.89 ± 1.67 23.93 ± 1.75

Indep: Services+Changes 9.52 ± 0.89 9.41 ± 0.87 22.41 ± 1.72 22.15 ± 1.55

Indep: Sum 10.42 ± 0.89 9.37 ± 0.86 22.37 ± 1.56 23.55 ± 1.59

Smooth: Services 9.22 ±0.77 9.37 ± 0.78 15.37 ± 1.38 14.71 ± 1.24

Smooth: Changes 6.71 ± 0.82 6.69 ± 0.74 16.69 ± 1.24 16.69 ±1.15

Smooth: Services+Changes 5.83 ±0.81 6.12± 0.79 14.12±1.29 13.63±1.14

Smooth: Sum 7.63 ± 0.79 7.05 ± 0.81 15.05 ± 1.41 14.43 ± 1.32

Table 1. NDCG@1 values for 12 methods and two cities.

stead, using sum counts performs worse than keeping ser-

vice and change variables separately. We tend to explain

this by heterogeneity of service and change preferences.

Figure 7. Independent an smoothed predictions vs Number of la-

tent variables.

Figure 7 shows the performance of 3 independent and 3

smoothed methods for T = 24 for Nancy, with the number

of latent variables K varying between 2 and 30. Surpris-

ingly, already K=2 performs well enough, thus indicating

the sparsity of the count matrices.

Figure 8 reports the hour-per-hour performance for the

same six methods for Nancy case. Rush hours and lunch

time appear to be hard for all methods; the error is the

smallest for the periods 10am-12am and 2pm-4pm that

points to the correlation between the traffic and trip vari-

ability. The traffic growth pushes travelers away from the

conventional traveling choices.

Figure 8. NDCG@1: Independent and smoothed predictions dur-

ing the day.

7. Conclusion

We address the problem of relevance of trips recommended

by urban trip planners. We analyzed passengers’ trips ex-

tracted from two public transportation systems. We pro-

pose a method for improving the recommendation rele-

vance by learning from choices made by travelers who use

the transportation system daily. We convert the actual trips

into a set of pairwise preferences and learn a ranking func-

tion using the Gradient Boosting Rank method. We de-

scribe actual trips with a number of time-dependent latent

features, and develop a smoothed non-negative matrix fac-

torization to estimate the latent variables of user prefer-

ences while choosing PT services and change points. Ex-

periments with real trip data demonstrate that the re-ranked

trips are measurably closer to those actually chosen by pas-

sengers than are the trips produced by planners with static
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heuristics.
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