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Abstract

Engineering processes are often inherently concurrent, involving mul-
tiple stakeholders working in parallel, each with their own tools and
artefacts. Ensuring and restoring the consistency of such artefacts is a
crucial task, which can be appropriately addressed with a bidirectional
transformation (bz) language. Although there exist numerous bz lan-
guages, often with corresponding tool support, it is still a substantial
challenge to learn how to actually use such bz languages. Triple Graph
Grammars (TGGs) are a fairly established bz language for which mul-
tiple and actively developed tools exist. Learning how to master TGGs
is, however, currently a frustrating undertaking: a typical paper on
TGGs dutifully explains the basic “rules of the game” in a few lines,
then goes on to present the latest groundbreaking and advanced re-
sults. There do exist tutorials and handbooks for TGG tools but these
are mainly focussed on how to use a particular tool (screenshots, tool
workflow), often presenting exemplary TGGs but certainly not how to
derive them systematically. Based on 20 years of experience working
with and, more importantly, explaining how to work with TGGs, we
present in this paper a systematic approach and guidelines to develop-
ing a TGG from a clear, but unformalised understanding of a bz.

1 Introduction and Motivation

Formalizing and maintaining the consistency of multiple artefacts is a fundamental task that is relevant in numer-
ous domains [6]. Bidirectional transformation (bz) languages address this challenge by supporting bidirectional
change propagation with a clear and precise semantics, based on a central notion of consistency specified with
the bz language. Although numerous bz approaches exist [19], often with corresponding tool support, mastering
a br language is still a daunting task. Even once the user has a clear, though unformalised, understanding of
what the bz should do, embodying this understanding in a bz is non-trivial. Formal papers do not address this
issue, and neither, usually, do tool-centric handbooks.
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Triple Graph Grammars (T'GGs) [18] are a prominent example of a bz language for which this observation
holds: a typical paper on TGGs dutifully explains how TGGs “work” in a few lines, then conjures up a complete
and perfect TGG specification for the running example out of thin air. This is not how things work in practice;
going from a clear, but unformalised understanding of consistency to a formal TGG specification is difficult,
especially for developers who do not already have ample practice with rule-based, declarative, (graph) pattern-
based languages. Existing tutorials, handbooks, and introductory papers on TGGs do not alleviate this situation
as they are either tool-specific, focusing on how to use a certain TGG tool, or present basic concepts without
providing a systematic approach to how TGG rules can be iteratively engineered.

To the best of our knowledge, the only existing work in this direction is from Kindler and Wagner [13] and
later, treated in some more detail in Wagner’s PhD thesis [22]. Similarly to [21] for model transformation, Kindler
and Wagner propose an algorithm that “synthesizes” TGG rules from a set of consistent examples provided by
the user. Although this can be very helpful in scenarios where rather simple but numerous TGG rules are
required, we have observed that a typical TGG involves a careful design process with direct consequences for
the resulting behaviour of derived model synchronizers. Indeed, Kindler and Wagner mention that synthesized
TGGs probably have to be adjusted, extended and finalized manually, but do not provide adequate guidance of
how this can be done systematically.

Based on 20 years’ experience working together with industrial partners and students, learning how to under-
stand and use TGG specifications, our contribution in this paper is, therefore, to provide a systematic approach
to creating and extending TGGs. Our aim with the resulting step-by-step process, is to substantially lower the
initial hurdle of concretely working with TGGs, especially for other users and researchers in the bz community.

The rest of the paper is organized as follows: Sect. 2 reviews the preliminaries of TGGs and provides our
running example that is available as Ecore2Html from the bz example repository [5], and as a plug-and-play
virtual machine hosted on Share.! Sect. 3 introduces an iterative approach and a set of guidelines for engineering
a TGG, constituting our main contribution in this paper. Sect. 4 complements this by providing an intuitive un-
derstanding of TGG-based synchronization algorithms. Sect. 5 compares our work to other related contributions.
Sect. 6 summarizes and gives a brief outlook on future tasks.

2 Running Example and Preliminaries

The running example used in the rest of this paper is a bidirectional transformation between class diagrams and
a corresponding HTML documentation. Consider, for instance, a software development project for implementing
a TGG-based tool. The project consists of two groups of developers: (i) core developers who are responsible for
establishing and maintaining the main data structures and API provided by the tool, and (ii) other developers
who mainly use the API and work with the tool (functioning as beta testers for the project). The latter group
does not define the data structures involved, but is probably in a better position to document all packages,
classes, and methods. It thus makes sense to maintain two types of artefacts for the two groups of stakeholders:
(1) class diagrams, maintained by core developers, and (2) HTML documents, maintained by API users in, e.g.,
a wiki-like manner. The class diagram to the left of Fig. 1 depicts the main data structures of a TGG tool, with
a corresponding folder structure containing HTML files to the right.

