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Abstract: Web services are modular applications that can be described, located and 
invoked on the Internet. A user request may not only correspond to one 
specific service, but also to a set of web services. Thus, it is necessary that a 
composition of services be done in order to obtain the expected result. 
Nonetheless, many services with the same goal but different characteristics can 
be discovered. Indeed, it is necessary to find non-functional criteria to 
distinguish them, in order for a user to be able to choose an optimal solution. 
In this paper, we propose service quality variables as non-functional criteria in 
order to make an optimal service composition for a goal. We propose then 
using multiobjective optimisation techniques to find a set of optimal Pareto 
solutions from which a user can choose the most interesting tradeoff. Finally, 
we introduce the environment which allows that this composition process be 
automatic. 
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1. INTRODUCTION  
Nowadays many enterprises publish their applications functionalities on the 

Internet. This new generation of applications allows greater efficiency and 
availability for business. In fact, more and more applications make functionalities 
available using a service format.  

However there are many services around the web, each one, taken alone, has a 
limited utility. For example, if a user wants to travel, it is not sufficient to book a 
flight, but also to care about reserving a hotel, renting a car, getting entertained, and 
so on. The user needs to execute all these services manually and these tasks can be 
time and effort consuming. 

For that reason, the notion of composite services is starting to be used as a 
collection of services combined to achieve a particular goal. In other words, from a 
user perspective, this composition will continue to be considered as a simple service, 
even though it is composed of several web services. 

Before starting to compose web services, they must first be discovered in order 
to be used by a composition mechanism. One of today’s problems is that many 
functionally similar services are available increasing the number of services 
discovered by search mechanisms. Indeed, the discovery process may retrieve many 
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services when, in fact, only one of them will be used in the composition. After 
discovering, there is a set of candidate services. Between these services, a selection 
must be done. Usually this selection process chooses the most appropriate service to 
execute a task. In fact, discovery is a prerequisite for selection, but selection is the 
main problem (Sreenath and  Singh, 2004).  

In order to differentiate services that will be selected, it is necessary to use a non-
functional mechanism able to make this distinction. Hence, a quality of service 
(QoS) model is incorporated into each service and service selection will be also 
based on these quality criteria.  

Evaluating the quality model, it will be composed of more than one criterion, a 
large quantity of candidate services and a lot of tasks to be executed by services. 
Thus, this makes difficult all possible explorations. As there is more than one 
criterion to differentiate services and no preference (weight) is given to them, more 
than one tradeoff solution can be found. As a result, this kind of problem should be 
treated using a multiobjective approach.  

This paper proposes an analysis of quality criteria in order to select from a set of 
services those that belong to the composition. It is organized as follows: the next 
section describes the related works. The third section describes web service 
composition. The fourth section explains the problem model. The fifth section 
shows the resolution method. The last section we position this work in our research 
and present our conclusion. 

2. RELATED WORKS 
Many authors have proposed quality of service models for selecting web services. In 
general, QoS selection can be organized in categories, for example, authors that use 
QoS with agents (Sreenath and Singh, 2004), authors that apply QoS workflow into 
web services domain (Cardoso et al., 2004), those who insert QoS models into 
centralized registries (Ran 2003), and finally, authors that propose and execute QoS 
model for selecting web services (Zeng et al., 2003; Liu, Ngu and Zeng, 2004).  

In (Ran 2003) the main idea is to include the QoS model into UDDI registries so 
that they centralize all QoS attributes for each service into an information provider. 
In (Sreenath and Singh, 2004) the authors propose a mutual evaluation process 
between agents to select a web service. It selects the best services based on rates 
given to providers by agents. The authors in (Cardoso et al., 2004) retrieve the main 
idea from Workflow Quality of Services and transpose it to web services 
technologies. They propose some QoS constraints that were implemented into 
METEOR workflow management systems for Genomic Projects. Ideas in (Zeng et 
al., 2003; Liu, Ngu and Zeng, 2004; Cardoso et al., 2004) are closest to our 
proposition, because we do not use agents, nor consider a QoS model in a 
centralized approach.  

The main idea of Zeng’s paper is to compose web services by finding the best 
plan for the composition. For that, each constraint in the QoS model is measured and 
aggregated into one main objective function. To resolve this proposition linear 
programming is used to select the best plan. In (Liu, Ngu and Zeng, 2004), in order 
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to improve the last work, the authors propose specific domain criteria for each 
service that will be selected.    

In our paper, we follow the quality model proposed in (Zeng et al., 2003) and 
introduce several improvements. First of all, we reinforced the concepts of 
reputation, because the original concept did not measure the pertinence of the rank 
given to a service by a user. Thus, in our model, ranking from users with good 
knowledge of the service domain are considered more accurate. As a result, we use 
fuzzy numbers to measure this criterion. Additionally, we consider that service 
composition problem using quality of services is intrinsically a multiobjective 
problem. However, in (Zeng et al., 2003) they resolve this problem by aggregating 
their objectives into a single objective function. In our work, we resolve this 
problem using multi-objective evolutionary algorithms (MOEA), without giving any 
weight to any quality criterion. We use a multi-objective genetic algorithm called 
NSGA-II to execute this model. 

3. WEB SERVICES COMPOSITION 
Web service composition originated from the necessity to achieve a 

predetermined goal that cannot be realized by a standalone service. From a user’s 
perspective, composite services, or more objectively, the set of services should seem 
like a single service. Internally in a composition, services can interact with each 
other to exchange parameters. 

3.1 Problem Description 
In order to illustrate our approach, we use a Travel Service as an application 
example. Indeed, this scenario is a typical web services composition problems 
(Narayanan and McIlraith, 2002;OWL-S Coalition, 2005).   

