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Abstract. The procedural method is cutting edge in gaming and virtual
cities generation. This paper presents a novel technique for procedural
real-time scene generation using a truncated icosidodecahedron as ba-
sic element and a custom physics system. This can generate a virtual
museum in an interactive-way. For doing this, we have created a sim-
ple interface that enables creating a procedural scenario regarding the
user-specified patterns, like number of pieces, connection mode, seed and
constraints into the path. The scene is generated around three dimen-
sional edges meaning a new point of view of hypermuseums. It has its
own physics system to adapt the movement through the three dimensions
of the scene. As a result, it allows the user to create a procedural scene in
almost real-time where a user character can go over the 3D scene using
a simple interactive interface.
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1 Introduction

Nowadays, the generation of virtual procedural scenes is growing importance in
video games and virtual reality. The procedural generation is used in many areas,
such as generating volumetric fire [FKMT07], creating textures [RTBT92] or piles
of rock for building [PGGMO09]. In fact, the building information modeling is a
popular research area, e.g. with some works from Miiller et al. [MWHT06] and
Patow [Pat12].

On the other hand, physical museums are trying to bring the art and history
to the general public. The concept of hypermuseum [Sch04] was born to virtually
recreate the interior of a museum. Thus, a hypermuseum is usually understood
as an identical recreation of a physical museum. They are subject to the physics
laws and have a typical path structure. This work presents a new point of view for
hypermuseums unleashing the imagination. The idea is creating a hypermuseum
regardless of the physical laws, following the Escher’s picture “Relativity” or
“Inception” movie. We use a truncated icosidodecahedron (TI) to create the
virtual path rotating and connecting its different faces.
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The procedural process generation is not used to be in real time because
the idea is creating and saving something to be used later, but in this case, the
hypermuseum is procedurally generated at the same time that it is gone over.
Thus, this paper presents an almost real-time approach for procedural generation
using a space voxelization.

The rest of the manuscript is organized as follows. In Section 2, several works
related to our proposal are described. Section 3 presents the TI and explains the
mathematics that have been used in the polyhedron and Sec. 4 shows the general
idea of creating an hypermuseum with these pieces. Section 5 shows the process
to generate a TI into the scene. Section 6 explains the path generation and
the custom physics system. Section 7 explains the space division used for data
storage and accelerating the generation process. Section 8 shows the evaluation
of our proposal. Finally, Section 9 analyzes the conclusions and states the open
issues of this work.

2 Related work

Some researches have previously created hypermuseums. For instance, [Sch98]
generates an accurate representation of a museum using a WWW database.
[WWWCO04] generates virtual content in which visitors can interact on a display
or via web. William Swartout et al. propose to create virtual guides using a
natural language and human aspects [STAT10].

Nevertheless, as far as we know, this proposal means the first time that a
procedural process is being used to generate a hypermuseum. In any case, there
are some works with similar procedural approaches. [STBB14] presents a com-
plete survey with different procedural methods useful to generate features of
virtual worlds, including buildings and entire cities that can be viewed as simi-
lar to hypermuseums. Different methods employ a combination of computational
geometry algorithms similar to our proposal. Stefan Greuter et al. [GPSL03] de-
scribe a “pseudo infinite” city where several kinds of buildings are procedurally
generated with different parameters. Julian Togelius et al. [TPY10] generate a
map using a multi-objective evolutionary algorithm. [LSWW11] creates paths in
a similar way to this work where a user can walk trough them. Finally, [CwCZ11]
creates procedural elements using voxels as basic elements. Against these alter-
natives, this paper presents a novel technique towards real-time procedural scene
generation.

3 Model description & breakdown

This section presents the figure used for generating the scene and explain the
required mathematical basis to create it.

An icosidodecahedron is a Platonic polyhedron with twenty triangular and
twelve pentagonal faces (see Fig. 1, first element). Every Platonic solid has a
dual. The dual solid is the polyhedral element whose vertices are positioned
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in the center of each face of the first solid. The Platonic solid can be vertex-
truncated by its dual when the ratios dgodecahedron/dicosahedron (being d the
radius between the faces and the center of polyhedron) get appropriate values.
Their intersection gives Archimedean solids. In this case, an icosahedron and a
dodecahedron are combined to obtain the icosidodecahedron.