The outermost package TGGLanguage corresponds to the top-most folder TGGLanguage, and contains subpack-
ages and classes, which correspond to subfolders and HTML files, respectively. TripleGraphGrammars consist of
TGGRules, which are in essence graph patterns (referred to as StoryPatterns) consisting of variables that stand
for objects (ObjectVariables) and links (LinkVariables) in a model. This general concept of a graph pattern
is extended for TGGs by attaching a Domain to each concept. Each Domain references a Metamodel, a wrap-
per for the supported metamodelling standard.? The classes StoryPattern, LinkVariable, ObjectVariable,
and EPackage are imported from other class diagrams (greyed out) and are not part of the documentation of
TGGLanguage. The corresponding documentation model is much simpler: it consists of a folder structure mir-
roring the package structure in the class diagram, and an HTML file for each class. Note that packages are also
documented in corresponding files, which start with “__” to distinguish them from class documentation files (e.g.,
__TGGLanguage .html). Inheritance and references are irrelevant for the documentation model, but all methods
of each class (excluding inherited methods) are to be documented as a table with two columns (name of the
method and documentation) in the corresponding class documentation file.

Ihttp://is.ieis.tue.nl/staff/pvgorp/share/?page=LookupIlnage&bNameSearch=eMoflon
2In this case EPackage for Ecore, the de facto standard of the Eclipse Modeling Framework (EMF).
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Figure 1: A class diagram and its corresponding HTML documentation

precompiler

L

TGGLanguage is the metamodel for TGG rules, the TGG compiler,
and all required static analyses.

The following points are noteworthy: (1) Information loss is incurred when transforming class diagrams to
documentation models (e.g., inheritance relations and references) and when transforming documentation models
to class diagrams (all entered documentation is lost!). This is the main reason why the change propagation
strategy required for this example must take the old version of the respective output artefact into account.
(2) Not all possible changes make sense: it is arguable whether APT users should be able to rename elements in
the documentation and propagate such changes to the corresponding class diagrams. Even more arguable are
changes such as adding new elements in the documentation that do not yet exist in the class diagram. Such
changes may be interpreted as feature requests, but are probably not primary use cases.

Models, Metamodels, Deltas, and Triple Graph Grammars: We assume a very basic understanding of
TGGs and of Model-Driven Engineering (MDE) concepts, and refer readers having a hard time understanding
the following to, e.g., the eMoflon handbook? for a gentle, tutorial-like introduction. Readers more interested in
a formal and detailed introduction to TGGs are referred to, e.g., [1].

In the following, we introduce core terms and notation as they are to be understood (informally) in this
paper. Based on this understanding, we then propose a systematic, iterative TGG development process in
Sect. 3, together with a set of guidelines or best practices. This process is then demonstrated by applying it to
develop a TGG for our running example.

A model is an abstraction (a simplification) of something else, chosen to be suitable for a certain task. In an
MDE context, metamodels, essentially simplified UML class diagrams, are used to define languages of models.

Given two languages of models and their respective metamodels, say a source and a target language, a
consistency relation over source and target models is a set of pairs of a source and a target model, which are to
be seen as being consistent with each other.

Given a consistent pair of source and target models, a change applied to the source model is referred to as
a source delta, and a change to the target model is called a target delta. As models are graph-like structures
consisting of attributed nodes and edges, we may decide that atomic deltas are one of: element (node/edge)
creation, element deletion, and attribute changes. Atomic deltas can be composed to yield a composite delta. A
composite delta that only involves element creation is called a creating delta. A source/target delta that does
nothing is called an idle source/target delta, respectively.

Given a consistent pair of source and target models, and a source delta, the task of computing a corresponding
target delta that restores consistency by changing the target model appropriately is referred to as forward model
synchronization, or just model synchronization. This applies analogously to target deltas and computed source
deltas, i.e., backward model synchronization. The more general task of restoring consistency given both a source
and a target delta is referred to as model integration, which is outside the scope of this paper.

A Triple Graph Grammar (TGG) is a finite set of rules that each pair a creating source/target delta with
either a corresponding creating target/source delta or with an idle target/source delta, respectively.

3 Available from www.emoflon.org
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Each TGG rule states that applying the specified pair of deltas together will extend a given pair of source and
target models consistently. To keep track of correspondences between consistent source and target models on an
element-to-element basis, a third correspondence model can be maintained consisting of explicit correspondence
elements connecting certain source and target elements with each other. These correspondence elements are
typed with a correspondence metamodel, which can be chosen as required. In general, a TGG can thus be used
to generate a language of triples, consisting of connected source, correspondence, and target models. A triple is
denoted as Gg < G¢ — Gr (G for graph). A TGG induces a consistency relation as follows: A pair of source
and target models (Gg, Gr) is consistent if there exists a triple Gg + G¢ — Gr that can be generated by
applying a sequence of deltas, as specified by the rules of the TGG.

A TGG tool is able to perform model synchronization using a given TGG as the specification of consistency. A
TGG tool is correct if it only produces results that are consistent according to the given TGG used to govern the
synchronization process [18]. As correctness does not in any way imply that information loss should be avoided,
one TGG tool is said to be more incremental than another if it handles (avoids) information loss better [1]. A
TGG tool is said to scale if the runtime for synchronization depends polynomially (and not exponentially) on
model and delta size, and is efficient if the runtime for synchronization only depends on delta size (and no longer
on model size) [1].

