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ABSTRACT
The velocity of multimodal information shared on web has
increased significantly. Many reranking approaches try to
improve the performance of multimodal retrieval, however
not in the direction of true relevancy of a multimodal ob-
ject. Metropolis-Hastings (MH) is a method based on Monte
Carlo Markov Chain (MCMC) for sampling from a distribu-
tion when traditional sampling methods such as transfor-
mation or inversion fail. If we assume this probability dis-
tribution as true relevancy of documents for an information
need, in this paper we explore how leveraging our model
with Metropolis-Hastings algorithm may help towards true
relevancy in multimodal IR.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: General; H.3.3
[Information Search and Retrieval]: Metrics—Retrieval
models, Search process

General Terms
Theory, Algorithm

Keywords
IR, Multimodal, Graph, Metropolis-Hastings

1. INTRODUCTION
There are many challenges in multimodal information re-

trieval. Mei et al. [8] have performed a survey on reranking
models of multimodal information retrieval. They divide the
related work in four categories: 1) Self-reranking : includes
reranking methods that include data from the original rank-
ing result such as Pseudo-Relevance Feedback or learning
a ranking model by giving top ranked documents as posi-
tive. 2) Example-based reranking : methods to understand
the query using accompanying examples. 3) Crowd rerank-
ing : leverages crowd-sourced knowledge on the web to mine
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relevant patterns for a query. 4) Interactive Reranking : in
this case a user can edit a part of the search results (to delete
or to emphasize).

Graph-based methods for reranking are a subset of Self-
reranking category, in which a graph oriented search is per-
formed based on relations between objects. Mostly, related
work in this area is performed on images/videos with sim-
ilarity links between them [11, 5]. The use of results from
independent modality indexing neglect that data objects
are interlinked through different relations. The problem
becomes more challenging when the graph is multimodal.
During traversal, we may see information objects from dif-
ferent modalities (text, audio, video or image). We propose
a model to utilize probabilistic model of IR in multimodal
retrieval, with the goal of approaching true relevancy rather
than just a reranking. This means that a query may have
null result because of lack of any relevant data. According
to probability ranking principle in IR, the relevancy of a

document to a query is defined as p(d|q) = p(q|d)p(d)
p(q)

. This

requires the probabilities of p(q) and p(d) which are not
available. Different ranking models like TF.IDF, BM25 or
LM aim to probe the true ranking through different models
on p(q|d).

In this paper, we explore the capability of our model to
approach probabilistic IR for multimodal retrieval with the
help of the MH algorithm. MH is based on MCMC and is
used in cases where it is hard to sample from a probability
distribution. Assuming the true probability distribution of
relevancy of documents to the query as stationary distribu-
tion, utilizing MH we make a Markov-chain of documents
which results in the same stationary distribution of proba-
bilities. We conduct the experiments on ImageCLEF2011
Wikipedia collection as a multimodal collection.

2. RELATED WORK
There are many efforts in multimodal retrieval in com-

bining textual and visual modalities. Martinent et al. [7]
propose to generate automatic document annotations from
inter-modal analysis. They consider visual feature vectors
and annotation keywords as binary random variables. Jing
et al. [6] employ the PageRank to rerank image search. The
hyperlinks between images are based on visual similarity of
search results. Yao et al. [11] make a similarity graph of
images and find authority nodes as result for image queries.
Through this model, both visual content and textual infor-
mation of the images is explored. Hsu et .al [5] leverage
context reranking as a random walk over a graph of video
stories. The links are based on similarities between different



video stories. The final scoring value is a combination of
initial text and stationary distribution scores.

The application of MH method in information retrieval, is
limited to search in peer-2-peer networks [3, 1]. Ferreira et
al. [3] have designed a protocol for locating a specific object
regardless of the topology of the network through uniform
sampling from peer-to-peer networks. Zhong et al. [12] use
random walks and focus on convergence time for different
network sizes. They investigate the probability distribution
of visiting nodes. In order to go beyond peer-2-peer net-
works and apply MH in IR, we need a jumping distribution,
i.e. weighted links between nodes. Such links may be sim-
ilarity/semantic or a mixture of the two. The difficulty, as
we will see, is ensuring the stochastic and ergodic nature of
the chain.

