
Improving the Performance of a Computer-Controlled

Player in a Maze Chase Game using Evolutionary

Programming on a Finite-State Machine

Maximiliano Miranda and Federico Peinado

Departamento de Ingeniería del Software e Inteligencia Artificial,

Facultad de Informática, Universidad Complutense de Madrid

28040 Madrid, Spain
m.miranda@ucm.es, email@federicopeinado.com

Abstract. The continuous sophistication of video games represents a stimulat-

ing challenge for Artificial Intelligence researchers. As part of our work on im-

proving the behaviour of military units in Real-Time Strategy Games we are

testing different techniques and methodologies for computer-controlled players.

In this paper Evolutionary Programming is explored, establishing a first ap-

proach to develop an automatic controller for the classic maze chase game Ms.

Pac-Man. Several combinations of different operators for selection, crossover,

mutation and replacement are studied, creating an algorithm that changes the

variables of a simple finite-state machine representing the behaviour of the

player’s avatar. After the initial training, we evaluate the results obtained by all

these combinations, identifying best choices and discussing the performance

improvement that can be obtained with similar techniques in complex games.

Keywords. Video Game Development, Player Simulation, Artificial Intelli-

gence, Machine Learning, Evolutionary Computing, Genetic Algorithms

1 Introduction

Video games are constantly experiencing improvements in graphics, interfaces and

programming techniques. It is one of the most challenging and interesting field of

application for Artificial Intelligence (AI), considering it as a large set of “toy worlds”

to explore and play with. Recently, we have started working on how to improve the

behaviour of military units in Real-Time Strategy (RTS) games. In this context, differ-

ent techniques and methodologies for computer-controlled players as part of that re-

search project are being tested. In this genre it is very common to implement the be-

haviour of a military unit as a Finite-State Machine (FSM). Some of these machines

are very complex, having multiple parameters that should be adjusted by experimenta-

tion (playtesting) and by experienced game designers. We have decided to choose a

simple game to start trying different techniques and methodologies (as it is the case of

2

Evolutionary Programming). If significant results are found, we could study their

applicability for improving the more complex FSMs of RTS games.

For this paper we have developed an automatic controller for a version of the game

Ms. Pac-Man implemented in a software platform called “Ms. Pac-Man vs. Ghosts”.

The behaviour of the protagonist (Ms. Pac-Man) in the game is implemented by a

FSM with some variable values that act as a threshold to control the state transitions.

A genetic algorithm is used to find the best values for the performance of this FSM,

aiming to probe the utility of this approach improving the game score.

The structure of this paper is as follows: Section 2 is focused on the definitions of

the concepts and the background needed to understand the rest of the paper. Section 3

presents our computer-controlled player for the Ms. Pac-Man game. Section 4 de-

scribes how we apply evolutionary computation to improve the performance (score) of

the player and Section 5 shows and discusses the results of the experiments. Finally, in

Section 6 we present our conclusions, foreseen the next steps of this project.

2 Related Work

Recently, we have started working on how to improve the behaviour of military units

in RTS games with two main objectives: participating in international challenges of AI

applied to video games, such as the Student StarCraft AI Tournament [1] and the

AIIDE StarCraft AI Competition [2], and improving the multi-level FSMs used in

Mutant Meat City, a RTS-style video game created in 2014 as an academic project.

Before applying evolutionary programming to complex games, we are performing

experiments using more simple games, such as Pac-Man. Pac-Man is a popular arcade

created by Toru Iwatani and Shigeo Funaki in 1980. Produced by Namco, it has been

consider as an icon since its launch, not only for the videogames industry, but for the

twentieth century popular culture [3]. Game mechanics consist on controlling Pac-

Man (a small yellow character) who is eating pills (white dots) in a maze, while avoid-

ing to be chased by four ghosts that can kill him (decreasing his “number of lifes”).

There are also randomly-located fruits in the maze that add extra points to the score

when eaten. The game is over when Pac-Man loses three lifes. There are also special

pills, bigger than the normal ones, which make the ghost to be “edible” during a short

period of time. The punctuation in the score grows exponentially after each ghost been

eaten during this period.