Example: To explain these basics further, Fig. 2 depicts the source and target metamodels chosen for the
running example. The source metamodel (to the left) is Ecore, a well-known standard for simple class diagrams.
Class diagrams basically consist of packages (EPackages) containing subpackages, and classes (EClasses) with
methods (EOperations). The target metamodel (to the right) is MocaTree, a generic tree-like target metamodel
providing concepts to represent a hierarchy of folders with files, where each file contains a tree consisting of
Nodes. Objects of type Text but not of type Node are used to represent leaves in the tree that cannot have
children. In this manner, it is possible to represent arbitrary (X)HTML trees. The correspondence metamodel
consists of types connecting source and target elements as required for the rules and is omitted here.

parentFolder 0..1
ENamedElement TreeElement

subFolder *

] T

EPackage eSubpackages 0..*

folder 1
1
ePackage file ||,

eClassifiers 0..* eSuperPackage 0..1 FiIe

EClassifier | otype

ETypedElement fle &1

1
eSuperTypes 0..*
per e ZF Z} rootNode

1

eContainingClass eOperations Q—
EClass @< — 2| EOperation Text | piaren_perenfioce Node
0.* 1
Ecore MocaTree

Figure 2: Source and target metamodels for the running example

To introduce the notation and language features used in this paper to specify TGG rules, let us consider two
TGG rules for handling (sub)packages and their corresponding documentation. The TGG rule for handling root
packages is depicted to the left of Fig. 3. The source and target deltas paired by this rule are: (i) creating a
new EPackage in the source model, and (ii) creating a Folder with a single HTML File. The basic structure
of the HTML file, consisting of a header and a paragraph where a description of the package can be entered, is
also created in the same target delta. The package and folder are connected with a correspondence node of type
EPackageToFolder. In standard TGG visual notation, all elements created in a rule are depicted in green with
an additional "++" markup for black and white printouts. Correspondence nodes are additionally depicted as
hexagons to clearly differentiate them from source and target elements.

A set of attribute constraints specifies the relationship between attribute values of the elements in a TGG
rule. All TGG tools provide an extra, typically simple textual language for expressing such attribute constraints.
In this case, the eq constraint expresses that ePackage has the same name as docuFolder. To express that
the name of the htmlFile should start with "__", end with ".html", and contain the name of ePackage, two
attribute constraints addSuffix and addPrefix are used, where withSuffix is a temporary variable.

84



htmiFile : File
file
rootNode  [++
++
’_{(eq(ePackage.name, docuFolder.name)} ’—\ rootNode : Node
name name name := "html"
aas * «Ruley parentNode
g o ter v | docuFolder Flder HTMLFileAndHeader gien |
ackage 9 body : Node
folder | o name := "body"
N ™ children children
ame i\
| [fladdSufix(ePackage.name, " html", withSuffix) " htmiFile - File e - 4
addPrefix("__", withSuffix, htmlFile.name)} «Rule» header : Node documentation : Node
file RootPackageToDocuFolder
rootNode | ++ T o
name := "h1 name :="p
rootNode : Node index := 0 index := 1
name := "html" parentNode
children  [++
parentNode
[Shildren | ++ title : Text
body : Node
name := "body" ’_{{eq(ePackage.name, docuFolder.name)} }—\
children children
++ ++ name name
+4 ++

documentation :

header : Node Node ++ + +
— e ePackage:  [*™ packToDocu : target .
ir:]adn;: z 0h1 :::;25 - 1p EPackage + PackageToFolder 7| docuFolder: Folder
parentNode /I\ folder
children | ++ name fie
ek 4
. L{addSuffix(ePackage.name, ".html", withSuffix) name
fitle : Text addPrefix("__*, withSuffix, htmiFile.name)} L—>{htmiFile : File

++

name := "Outermost-Package:
Documentation for Project-Root" m

title : Text

name := "Outermost-Package:
Documentation for Project-Root"

Figure 3: Handling root packages: without (left) and with (right) rule refinement

For cases where an attribute is simply assigned a constant, this can be “inlined” in the respective node, e.g.,
name := "html" in rootNode. If we consider Fig. 1 again, we can now compare the creating deltas in the TGG
rule to the package TGGLanguage, the folder TGGLanguage and the HTML file __TGGLanguage .html, and see that
all attribute constraints are fulfilled.

It is often useful to extract parts of a rule into a basis rule, so that these parts can be reused in other subrules.
Apart from possibly enabling reuse, readability can also be increased by decomposing a rule into modular
fragments that each handle a well-defined concern. Many TGG tools support some form of rule refinement [3,
8, 14] as depicted to the right of Fig. 3: A new TGG rule HTMLFileAndHeader, creating the basic structure of
an HTML file, has been extracted and is now refined (denoted by an arrow) by the subrule RootPackageTo-
DocuFolder to yield the same rule as depicted to the left of Fig. 3. As we do not want to allow creating basic
HTML files on their own, HTMLFileAndHeader is declared to be abstract (denoted by displaying the rule’s name
in italics). This means that it is solely used for modularization and not for synchronization. The exact details
of rule refinement are out-of-scope for this paper, but in most cases (as here), it is a merge of the basis with the
refining rule, where elements in the refining rule override elements with the same name in the basis rule (this
is the case for htmlFile and title). Such overriding elements are shaded light grey in subrules to improve
readability. TGGs with rule refinements are flattened to normal TGGs. Abstract rules are used in the process,
but are not included in the final TGG. Non-abstract rules are called concrete rules.