3. MH ALGORITHM
MH is one of the algorithms based on MCMC to obtain

samples from a complex probability distribution π(x). The

goal is to draw samples form π(x) where π(x) = π̃(x)
K

. The
normalizing variable K is unknown and hard to compute.
Based on the jumping distribution matrix of W , MH algo-
rithm generates a sequence from this distribution as follows:

1. Start with initial value x that π(x) > 0

2. Using the current x value, sample a candidate point y
from W (x, y).

3. The transition probability then is made according to

Pr(x, y) = W (x, y)λ(x, y) (1)

λ(x, y) = min

[
π̃(y).W (y, x)

π̃(x).W (x, y)
, 1

]
(2)

Note that λ(x, y) does not require knowledge of the
normalizing constant because π(y)/π(x) drops it out.
If it increases the density (λ > 1), accept y and set the
next sample xt = y. Repeat step 3. If it decreases the
density, sample u from uniform (0,1). Accept if λ > u,
else reject it.

In order to reach a unique equilibrium state for a Markov-
chain, it should be ergodic, satisfying irreducibility (for any
state, the probability of getting there given any starting
point is more than zero) and aperiodicity (there is no rhythm
in which states can be reached given a starting point). There
may be different proposal distributions for MH. Two general
approaches are [10]: 1) Random walks - the new state y is
dependent to the current state x. 2) Independent sample
finding - the probability of jumping to point y is chosen
from a distribution of interest, independent of the current
value. This method is usually used in asymmetric MH. We
use the first approach in our work.

4. MODEL REPRESENTATION
We define a graph-based model G = (V,E), in which V

is the set of information objects and their facets, and E
is the set of edges. By facet we mean inherent feature or
representation of an object (e.g., tf.idf facet of a document
or edge histogram of an image). Each object may have a
number of facets. We define four types of relations. Their
characteristics are discussed in detail in [9]. We formally
define the relation types and their weights as follows:

• Semantic (α): any semantic relation between two ob-
jects in the collection (e.g. the link between lyrics and
a music file). The edge weight wxy is made inversely
proportional to the α-out-degree of the source node u

and wxy = 1/N
(α)
x .

• Part-of (β): a specific type of semantic relation, in-
dicating an object as part of another object, e.g. an
image in a document. The weight is 1 because of con-
tainment relation as an object part of another one.

• Similarity (γ): relation between the facets of two in-
formation objects. The weight is the similarity value
between the facets.

• Facet (δ): linking an object to its representation(s).
It is a unidirectional relation from facet to the parent
object. Weights are given by perceived information
content of features, with respect to the query type.

Our scoring method consists of two steps: 1) In the first
step, we perform an initial search with Lucene and/or Lire
result based on the facets. This provides us a set of activa-
tion nodes. 2) In the second step, using the initial result set
of data objects (with normalized scores) as seeds, we exploit
the graph structure and traverse it.

The model can perform both partial/whole facet retrieval.
We may decide to search e.g. only based on query textual
or visual facets, or based on all query facets. In practice, we
make a form of late facet fusion by combination of different
scores and giving one score to the parent information object.
However, it is not in the traditional way of late fusion. Since
we do not make the result rank list out of top ranked nodes.
We initiate their scores in graph nodes and then start prop-
agation. In our model, facet fusion is implicitly calculated
by matrix multiplication and final vector computation.

5. MH MAPPED TO IR
We want to achieve a query dependent stationary distri-

bution such that the probability in node x is proportional to
the probability that this node is relevant to the query, and at
any other node (non-relevant) the probability is zero. This
is the π(x) distribution from which we cannot directly sam-
ple. Instead, we have the π̃(x) which could be a relevance
scoring function (e.g. a BM25 score between the data ob-
ject xi and the query). MH would formally provide us with
a method to sample from the probability distribution, if the
approximate probability π̃ is properly chosen.

We have the graph of different relations in the adjacency
matrix W . Assuming the true relevancy of nodes to the
query as π(x), we define the π̃(x) as relevance score value
function (RSV ). A node (M) in the graph may be of any
modality: Text (T), Image (I), Audio (A) or Video (V), and
the query (Q) may be combination of different modalities.
We define the relevance score value function (RSV ), as fol-
lows:

M ∈ {T, I, V,A}
M = ∪ni=1Mfi

Q = ∪mj=1Qfj

l = |{Qf |Qfi = Mfi}|



RSV (Q,M) =

l∑
i=1

norm(sim(Qfi ,Mfi)).wfi (3)

where n is the number of facet types of the information
object node, m is the number of facet types of the query, sim
is the similarity function between two facets, norm is the
normalizing function and wfi is the weight of facet fi for this
query. We compute the similarity (sim) between l number
of the same facets of this information object and the query,
in which Qfi and Mfi are the value of corresponding facets.
Usually the value of a facet is in the form of a feature vector.
In case of no common facet, the sim function output is zero.
Relevancy of an information object to a query should be
calculated in accordance to other information objects. For
this purpose we compute the similarity of all objects for each
query facet and normalize. As we have a multimodal graph
and in each step may visit a node with different modality,
we require a normalized value to be able to compare the
relevancy values.