Ms. Pac-Man is the next version of the game, produced in 1982 by Midway Manu-

facturing Corporation, distributors of the original version of Pac-Man in the USA.

This version is slightly faster than the original game and, in contrast with the first one,

the ghosts do not have a deterministic behaviour, their path through the maze is not

predefined [4]. This makes the game more difficult, being much more challenging the

creation of strategies to avoid being killed.

Over the years there have been several proposals in the academy in relation to us-

ing AI for maze chase games as Pac-Man, both for controlling the protagonist or the

antagonists the game. Ms. Pac-Man vs. Ghosts League was a competition for develop-

ing completely automated controllers for Ms. Pac-Man with the usual goal of optimiz-

3

ing the score. For supporting this competition, a Java framework “Pac-Man vs.

Ghosts” was created for implementing the game and making it easy to extend the

classes for controlling the characters.

With respect to Evolutionary Computing, genetic algorithms were originally devel-

oped by Cramer [5] and popularized by Koza [6] among others. This paradigm has

become a large field of study, being widely-used in AI challenges and for optimizing

the behaviour of intelligent automata. These algorithms could be useful for optimizing

controllers in video games, even in sophisticated titles using autonomous agents [7];

but for our purposes, a controlled and limited scenario as the simple mazes of Ms.

Pac-Man is perfect to test the methodology for evaluating the performance of a com-

puter-controlled player.

3 A Computer-Controlled Player for the Maze Chase Game

For this work, we have designed a simple controller for Ms. Pac-Man based on the

StarterPacman class of the framework “Ms. Pac-Man vs. Ghosts”. The controller

implemented in this class is one of the simplest of the framework and it has been

changed to transform it in a simple FSM with just three states:

 Pilling: Ms. Pac-Man goes to the closest pill in order to eat it. In case there were

several pills at the same distance, it will follow a preference order according to the

direction toward these and clockwise starting from the top.

 Ghosting: Ms. Pac-Man goes to the closest ghost in “edible” state.

 Runaway: Ms. Pac-Man runs away from the closest ghost.

In the implementation of this FSM we use four numerical variables that later on will

compose the chromosome of the individuals of the population that the genetic algo-

rithm will be using:

 Edible_Ghost_Min_Dist: The minimum distance that an “edible” ghost should be

in order to start chasing him.

 Non_Edible_Ghost_Min_Dist: The minimum distance a ghost should be to start

running away from him.

 Min_Edible_Time: The minimum time that make sense to be chasing an “edible”

ghost.

 Min_Pills_Amount: The minimum number of pills that should stay in the level to

start going toward them proactively instead of hiding from or eating ghosts.

Using these variables, the FSM has these transition rules:

 If the closest ghost is non-edible, its distance is inferior to

Non_Edible_Ghost_Min_Dist and the number of pills near Ms. Pac-Man is lower

than Min_Pills_Amount, the state changes to Runaway.

4

 If the closest ghost is edible, its distance is inferior to Edible_Ghost_Min_Dist and

the number of pills near Ms. Pac-Man is lower than Min_Pills_Amount, the state

changes to Ghosting.

 In other case, the state changes to Pilling.

4 Evolutionary Optimization of the Computer-Controlled Player

After the Ms. Pac-Man automatic player controller is explained, we perform the study

to test if genetic algorithms can improve the FSM in terms of performance in the

game.

4.1 Fitness Function

Genetic algorithms require an fitness (or evaluation) function to assign a punctuation

to each “chromosome” of a population [8]. In this case the punctuation of the game

itself will be used, so the game is executed with the parameters generated by the algo-

rithm and average values are calculated after a constant number of game sessions

played by a phenotype (set in 10). The average score from a set of played games acts

as the fitness function for our algorithm.

4.2 Genetic Algorithm

When creating the genetic algorithm it has been implemented a codification based on

floating point genes for the chromosome of the individuals. These genes are real num-

bers that take values between 0 and 1. The value of the genes are multiplied by 100 in

order to evaluate the results. Indeed the FSM of Ms. Pac-Man controller needs values

between 0 and 100. So on, every individual of the population represents a Ms. Pac-

Man controller.

We have implemented two selection operators, six crossovers, two mutations and

four substitutions (also called regrouping), in order to perform different tests and

determine which combination of operators get the best results.