Fig. 4 depicts a further TGG rule SubPackageToDocuFolder for handling subpackages (EPackages with a
super package). SubPackageToDocuFolder refines RootPackageToDocuFolder and additionally places the cre-
ated package into a super package, and the corresponding subfolder into a parent folder (determined using the
correspondence node superToFolder). Finally, the title is adjusted for subpackages by overriding it in Sub-
PackageToDocuFolder. This rule shows how context can be demanded; the context elements superPackage,
superToFolder, superFolder, and connecting source and target links are depicted in black and must be
present (created by some other rule) before the rule can be applied. In this sense, the context elements form a
precondition for the application of the rule.

Our current TGG consists of two concrete rules and one abstract rule, and can be used to generate consistent
package hierarchies and corresponding folder structures with HTML files for documenting the packages.
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Figure 4: Handling subpackages and their documentation

In the following section, we shall take a look at how to systematically develop TGG rules in a step-by-step
process, discussing various kinds of TGG rules and how design choices affect derived TGG-based synchronizers.

3 An Iterative Process and Guidelines for Developing a TGG

To introduce basic concepts we have already specified a TGG to handle package structures and their HTML
documentation. This was done in a relatively ad-hoc fashion, choosing source and target metamodels, deciding to
start with handling packages, and specifying the required TGG rules without consciously applying any systematic
process. Although this might work fine for simple cases or for seasoned TGG experts, we propose the following
process depicted in Fig. 5, which consists of four steps outlined in the following sections. In each step, we give
guidelines that represent current best practice and provide guidance when making design decisions.

1 2 3 4

Choose and adjust Extend your testsuite Extend your TGG to Profile for hotspots
your abstractions of supported deltas pass the new tests and scalability

Figure 5: Developing a TGG with an iterative, test-driven development process

3.1 Choose and adjust your abstractions (metamodels)

In practice, the final artefacts to be synchronized are typically fixed for a certain application scenario, e.g., XML
files, a certain textual format, a tool’s API, or programs in some programming language. As TGG tools do
not usually operate directly on these final artefacts, a parser/unparser component, referred to as an adapter
in the following, is required to produce a graph-like abstraction of the artefacts. The choice of source/target
metamodels thus becomes a degree of freedom with a direct impact on the complexity of the required adapter.

Guideline 1 (Adapter complexity vs. rule complexity). Choosing very high-level source and target metamodels
might lead to simple, elegant TGG rules but also requires complex adapters in form of (un)parsers or some
other import/export code. As this shifts complexity away from the TGG, strive to keep such pre/post-processing
adapter logic to a minimum. Decomposing the synchronization into multiple steps by introducing an intermediate
metamodel and developing two TGGs instead of one can be a viable alternative.

Example: For our running example, the source artefacts are XMI files representing class diagrams, while target
artefacts are XHTML files. As the class diagrams already conform to Ecore, choosing Ecore as the source
metamodel means that the standard EMF XMI reader and writer can be used. To handle XHTML files, a simple
and generic XML adapter is used that produces instances of a basic, tree-like metamodel MocaTree, as depicted
in Fig. 2. Although these choices reduce the required adapter logic to a minimum (G1), our TGG rules are
rather verbose, especially in the target domain (cf. Fig. 3). We addressed this with rule refinement (any form of
modularity concept could be beneficial in this case if supported by the chosen TGG tool), but could also have
chosen a richer target metamodel and shifted most of the complexity to a problem-specific XHTML parser and
unparser instead.
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3.2 Extend your test suite of supported deltas

Although it is generally accepted best practice in software development to work iteratively and to apply regression
testing, beginners still tend to specify multiple rules or even a complete TGG without testing. This is particularly
problematic because the understanding of the consistency relation often grows and changes while specifying a
TGG. The following guideline highlights that any non-trivial TGG should be supported by a test suite.

Guideline 2 (Take an iterative, test-driven approach). When specifying a TGG, take a test-driven approach to
prevent regression as the rules are adjusted and extended. Run your test suite after every change to your TGG.

In this context, a source test case consists of: (i) a consistent triple (possibly empty), (ii) a source delta to be
applied to the triple, and (iii) a new target model representing the expected result of forward synchronizing
the source delta. Target test cases are defined analogously. Although all important deltas for an application
scenario should eventually be tested, it makes sense to focus first on creating deltas as these can be almost
directly translated into TGG rules.

Guideline 3 (Think in terms of creating source and target deltas). Think primarily in terms of consistent pairs
of creating source and target deltas and derive corresponding test cases. This simplifies the transition to a TGG.

The following two guidelines propose to handle “easy” cases first before going into details. Concerning creating
deltas, “easy” translates to “not dependent on context”.