Our figure called TI, presents a more complex geometry than an icosido-
decahedron. We use the vertex truncation between an icosidodecahedron and
a rhomb-triacontahedron. Figure 1 shows the obtained truncation. A complex
polyhedra is used for connecting the faces by means of a connecting bridge al-
lowing a user character to walk trough the faces. The face transitive duals of
the series of the vertex-transitive polyhedra go from the rhomb-triacontahedron
to the deltoid-hexecontahedron, passing through a continuous series of interme-
diate hexakis-icosahedra (also called disdyakis-triacontahedra). The following
parameters are used for truncation:

ddodecahedron - ]-/ V 1+ (1/7—2) (1)
dicosahedron - 7-/\/§ (2)
1/ +1/7%) <dpn <1 3)

where 7 is the golden ratio and d,.; is the radius of a rhomb-triacontahedron.

POV

Drt= 0,97 Drt=0.9363 Drt= 0,9045 Drt=0.8727 Drt=0.7236

Fig. 1. Truncation process of an icosidodecahedron. A different polyhedron is obtained
varying the ratio of the rhomb-triacontahedron.

Each triangular face of the TI is enumerated as follows. First, a face is ran-
domly selected to be numbered with number one. For each face, three connected
faces can be accessed numbering them in clockwise. Then, we get the second face
and repeat this process. Finally, all local positions and rotations of the faces from
the center of the icosidodecahedron are saved. For each face, there is another
face with the same rotation and opposite position requiring only four data values
in space position to position a face.

4 Truncated Icosidodecahedron Museum

The Truncated Icosidodecahedron Museum (TIM) consists on successively join-
ing custom platforms using the geometry of the triangular faces of the TI. Only
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two custom platforms have been defined: i) looking outside of the TI and, ii)
looking inside it. The platforms are built based on the icosidodecahedron’s ge-
ometry, i.e. it generates a T1 if twenty platforms were chosen. The user can select
a series of parameters, such as the number of faces, the seed, connection mode be-
tween them and if the pattern can use less faces than the given. Introducing the
same pattern and the same seed creates the same scene. A scene, where the user
character has the capability for walking through it, is interactively generated.

Each platform of the TIM has three connection bridges as joints between
neighbor faces of a TI. The faces neighbor to a face are called border faces. The
connection between faces are used as paths. Some faces have not connected all
their connecting bridges. These faces are called limit faces whereas all the used
faces are called useful faces. We use the limit faces to generate new TIs from
there to enlarge the TIM scenario. Figure 2 shows the differences between kinds
of face.

Fig a) Figb) Figc)

Fig. 2. The faces drawn in a) are useful faces. The faces with horizontal lines in b) are
border faces of the face with vertical lines. The face with vertical lines in c) is a limit
face.

5 Building a TI

This section explains the building of a TI and the problem found during its
creation. Subsection 5.1 presents the method to get the useful faces. Subsec-
tion 5.2 explains the different kinds of face selection. Subsection 5.3 defines the
generation of the TT into the virtual scene.

5.1 Getting of useful faces

Figure 3 shows the process to get the useful faces. The following buffers are
required:

1. All faces. This list contains useful faces.

2. Awailable faces. This list contains the faces to get more faces, i.e. it stores
the limit faces until the date. It requires a first face, named inception face,
to generate the T1I given in the constructor.

3. Inaccessible faces. This list contains the faces which we cannot use.
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Fig. 3. Getting face algorithm loop.

Firstly, the inception face is added in “available faces” . Immediately a face
is got from “available faces” as limit face. Then get the border faces to the limit
face. If any of these border faces has already been used or it is contained on
“inaccessible faces”, it is refused. Then, get one of the accessible border faces
and add it to “all faces” and “available faces”. The process checks then the buffer
of “available faces” removing all completed faces. This process is repeated until
the size of “all faces” buffer is the same as the number of provided faces. If any
face collides, the face is added into “inaccessible faces” buffer before the rebuilt
process.

5.2 Connection mode

There are three different modes to connect a face with its border faces. All modes
repeat the same process but the condition to select the next face to connect differs
between them.

— Random mode. This mode takes a random face from the buffer of “avail-
able faces“. This face is used as limit face. Then get a random face from the
border faces of this limit face. At the end, this face is checked and added to
the buffers “all faces” and “available faces”.

— Full mode. This mode takes the first face of “available faces” as limit face.
Then get the first face of its border faces. Once this face is checked, it is
added to the buffers of “all faces” and “available faces”. After the clean
process, if all border face of this limit face was added, this limit face was
erased from “available faces” and take the first face of “available faces”as
limit face. If the new limit face has not got border faces, the algorithm takes
a random face of “ available faces” as limit face.

— Linear mode. At first, this mode randomly takes a face from “available
faces”. Then get one border face. It is checked and added to “all faces” and
“available faces”. Finally, instead of taking a face from “available faces”, take
the last face added as limit face, and repeat the process. If this border face
has not got border faces, the algorithm take one as limit face from “available
faces”.