Selection. These are our two types of selection:

 Selection by Ranking: Individuals are ordered in a list according to their fitness.

The probability for an individual to be chosen for the crossover is higher as higher

is its average score.

 Selection by Tournament: N individuals of the population are selected randomly.

Among these individuals the one with the better fitness value is selected.

Crossover. These are our six types of crossover:

 One-Point-based Crossover: The parental chromosomes genes are interchanged

from a given gene position.

5

 Multi-Point-based Crossover: The parental chromosomes genes are interchanged

from two given positions.

 Uniform Crossover: Two progenitors take part and two new descendants are creat-

ed. A binary mask determines the division of the genes which are going to be

crossed.

 Plain Crossover: N descendants are generated. The value of the gene of the de-

scendant in the position i is chosen randomly in a range defined by the genes of the

progenitors that are located in the same position.

 Combined Crossover: This is a generalization of the plain one, called BLX-alpha.

N descendants are generated. The value of the gene of the position i in the descend-

ant is chosen randomly from an interval.

 Arithmetic Crossover: Two new descendants are generated according to an arith-

metic operation. The value of the gene i in the descendant X is the result of the op-

eration (being A and B the progenitors and Ai the value of the gene i of the chro-

mosome A):

And the value of the gene i in the descendant Y is the result of the operation:

r represents a variable real number, and for this experiment is set to 0,4.

Mutation. These are our two types of mutations:

 Uniform Mutation: A gene is randomly selected and it mutates. The value of the

gene is replaced by another randomly generated.

 Mutation by Interchange: Two genes are selected and they interchanged positions.

Substitution. These are our four types of substitution:

 Substitution of the Worse: The descendants replace the individuals with worse

fitness from all the population.

 Random Substitution: The individuals that are going to be substituted are randomly

chosen.

 Substitution by Tournament: Groups of N individuals are selected and the worst of

each group is replaced by a descendant.

 Generational Substitution: The descendants replace their own parents.

At the beginning, the population is initialized with a certain number of individuals

(100 by default), all of them created with random genes. Each one is evaluated before

it is added to the population structure (a tree structure is used to maintain the popula-

tion ordered by the fitness value of each individual). Then, the minimum, maximum

and average fitness of this population is calculated and the next generation is pro-

duced. This process is repeated several times (500 generations of individuals are cre-

ated by default).

6

5 Results and Discussion

As it has been mentioned, using these operators of selection, crossover, mutation and

substitution of individuals, we have been able to test different combinations of opera-

tors obtaining the results shown below. Instead of testing all the possible combinations

(96 different experiments) and studying the interactions between operators one by one,

as a first exploration of the problem we have taken a different approach. We have

created a pipeline of “filters” for the operators, using heuristics based on principles of

Game Design, so only operators offering the best performing results in their category

are selected and the rest are discarded for the remaining experiments.

The graphics which are displayed below represent the results of the experiments.

The X axis represents the number of the generation produced and the Y axis the val-

ues obtained in this generation.

5.1 Selection of the Substitution Operator

These operators are set: selection-ranking, crossover-uniform, mutation-uniform; and

the different substitution operators are tested. See Fig. 1 and Fig. 2.

Fig. 1. The Worst and Random substitution

7

Fig. 2. Tournament and Generational substitution

As can be seen in the results, the substitution operator of the Worst was the one with

better results in this algorithm. The random one is a little inconsistent, with big varia-

tions and making worse the average fitness (it is even worst: it discarded several times

the best individual). The substitution by Tournament seems to work quite well but in

other experiments, not shown in these graphs, it never improves the best individual.

Finally, the generational replacement just does not improve anything. Therefore, the

Substitution of the Worst operator is chosen as the best operator in its category.

5.2 Selection of the Mutation Operator

The next operators are set: selection-Ranking, crossover-Uniform, substitution-of the

Worse (established in the previous point). Then, the different mutation operators are

tested. The combination with the uniform mutation has already been tested in the

previous step so we only have to test mutation by interchange. See Fig. 3.

Fig. 3. Mutation by interchange

8

This method of mutation slightly improves the Uniform mutation operator, both in the

average and maximum fitness where it gets some important jumps. Therefore we

chose this method.