Guideline 4 (Start with context-free creating deltas). Start with context-free pairs of creating deltas as these
are usually simpler. A context-free delta can always be propagated in the same way, independent of what the
elements it creates will be later connected with.

Although graphs do not have a “top” or “bottom” in general, in many cases models do have an underlying
containment tree. Top-down thus means container before contents. As containers typically do not depend on
their contents, we get the following guideline as a corollary of Guideline 4:

Guideline 5 (Prefer top-down to bottom-up). If possible, start top-down with roots/containers of the source
and target metamodels as containers typically do not depend on their contents.

Example: Applying these guidelines to our running example, we chose to handle package hierarchies in a first
iteration (G2). We started thinking about creating a root package in the class diagram as a source delta, whose
corresponding target delta is creating a folder containing a single HTML file named “_” 4 ePackage.name,
which is to contain the documentation for the root package (G3). This is always the case irrespective of what the
root package/folder later contains and is thus a context-free pair of creating deltas (G4). We took a top-down
approach (G5) handling root packages before subpackages (cf. Fig. 3 and Fig. 4).

3.3 Extend your TGG to pass the new tests

After discussing with domain experts and collecting test cases addressing a certain aspect, e.g., (sub)packages
and folders, the next step is to specify new, or adjust existing, TGG rules to pass these tests. To accomplish
this, it is crucial to understand that there are only a few basic kinds of TGG rules as depicted schematically
in Fig. 6. The names are chosen to give a geographical intuition, where green and black clouds/arrows denote
created and context elements, respectively:

Islands are context-free rules that do not demand any context. An island may either be idle, creating either
source or target elements, or it may create both, source and target elements. After applying such a rule, an
isolated “island” of elements is created.

Ezxtensions require a context island and then extend it by creating and directly attaching new elements to it.

Bridges connect two context islands by creating new elements to form a bridge between the islands. Bridges can
of course be generalized to connect multiple islands, but remain fundamentally the same. Bridges connecting
more than two islands are rare in practice, probably because they become increasingly complex to comprehend.

Ignore rules (not depicted) are TGG rules that do not create any elements in either the source or target domain.
Such rules state explicitly that applying a certain creating delta in one domain has no effect on the other domain.

Based on these basic kinds of TGG rules, we propose the following guidelines.

87



SeSSes

Island Rule Extension Rule Bridge Rule

Figure 6: Different kinds of TGG rules: Islands (left), Extensions (middle), and Bridges (right)

Guideline 6 (Prefer islands and bridges to extensions). When specifying an extension, always ask domain experts
if it is acceptable to split the extension into an island and a bridge, as this often improves derived synchronizers.
Extensions should only be used if an island would have to change once it is connected via a bridge.

An extension states that all created elements are dependent on the specified context. In many cases, this
introduces unnecessary dependencies between islands. In general, TGG-based synchronization works better, the
fewer context dependencies are specified in rules.

Guideline 7 (Formalize information loss via explicit ignore rules). Most TGG tools attempt to ignore irrelevant
elements automatically, as specifying this explicitly with ignore rules can be tedious, especially in the first few
iterations, when the TGG covers only a small subset of the source and target metamodels. FExplicit ignore rules
are nonetheless better than tool-specific heuristics and automatic ignore support, and should be preferred.

Example: Applying these guidelines to our running example, we now discuss the current TGG (handling
package/folder hierarchies) as well as new rules for handling classes and methods, together with their respective
documentation. Reflecting on rules RootPackageToDocuFolder and SubPackageToDocuFolder (cf. Fig 3 and
4) now in the light of our guidelines, we can identify RootPackageToDocuFolder as an island, and SubPackage-
ToDocuFolder as an extension thereof. Can we split the extension into an island and a bridge (G6)? Although
subpackages are treated just like root packages, it must be clear from the corresponding documentation file that
this is the documentation for a subpackage and not a root package. The heading in the file (title in Root-
PackageToDocuFolder) must, therefore, be adjusted appropriately. Interestingly, if a (sub)package p is deleted
in the source model, all subpackages of p consequently become root packages and must now be (re)translated
differently! This also applies to making a former root package a subpackage by connecting it to a super package.
In this case, the root package is now a subpackage and must also be (re)translated appropriately. Creating and
documenting subpackages in this manner is an example of creating deltas that cannot be handled as an island.

Creating a class ¢ corresponds to creating an HTML file named <c.name> + “.html”, this time with a header
“EClass” + <c.name>. In addition, an empty HTML table to contain all methods of the class should be created
in the file. Adding a class c to a package p corresponds to simply placing the documentation file for ¢ into the
documentation folder for p. This time around, these consistency requirements can be transferred directly to an
island and a bridge: Fig. 7 depicts the island EClassToHTMLFile for handling the creation of an EClass and its
documentation file with internal HTML structure. EClassToHTMLFile once again refines HTMLFileAndHeader
to reuse the basic structure of an HTML file. The body of the HTML file is extended, however, by a table node
methodTable and an extra subheader for the table. Attribute constraints are used to ensure that the name and
header of the file correspond appropriately to the created class. Specifying this as an island means that classes
and their documentation are created in this manner, independent of what package the class is later placed in.