In every mode, the buffer of “available faces” is cleaned at the end of each
iteration. This process consist on removing the completed faces.
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5.3 Generation of a TI

YQVveS

Outside Face Outside TI Inside Face Inside TI

Fig. 4. Model of faces from TI and completed TIs

This section shows the generation of a TI in the virtual space. First of all,
the algorithm requires the following parameters:

— Inception face. First platform to generate a TI. A platform is the repre-
sentation of a face. In the first TI the algorithm gets a random number for
selecting an inception face and zero to border face.

— Blocked face. Platform that cannot be used.

Buffer of “all faces”.

— Face mode. Our proposal presents two different alternatives (see Figure 4).
The first one (outside face) is used for walking outside the TI. In the other
hand (inside face) is used for traveling inside the TI.

The process to generate a TI is represented in Algorithm 1. A platform is
understood as the representation of a face.

Algorithm 1 Generation of TI faces in virtual space.

1: procedure PUTFACES(pathList)
2: for all faces do
if faceMode = 0 then

Create face with platform ”FaceOutside”
else

Create face with platform ”Facelnside”
end if
Add plattform to TI
9: ChangeLocal Position(idFace, plat form)
10: ChangeLocal Rotation(idFace, plat form)
11: end for
12: end procedure

The algorithm instantiates the custom platform given the face mode and
this process is repeated for each face from “all faces” buffer. Each platform
requires the local position and rotation to place itself in the right position. These
parameters are pre-calculated to make the process faster.
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6 Path generation

To generate a path in the museum, firstly a TI is created regarding the user
patterns as shown above. This is added into the “available TTs” buffer. Then,
the algorithm follows the next steps: i) generating all possible T1Is, ii) checking
the new TI generated, iii) rebuilding the collided objects, and iv) repairing in-
accessible paths. The algorithm stops when the “available TIs” buffer is empty.
The sequence of creation a path from a TT is explained in next subsections.

Save to available TI

Available TI Tl to check
[13]14] ]
29 Generate son T! rebuilded, save to check - .
Tl can not
Actual Tl Tl checked rebuilded, Delete
1°Get TI E 4° Collision check delete it D
30 Savelactual Tl
30 Savelactual T/ Collision Repair T father
All son are generated Some son can not generated detected
Full TI Border TI Tl to rebuild

Kl 3 1 K3 2 Lelslzdefo] | ezl 1 11
t

Fig. 5. Loop to generate a path by means of the union of TIs. Green line means the
normal process. Orange line means the alternative case. Blue line is used when a TT is
destroyed.

6.1 Generation of new TIs

The number of platforms varies depending on the user patterns. Some of these
platforms have not connections with others. We use the limit platforms to gen-
erate new TIs and connect them. The parameters required to generate a new T1
child are the number of faces of the new object, the connection mode and the
condition if the path generated can be lower than the number of faces.

6.2 TUnion of icosidodecahedrons

First of all, the faces in available faces from TI are used as limit face to generate
new unions. For each face from this buffer, its border faces are calculated. The
border faces are needed for two reasons. First, the border face of the TT father is
the dual face of the border face of the inception face from the new TI. It means
that the border face of the new TT uses the connecting bridge to join both TIs.
For this reason, this border face is removed from the border faces to avoid a
collision. Second, the border faces are needed to know the where the connecting
bridge is to position the new TI.

Next, the algorithm calculates the center position for the new object. The
midpoint method is used for calculating the new center. As we explained in
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Section 3, every face has an opposite symmetrical face. Thus, the algorithm uses
the connecting bridge position between the two objects as the middle point. The
algorithm applies the following equation to get the new center:

Centerchiig = Positionyridge * 2 — Centerfather (4)

The new generated object is added into the TT list to check the buffer. Then,
if all unions of the TT have been generated, the object is saved into the “full TT”
buffer. If some of the unions cannot generate a new object (Section 7 explains
the reason), the object is added to the border list. This process is repeated for
each TT into the “available TIs” buffer.

6.3 Collision Detection

We use a convex mesh around the platform (see Fig. 6) to avoid platform inter-
section. A ghost layer component is created for each platform. When a collision
is detected, this component evaluates the latest created platform and selects
which one has to be destroyed. At the end, if the platform is not destroyed, its
ghost layer component is deleted. The algorithm has the following steps:

1. The collider detects a collision. If the collided platform has not a ghost layer
component and it is not part of the TT father, it is marked to be destroyed.

2. If the collided platform has a ghost layer component, it is evaluated if its
identifier is higher. If its identifier is lower, it is added to the collision list.

3. Before destroying the platform, the collision list is checked it. If there is any
platform in the list, it is destroyed. If not, the platform remains without
destroying.