5.3 Selection of the Crossover Operator

After using the substitution operator (the Worst) and the mutation operator (by inter-

change), it is time to test the crossover operators (except the uniform one because it

has been tested in first step of this pipeline). See Fig. 4, Fig. 5 and Fig. 6.

Fig. 4. One-point-based and Multipoint-based Crossover

Fig. 5. Plain and Combined Crossover

9

Fig. 6. Arithmetic Crossover

The One-Point-based operator get better results than the Uniform sometimes, but

others it does not improve. The Multi-Point-based improves the results much more.

The plain crossover produces few hops (improvements) in the best individual but

these hops are very large, more than in the Multi-Point. The combined crossover also

produces good results but, again, it does not produce as good improvements as the

plain. Finally the arithmetic crossover produced a great improvement in the worse

individuals (and thus the average fitness), however it does not improve the best.

Therefore the Plain crossover is selected for the remaining experiments.

5.4 Choice of the Selection Operator

Once the operators of Substitution (the Worst), mutation (by Interchange) and crosso-

ver (plane) are set, it is the turn of testing the selection operators, in this case, the

selection by tournament. See Fig. 7.

Fig. 7. Selection by Tournament

As can be seen in the graph, the selection method by tournament can produce large

jumps in the best individual, in the most part of the experiments, it exceeds both max-

10

imum and average fitness to the selection by ranking method, consequently this selec-

tion method is selected and at this point we have selected all the operators for the

genetic algorithm and it produces this individual with the chromosome with the maxi-

mum fitness: (120, 14, 324, 75). Let us remember that these values represent the vari-

ables used in the FSM of our controller for Ms. Pac-Man.

The operators of the genetic algorithm implemented selected by the results of these

experiments are: Selection by Tournament, Plane Crossover, Mutation by Interchange

and Substitution of the Worst.

6 Conclusions

The combination of operators selected after this particular game designer-style exper-

imentation produce results that are far from the more than 20.000 points reached in the

scores of official competitions of Ms. Pac-Man vs. Ghosts. But results seems reasona-

ble considering the simplicity of the FSM developed here and the non-exhaustive

methodology followed. The goal of this research was to double check that a genetic

algorithm can improve significantly a FSM, even if it is a simple one and it is used as

a practical testbed for game design. We could affirm that average scores of a popula-

tion of FSM can be improved in more than 100%, and that the better ones also receive

an improvement of approximately 60%.

Taking into account the simplicity of the implemented controller, it seems reasona-

ble that a more elaborated one, for instance a multi-level FSM or a subsystem based

on fuzzy rules for state transition, can be improved with this evolutionary approach.

Now we plan to repeat similar experiments with other combinations of operators,

using a more rigorous approach, at the same time we add variations in some of the

operators (for instance, changing the points in the crossing methods or modifying the

function in the arithmetic crossing). Of course, our roadmap includes increasing the

complexity of the FSM and starting to explore a simple strategy game.

References

1. Student StarCraft AI Tournament (SSCAIT)
http://www.sscaitournament.com/

2. AIIDE StarCraft AI Competition
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/index.shtml

3. Goldberg, H.: All your base are belong to us: How fifty years of videogames conquered pop

culture. Three Rivers Press (2011)

4. Kent, S.L.: The ultimate history of video games: From Pong to Pokemon and beyond…

The story behind the craze that touched our lives and changed the world. pp. 172-173. Pri-

ma Pub (2001)

5. Cramer, N.: A representation for the adaptive generation of simple sequential programs.

International Conference on Genetic Algorithms and their Applications. Carnegie-Mellon

University, July 24- 26 (1985)

6. Koza, J.: Genetic programming: on the programming of computers by means of natural

selection. MA: The MIT press, Cambridge (1992)

11

7. Mads, H.: Autonomous agents: Introduction. (2010). Retrieved January 19, 2013 from

http://www.cs.tcd.ie/Mads.Haahr/CS7056/notes/001.pdf

8. Melanie, M.: An Introduction to genetic algorithms (Complex adaptive systems). pp. 7-8. A

Bradford Book (1998)