Fig. 7 also depicts the bridge EClassToFileBridge used to handle adding classes to packages and their
documentation files to the corresponding documentation folder. In this case the “bridge” consists of an edge in
each domain. In general, however, an arbitrary number of elements can be created to connect the context clouds
as required. The primary advantage of using a bridge here instead of an extension (G6) is that unnecessary
dependencies are avoided; a class can be moved to a different package without losing its documentation. Finally,
Fig. 7 depicts an ignore rule IgnoreFileDocu (no elements are created in the source domain), which states
explicitly that adding documentation to an HTML file does not affect the source domain (G7). Note that this
handles documentation for both packages and classes as the basic structure of the HTML file is identical.

Fig. 8 depicts an island DocumentMethod, a bridge EOperationTableBridge, and an ignore rule Ignore-
MethodDocu used to handle creating methods and their corresponding documentation.
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Figure 8: Handling methods and their documentation
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Creating a method of a class corresponds to creating a row in an HTML table with two column entries: the
first for the name of the method, and the second for its documentation (initially empty). Connecting a method
to a class corresponds to adding this row to the method table of the class that was created by EClassToHTML-
File. A row in an HTML table is a tr element, while column entries are td elements. Indices are used in
DocumentMethod to ensure that the column entries are always in the same order (name before documentation).
EOperationTableBridge connects a method to a class, and adds its HTML row node to the method table of the
class. Analogously to IgnoreFileDocu, the ignore rule IgnoreMethodDocu states that documenting a method
does not affect the source domain. Note that the node documentation is constrained to be a column entry.

According to G7, we would actually need to specify ignore rules for all irrelevant concepts in the source domain
(cf. Fig. 2) including inheritance relations, attributes, references, and datatypes. This guideline can be relaxed,
however, for types that do not occur in any TGG rule. It is, for instance, easy to automatically ignore the
reference eSuperTypes denoting inheritance, but difficult to automatically ignore Text documentation nodes (as
in IgnoreMethodDocu), as the type Text does occur, e.g., as ref:Text in DocumentMethod.

3.4 Profile for hotspots and scalability

Declarative languages such as TGGs certainly have their advantages, but one must reserve some time for pro-
filing and testing for scalability. Depending on the TGG tool and the underlying modelling framework and
transformation engine, certain patterns and constructs can be, especially for beginners, surprisingly inefficient.

Guideline 8 (Use a profiler to test regularly for hotspots). Regularly profiling the synchronization for medium
4

and large sized models is important to avoid bad design decisions early enough in the development process™.
To support such a scalability analysis, some TGG tools [11, 23] provide support for generating models (of
theoretically arbitrary size) using the TGG specification directly. This should be exploited if available.
Concrete optimization strategies for TGGs are discussed in detail in [15]. The most common user-related
optimization is to provide more specific (and in some cases redundant) context elements and attribute constraints
within the source and target domains of a rule. This helps the transformation engine eliminate inappropriate
rule applications in an early phase, i.e., before checking all (costly) inter-model connections in a rule pattern.

4 TGG-Based Synchronization Algorithms

In this section we try to bring our TGG to life in the synchronization scenario depicted in Fig. 9. Our goal is
to impart a high-level intuition for how TGG-based synchronization algorithms work in general. This provides
not only a rationale for the guidelines already provided in the previous section, but also an understanding for
how arbitrary deltas (and not only the explicitly specified creating deltas) are propagated. How this propagation
works arguably depends on the chosen TGG tool, in our case eMoflon whose algorithm is described in [1], and
we refer to [12, 16] for a detailed comparison of TGG tools. Nevertheless, the provided intuition is still helpful
in understanding the TGG-related consequences of a delta, i.e., which TGG rule applications from former runs
must be invalidated or preserved, and which TGG rules must be applied in a new run. In the following, the
labels (@) — (6) are used to refer to certain parts of the synchronization scenario in Fig. 9.

Batch Translation @), @): The scenario starts with the creation of a new class diagram (@). To provide a
consequent delta-based intuition, this initial step can also be seen as a large source delta consisting of adding
all elements in the class diagram. To create this class diagram @, a root folder TGGLanguage containing two
classes and two subfolders compiler and precompiler must be created. Each subfolder also contains a class,
and compiler contains a subfolder as well. To propagate this source delta @, TGG-based algorithms compute
a sequence of TGG rule applications that would create the resulting source model. A possible sequence in this
case is: (1) RootPackageToDocuFolder to create TGGLanguage, (2) SubPackageToDocuFolder applied three
times to create compiler, precompiler, and compilerfacade, (3) EClassToHTMLFile to create all classes, and
(4) EClassFileBridge to connect all classes to their containing packages. As TGG rules are specified as triple
rules, applying this sequence of rules yields not only the expected source model but also a correspondence and a
target model. In addition, the resulting triple of source, correspondence, and target models is, by definition, in
the specified TGG language and is, therefore, correct. The target model is thus the result of forward propagating
@ the source delta @ Although this search for a possible rule application sequence can be implemented naively

4 Although this ultimately depends on the specific metamodels and TGG rules, our current experience is that models of up to
about 200000 elements can be handled reasonably well by TGG-based synchronizers [15].
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Figure 9: Synchronization scenario with our running example

as a straightforward trial and error procedure with backtracking, this would have exponential runtime and does
not scale. All TGG tools we are aware of do not backtrack and instead restrict the class of possible TGGs.