Fig. 6. Mesh collider

The collision detection process automatically starts when a platform is in-
stantiated. If the platform has to be destroyed, a message is sent to the kernel
process. This message contains the collided TI and the destroyed face. This face
is saved into the “inaccessible faces” buffer and a new TI is rebuilt with this
constraint.
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6.4 Rebuilding TI

This process is run when a platform of a TI is destroyed. Then, the algorithm
creates another TT avoiding the face corresponding to the platform taking into
account the number of useful faces enabled by the user patterns. Nevertheless,
if the inception face has collided, this TT is destroyed.

6.5 Repairing TI

The repair of a TT is required when some unions can not be generated, due to
a TI destruction. This process consists on replacing the connecting bridge with
a wall. When the platform is repaired, the collider is replaced with another one,
which best matches into the mesh taking into account the connecting bridges
destroyed.

6.6 Internal physics

A TI can be technically understood as a simplification of a sphere. This idea is
used to generate an adaptable physics system. While the user walks trough the
TI, the force is calculated using the Newton’s universal gravitational constant
(see Fig. 7). When the user walks outside the object, the force pulls the user to
the center of the object, allowing to the user walks over the sphere surface. If the
user walks inside, the force pushes the user from the center. The player system
detects the mode and changes the direction of the force when it is necessary.

Fig. 7. Internal physics. The green arrow represents when the user walks outside the
surface of the platform. The gray arrow represents when he travels inside the surface.

7 Space division

The representation space has been voxelized. Each voxel has the size of a TI
storing the data that represents it. When the user character is moved, the cubes
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ot TIs, which have not to be represented, are saved with all its content to provide
persistence. A map, where the key is the center of the voxel and the content is
a list with all TI data, is used to accelerate the process.

In addition, the voxelization has other uses, like limiting the generation of
TIs. The cube, where a TT is represented, is divided in three parts in all axis (see
Fig. 8). Each one of the subcubes is a voxel to get faster memory accesses. When
the user character walks and passes to other voxel, the system accesses memory
only using the following nine cubes (instead of accessing the whole memory).
This division also places the user in the center of the voxel seeing the existing
objects in every direction.

Fig. 8. Picture of division of rep- Fig. 9. Red cube is border margin
resentation space. to generate T1. Green cube is space
to representation.

We create a margin border (see Fig. 9) to avoid collisions among the TIs
generated in different time steps. The size of the margin border is half TT, making
the generation of platforms outside the cube impossible.

8 Results

We test our proposal using a Intel i7-3630QM CPU laptop with a Nvida 660GTXM
and 16Gb DDR3 RAM. The application has been developed by using the game
engine Unity3D v4.6.2f1[3] to enable running it in any platform, like Windows,
Mac, Linux, mobile or web. The user can walk over the scene specified regarding
its own patterns by using the custom physics and sound steps, like if the user
is inside of a museum. Figures 10 and 11 show examples of the scene created
at the same time that is gone over. This work can be downloaded and tested in
https://dl.dropboxusercontent.com/u/697729/TIM/Index.html.

To evaluate its performance, we have created a custom pattern and a specific
tour to allow us to replicate the scene. We run the same testbed 7 times obtaining
the Fig. 12.

Figure 12 is divided in six columns, which correspond to different steps of
path generation. As we can see, the standard deviation is low, ensuring a similar
behavior in different runnings. Regarding performance, the collision detection
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Fig. 10. Render in real time outside of Fig. 11. Render inside the other scene.

scene.
children rebuild repair check move total
Average 231,34 101,06 36,60 394,57 2,06 770,86
Standar Deviation 5,94 2,04 2,16 10,87 0,18 14,77

Fig. 12. Average time in ms. and standard deviation for each step of the algorithm
traveling around the scene with the following patterns: 1 face in random mode, 12 faces
in full mode, 1 face in random mode.

phase requires most of the time. This is due to the Unity’s collision system
requires three internal loops to evaluate collision and destruction. Finally, we
test the GPU vs CPU performance. We test different scenes, but the time using
GPU is very similar to use CPU.

9 Conclusions and future work

This paper presents a novel technique to procedurally generate a hypermuseum
from a TI. It could be adapted to generate any kind of scene. The user walks into
an infinite procedural 3D scene created at the same time that it is gone over. This
kind of generation presents a new point of view to understand hypermuseums.
Additionally, we have created a panel to make user access easy to specific rooms.
Thus, the user can select the room which would like to visit to teleport there.

As future work, we are planning to improve the collision detection system
or create a custom one. Furthermore, we plan to adapt other kinds of figures to
work, making more complex scenes and better adapted to the user needs, e.g
to add the possibility of using for game scenarios. Finally, we plan to integrate
procedural artworks.
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