Different modalities have different facets. Reaching nodes
with the same modality of query examples, we have all the
facets in common (e.g. an image query and an image node).
Visiting nodes with different modality than query examples,
we perform similarity for common facets. For instance, if we
have an audio object and an image query, we can compare
their textual facets (the tf.idf facet of image metadata and
tf.idf facet of the audio tags or lyrics).

5.1 MH Constraints in Astera
Irreducibility: To check irreducibility we should prove

that our graph is connected. By adding different relations
of β, γ and α, we have a connected graph. For this purpose,
starting from top ranked results for a sample query we tra-
verse the graph. In each step we visit new neighbours and
continue until we see no more new nodes. The number of
nodes seen in this traversal was the whole graph size. This
observation, even for one query, indicates the connectivity
of our graph.

Aperiodicity: Finding nodes from a starting point is not
multiple of a number in our graph. We satisfy this constraint
by construction.

Stochastic property: According to the weight definition
in Astera for β links, the sum of weights on a row may be
more than one. However, semantic (α) and/or similarity
(γ) links can be used in a normalized form, complying with
stochastic property.

Transition Function in Astera According to Metropolis-
Hasitngs algorithm, and Eq. 2 we sample from W (x, y) and
accept the move with probability λ(x, y). This implies on
how we define high-order transition probabilities after t steps:
Prt+1

q (x, y) =
∑k
i=1 Pr

t
q(x, zi)(zi, y) where q is the query, k

is the number of common nodes z between x and y, and Prt

is the transition probability of starting from x and moving
t steps further.
Mixing Walsh divides the mixing chains in two categories

of poorly mixing and well mixing chains [10]. To prevent
poorly mixing, one usual way is to use Simulated Annealing
method with high jumps. Second option is to start with
several chains to cover the space to find nodes. Our model
follows the second option, as we start from different starting
points according to standard search result for each facet.

5.2 Role of MH in Adjusting the Weights
In principle, MH either accepts a jumping density ofW (x, y)

(when λ > 1) and keeps the value and moves forward, or
modifies the weight with the factor of λ. The new value of
this link for next step is W (x, y) · λ. According to stochas-
tic property, the sum of the weights of links of an edge is
1. In each step, when weights are adjusted by MH, the
sum may get lower than 1. In this case the link is ac-
cepted with probability of λ < 1. The decreased value is
given as self-transitivity value to the node, indicating stay-
ing in this state is preferred than choosing that specific link.
Performing this for many steps, loosens the links with less
relevant neighbours and keeps the links with increasing rel-
evancy neighbours. This way, MH may modify the weights
in the direction of making a Markov chain which reaches to
the true probability distribution.

To prevent poorly mixing, we start from different starting
points according to standard search result for each facet.
These points satisfy the condition of π̃(x) > 0 as it is the
scored ranked result.

6. EXPERIMENT DESIGN
We applied the ImageCLEF 2011 Wikipedia collection for

imgae retrieval task. Each image has one metadata file that
provides information about name, location, one or more as-
sociated parent documents in up to three languages (EN, DE
and FR), and textual image annotations (i.e. caption, de-
scription and comment). The collection consists of 125,828
documents and 237,434 images. We parsed the image meta-
data and created nodes for all parent documents, images and
corresponding facets. We created different relation types:
the β relation between parent documents and images (as
part of the document), and δ relation between information
objects and their facets. We use the 50 English query topics.

6.1 Document and Image Facets
In the first phase of our hybrid search, we use standard

indexing results both for documents and images. The com-
puted scores in both modalities are normalized per topic be-
tween (0,1) based on min-max method. Different indexings
based on different facets are:

• Text tf.idf facet: We utilize default Lucene indexer,
based on tf.idf, as text facet.

• Image textual annotation tf.idf facet (Metadata):
We use metadata information of the images caption,
comment and description), as image textual facets.

• CEDD facet: For image facets, we selected the Color
and Edge Directivity Descriptor (CEDD) feature since
it is considered the best method to extract purely vi-
sual results [2].

In the second phase, starting from standard indexed re-
sults, we conduct the graph search based on MH. In this
instantiation of Astera, we use only β links between the
documents and images. We investigate adding α and δ link
types are in our future works.

6.2 Transition Matrix in Astera
To compute the transition matrix Pr, we need to com-

pute the λ(x, y) for each two neighbour nodes to update the
weights. In this instantiation of Astera with ImageCLEF



2011 Wikipedia collection, we have images and documents
node types. The query topic in this collection is multimodal.
It is a combination of keywords and image examples with
facet set of {tf.idf, CEDD}.