A common restriction is demanding some variant of confluence, a well-known property of transition systems,
which can be checked for statically using a so-called critical pair analysis. The interested reader is referred
to, e.g., [2] for details. The naive understanding of just fitting TGG rules until the correct sequence of rule
applications is determined is, however, sufficient for an intuitive understanding of how this works in theory.

Ignoring Changes with Ignore Rules @, @: A target delta consisting of two changes is applied in @ As
depicted in Fig. 9, the documentation files __precompiler.html and RefinementPrecompiler.html for the
package precompiler and the class RefinementPrecompiler, respectively, are edited. In terms of our HTML
metamodel, this corresponds to adding a textual node to the corresponding paragraphs (p nodes) in the HTML
files. A TGG-based synchronizer would propagate @ this target delta by simply doing nothing, i.e., the source
model is not changed at all. The same process is taken as with (@7 i.e., a sequence of TGG rules is determined
that applies the given target delta. The sequence in this case is: IgnoreFileDocu applied twice to create the
added text node in both HTML files. As both rules are specified as ignore rules, the correspondence and target
models are not changed in the process.

Handling Deleted and Added Elements @, @: After discussing two simple cases, we now demonstrate how the
choice between extensions and bridges affects the behaviour of a TGG-based synchronizer. Let us consider a
more general source delta @, which “moves” the subpackage precompiler from TGGLanguage to compiler.
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This is accomplished by (i) deleting the link between TGGLanguage and precompiler, and (ii) creating a new
link between compiler and precompiler. Propagating this source delta @ thus entails handling a deletion and
an addition. The synchronization is, therefore, executed in three phases: a deletion phase, an addition phase,
and a translation phase:

for all deletions: revoke all dependent rule applications
for all additions: revoke all dependent rule applications
translate all revoked and newly added elements

To revoke means to rollback a rule application, i.e., for forward synchronization, all correspondence and target
elements created by the rule application to be revoked are deleted, while all created source elements are considered
as revoked and to be (re)translated in the ensuing translation phase.

For every element that has been deleted, all rule applications that require the element as context and thus
depend on the deleted element become invalid and must be revoked. Note that this must be done transitively.

In general, additions also have to be handled analogously to deletions, i.e., sometimes rule applications must
be revoked as a consequence of newly added elements. For our running example, consider adding a new root
package eMoflonLanguages that contains the current root package TGGLanguage. This must lead to revoking
TGGLanguage and re-translating it as a subpackage of the new root package eMoflonLanguages!

To explain this further with our synchronization scenario, Fig. 10 depicts a relevant excerpt of the source
and target models involved (top left). The deleted link is depicted bold and red with a “--” markup for
emphasis. A TGG-based synchronizer typically keeps track of the translation by grouping links and objects into
rule applications. This grouping is depicted visually in Fig. 10 for all rule applications required to create the
current triple. For example, the rule application 3:SubPackageToDocuFolder comprises the deleted link between
TGGLanguage and precompiler, the subpackage precompiler, as well as the corresponding target elements: the
link between the root folder TGGLanguage and subfolder precompiler, the folder precompiler, and the HTML
file __precompiler.html. Note that the rule applications also comprise all relevant correspondence elements,
which are abstracted from in Fig. 10 to simplify the explanation.

This grouping into rule applications, which can be reconstructed by simulating the creation of a consistent
triple from scratch if necessary, is used to determine dependencies between the groups of elements. This is
depicted visually in Fig. 10 (top right) as a dependency graph, showing that, for example, the rule application
5:EClassFileBridge depends on (shown as an arrow) 3:SubPackageToDocuFolder and 4:EClassToHTMLFile,
as these two rule applications create objects that are required as context in 5:EClassFileBridge.

Given a source delta and calculated dependencies between rule applications, the deletion phase is carried
out by revoking all rule application containing deleted elements, recursively revoking all rule applications that
directly or transitively depend on revoked rule applications, and finally removing the deleted source elements
from all data structures. This process is depicted in Fig. 10 (top right) showing (with a bold, red outline and
“~=” markup) that 3:SubPackageToDocuFolder is to be revoked as it contains the deleted source link between
TGGLanguage and precompiler. In this case, the only dependent rule application is 5:EClassFileBridge, which
must also be revoked (bottom right of Fig. 10).