Based on any of these facets, we can start traversal in the
graph. For example, if we start from similarity with meta-
data tf.idf results, we will have a set of images as starting
points to make the traversal. In this instantiation of Astera,
an image object (I) has two facets of {tf.idf, CEDD}. The
common set of facets of l between the query and image is
l = {tf.idf, CEDD}. Each image is connected to at least
one parent document (D) through β link. To compute the
Pr(I,D) = W (I,D) ·λ(I,D), we need the λ value, which is:

λ(I,D) =

[
RSV (Q,D)

RSV (Q, I)
.
W (D, I)

W (I,D)
, 1

]
(4)

where

RSV (Q, I) = norm(sim(Qtf.idf , Itf.idf )).wtf.idf+

norm(sim(QCEDD, ICEDD)).wCEDD
(5)

and

RSV (Q,D) = norm(sim(Qtf.idf , Dtf.idf )).wtf.idf (6)

The RSV value is computed based on normalized Lucene
and LIRE similarity score for tf.idf and CEDD facet respec-
tively. The wCEDD and wtf.idf are facet weights for this
query. For each query, we perform this similarity computa-
tion in all three languages, separately for image metadata
and documents. We take this value as relevancy value of
each image/document for a specific query.

6.3 Experiment Result
We included text tf.idf and metadata tf.idf facets in this

experiment. We start with top 20 similar documents and
images (as activated nodes) based on these facets for each
query, and traverse the graph from these 40 touch points,
step by step in parallel. In each step, for node x and its
neighbour y, we compute the λ(x, y), update the weight and
continue to the next neighbour. This is performed in the
form of matrix multiplications.

In Markov chain random walks, without MH algorithm,
we utilize matrix multiplication to simulate the walk in the
graph. The probability distribution after t steps is calcu-
lated as at = a0 ·W t, where a0 is the starting scores and
at is the scores after t steps. However, leveraging MH, the
edge weights are affected by λ (Eq. 1). This is a potential
problem for computing the updated transition matrix. The
reason is that, in each iteration, the matrix W is affected
by λ which is a min function - W · λ in first iteration and
W · λ · λ in the second iteration. However, Hlynka et al. [4]
observed that the transition matrix Pr does not change in
further steps. Therefore, we need to compute only once the
matrix of Pr(x, y) = W (x, y) · λ(x, y) for all nodes, and use
this matrix in further multiplications. This makes the MH
steps simulation feasible in implementation.

We compute the final score as at = a0 · Prt after t steps.
This computation is needed for middle steps, since in ideal
case the multiplication is performed many times until the
matrix converges and in stationary distribution the nodes’
probability are independent of starting scores in the graph.

We compare the results with/without using MH algorithm
(Tables 1, 2). We did not get better result in our preliminary
experiment with MH. The reason is dependency of a jump to
the value of RSV (y)/RSV (x). The implemented RSV func-
tion for images is based on metadata facet. A large number
of images are not retrieved in Lucene result for Metadata
facet- we retrieve in the scale of 1000 images for each query,
compared to having 274,000 images. We set the minimum
value of retrieved scores (0.0001), as RSV value of visited
images not in the Lucene results. We have observed that
this approach biases a large number of images to very low
score, which we assume to be the cause of low precision.
Though, further experiments in this direction are needed 1.

7. CONCLUSION AND DISCUSSION
We presented a graph-based model for multimodal IR

leveraging MH algorithm. The graph is enriched by ex-
tracted facets of information objects. Different modalities
are treated equally thanks to faceted search. We proposed
a generic relevancy function based on facet similarity of ob-
jects to the query. Leveraging this model, we have a plat-
form, potential to investigate the affect of different facets on
performance, and burning in the matrix. We have the op-
portunity to examine query dependent traversal, as weights
in the graph are affected by relevancy of source and target
nodes to the query. The preliminary results with MH did
not improve the result. Many steps in the graph should be
taken until the matrix burns in to the stationary distribu-
tion, which is in our future work. However, this experiment
brings some issues to discuss: 1) How much the final prob-
ability distribution is dependent on the chosen π̃(x)? 2)
Is MH algorithm on graph-based collections an opportunity
to compare the effect of different ranking models? 3) How
much expensive is this approach regarding the need of high
number of transitions until the matrix burns in? 4) How
do we satisfy stochastic property in multimodal graph with
heterogeneous relation types? In principle, this property is
beyond mathematically summing the weights to 1, but it
goes back to the utility of different modalities as neighbours
to the user. The difficulty is whether these neighbours are
equally useful to the user?
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