In the translation phase, all revoked source elements are treated as if they were newly added, i.e., they
are translated together with all added elements. This is depicted in Fig. 10 (bottom left) showing (bold,
green outline and “++” markup) the revoked source elements precompiler and the link between precompiler
and RefinementPrecompiler, as well as the newly added link between compiler and precompiler from
the source delta. In this state, the same translation strategy as explained for @ and @ can be applied,
however, only for all added and revoked source elements. Due to this process, the documentation added
to RefinementPrecompiler.html in @ is retained as its corresponding class is not revoked (Fig. 10, bot-
tom left). As the subpackage precompiler is, however, revoked and re-translated, its documentation file
__precompiler.html is deleted, losing the changes made in @), and is re-created afresh.

This is a direct consequence of using an extension rule for handling subpackages, but a bridge to connect
classes to their parent packages. Similarly, the decision to use a bridge to connect methods to their classes
enables, e.g., a pull-up method refactoring in the class diagram without having to revoke the method and lose
its documentation. One can certainly argue that this behaviour is not always optimal, but it is what can
currently be expected from state-of-the-art TGG-based synchronizers, given the choices we made when designing
our TGG. Further improving current TGG synchronization algorithms to handle extensions as bridges during
change propagation and still guarantee correctness is ongoing research.

92



1: RootPackageToDocuFolder

__________ —=|(=» TGGLanguage
h 4 TGGLanguage.html

1: RootPackageToDocuFolder
4: EClassToHTMLFile

3: SubPackageToDocuFolder

- < <>>| (= compiler

@ __compiler.html

5: EClassFileBridge

[ RefinementPrecompiler [€= — = < > — — >| () RefinementPrecompiler

3: SubPackageToDocuFolder

2: SubPackageToDocuFolder

5: EClassFileBridge

Dependency graph

————— <> - - --->|( TGGLanguage

| & _ TGGLanguage.html

1: RootPackageToDocuFolder
4: EClassToHTMLFile

[
1
I
1
1
1
I
1
1
1
I
1
- 1
& __compiler.html | ‘
I
1
1
1
I
1
1
1
I
1

< <> > compiler
3: SubPackageToDocuFolder

[y 2: SubPackageToDocuFolder
5: EClassFileBridge

Dependency graph

Figure 10: Handling of additions and deletions by a TGG-based synchronization algorithm

5 Related Work

We consider three different groups of related work in the following: (1) previous TGG publications with a focus
similar to this work, (2) guidelines for bz approaches based on QVT-R which, similar to TGGs, address bz in
an MDE context, and (3) other approaches to systematically developing model transformation rules in general.

Other approaches to systematically developing a TGG: Kindler and Wagner [13, 22] propose to semi-
automatically synthesize TGG rules from exemplary pairs of consistent source and target models. Viewing
their iterative synthesizing procedure through our geographical intuition, an island is first constructed from a
given pair of consistent models, and is then stepwise deconstructed to smaller islands, bridges, or extensions by
removing parts already covered by rules synthesized from former runs. As the procedure largely depends on the
complexity of the transformation as well as the representativeness and conciseness of the provided examples, the
authors suggest finalizing the process with manual modifications, for which our guidelines can be used.

Engineering guidelines are presented in [15] based on experience with profiling and optimizing TGGs. In
contrast to this paper, the topics handled in [15] are mostly scalability-oriented and address, in many cases,
primarily TGG tool developers rather than end users.

Guidelines for bz with QVT-R: Similar to TGGs, QVT-Relations (QVT-R) addresses bz in an MDE context.
The standard QVT-R reference [17] already supplies examples demonstrating the usage of different language
constructs. The standardized textual concrete syntax facilitates the distribution of such best practices across
different QVT-R tools, whereas TGG tools currently suffer from interoperability issues as different metamodels
are used for representing graphs, rules, and correspondences. Considering the chronological order of formal and
practical contributions for TGGs and QVT-R, one can observe that while we now strive to impart a practical
intuition and guidelines to complement existing formal work on TGGs, recent papers on QVT-R [4, 9, 20] strive
to formalize concepts for an existing intuition.
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Approaches to designing model transformation rules in general: Most of the work to facilitate trans-
formation rule development focuses on semi-automatic usage of exemplary model pairs. While not necessarily
focusing on bz, such approaches (e.g., [21, 24]) often require explicit mappings on the instance level, which closely
resemble the correspondences in TGG rules. Further related contributions are those based on design patterns
for model transformation [7, 10]. Although such design languages help to share solution strategies based on
a common representation, our experience (especially with TGGs and QVT-R) is that the concrete choice of
transformation language has a substantial impact on the proper way of thinking about a notion of consistency.
In case of TGGs, for example, one must refrain from planning with control flow structures or (recursive) explicit
rule invocations; features that are not necessarily excluded from other (bz) languages or general design pattern
languages. Finally, this paper was inspired by the work of Zambon and Rensink in [25], where they demonstrate
best practices for the transformation tool GROOVE using the N-Queens problem.

6 Conclusion and Future Work

In this paper, we have presented not only a basic introduction to TGGs, but also a process and a set of guidelines
to support the systematic development of a TGG from a clear, but unformalised understanding of a bz.

We have, however, only been able to handle the basics and leave guidelines for advanced language features and
techniques to future work including: negative application conditions, multi-amalgamation, user-defined attribute
manipulation, test generation, and how best to specify the correspondence metamodel.
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