As far as creating the Travel service, we use three atomic services (which are not 
composed) that will internally execute the travel; each one independently executes a 
task. A task can be described as an activity that applies to a specific domain. In this 
work, we treat activity and task as the same things. We choose to use atomic 
services to compose the Travel service. However, this is not important since a 
composed service is viewed by a user as a single service. There are 3 tasks that will 
be executed by 3 services called Airplane service, Hotel service and CarRental 
service.  

A planner, as explained in section 6, will determine the execution order of these 
three tasks. Many services are candidate to execute a given task. These services are 
the result of the discovery process. 
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3.2 Composition Model 
The problem of composing web services can be characterized as a combinatory 
problem. In the composition we have a set of candidate services si, ]..1[ ni∈ that 
could execute a set of tasks tj, ]..1[ mj∈ . However, it is necessary to consider that 
one service can be dependent of other services. The main goal is to find the optimal 
service composition, considering that there is a set of candidate services for each 
task.  

Each service i is allocated to one task j, this association can be represented by a 
matrix (xij) where si represents the candidate services and tj represents the tasks. This 
matrix can represent the service’s allocation to a composition. In our scenario the 
number of tasks m is limited to 3: the Airplane, Hotel and CarRental web service. 
Thus we can generate the matrix X as shown in Eq. (1). 

 

)1(

For each possible composition, there is a set of candidate services but only one 
will be part of the composition. The Eq. (2) will determine which service will belong 
to the composition or not.  

)2(

Thus, the matrix X’ (Eq.3) represents one of the possible combinations in which 
service 3 will execute task 1, service 1 will execute task 2 and task 3 will be 
executed by service 2. As a result, this composition will be formed by services 3, 1 
and 2 respectively. 

)3(

A non-determined number of tasks m can be used to compose a service and an 
unlimited number of candidate services n for each task j can be found. In fact, these 
possible combinations are considered for a pre-defined plan, which determines 
exactly in which order the tasks should be composed. However, concerning this 
environment, the plan can also be changed, and so other possible combinations 
might be overseen. Moreover, if it is considered that p plans using m tasks can be 
created, the problem becomes even harder. 
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4. PROBLEM MODELING 

In order to differentiate candidate services with identical functionalities, non-
functional (QoS) criteria must be used. The QoS model will be incorporated directly 
into services. The quality of service measure belongs to each service and each value 
refers to an activity that the service executes.  

4.1 Qos Model 
We propose four criteria as parameters for the quality model: cost, time, 

availability and reputation. Each one is presented below and a difference is made 
between the QoS of single service and the composition. 

4.1.1 Cost  

The cost quality (Zeng et al., 2003) cij is the amount that a service requester needs to 
pay to execute this service i using task j. In reference to composition, this can be 
expressed in Eq. 4. 

 
)4(

4.1.2 Time 

The time quality (Zeng et al. 2003) tij measures the execution time between the 
moment the request is sent and the moment the results are received. The time can be 
expressed in reference to composition (Eq. 5). 

 
)5(

4.1.3 Availability 

The quality availability aij is the probability that the service can be accessed and 
used. It means that this quality is obtained by the number of times the service 
answers a request divided by the number of total requests. We can express this using 
the formula seen in Eq.6. 
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req is the number of successful requests to service i using task j, and tot is the 
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discrete values, as success times by total times. If we consider a composition, the 
availability can be expressed as the average value for each service in the 
composition, as shown in Eq. 7. 

)7(

4.1.4 Reputation 

The reputation quality rij is the measure of its trustworthiness. It depends on the 
user’s experience using the service. Different end users can have different opinions 
about the same service. For many authors (Zeng et al., 2003; Liu, Ngu and Zeng, 
2004), reputation can be defined as the average ranking given to the service by end 
users as shown in Eq. 8. 

 
)8(

k(si) is the ranking applied to a service (si) and n is the number of times the 
service is ranked.  

However, in real world, when something is judged for example, a paper in a 
conference, the reviewers have to give their knowledge domain, prior to giving their 
judgment. In the case where a reviewer receives a paper that she classifies as 
belonging only 60% to her area (knowledge domain), the grade that is given must be 
moderated based on 60% of knowledge. If the same grade is given by a reviewer 
with 90% of know-how on the domain, for sure her grade will be more accurate. 
Translating this real scenario into our reputation quality, we must include the 
knowledge domain of end users. After service execution, the user ranks the service, 
and gives a percentage about her knowledge on the service’s domain. It will be, for 
instance, a simple question as “how much do I know about this area”.  

In order to measure this criterion, we used fuzzy logic to represent an imprecise 
quantity, as “nearly 8” or “practically 15” (Moura, 2002). We used the notion of 
fuzzy number which is represented as where ã is the fuzzy 
number with minimal limit, modal value and maximal limit respectively. The 
linguistic variables that represent our reputation values are: bad, average and good, 
as shown in Figure 1.  
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Figure 1. Fuzzy set representation 

Figure 1 shows that until number 4, all grades are considered bad, from 5 to 7, 
grades are average, and after 8, all grades are good. The measure between 4 and 5, 
for example, depends on membership’s values. The membership or degree of 
pertinence means how much a value is inside a set, for example the bad set or inside 
the average set. Thus, if a service has a rank 4.8 we need to analyze its membership 
µ(di). The µbad=0.33 (it belongs to bad set) and µaverage=0.66 (it belongs to average 
set). Each service will be ranked n times, so we will have a set of fuzzy numbers. 
However, at the end, what we need is a crisp number that characterizes the 
reputation value, and for that we need to convert fuzzy sets to a crisp number. 
Defuzzification is the final phase that does this conversion. There are several 
defuzzification methods, but we use the CENTROID method that calculates the 
hypothetical center of gravity for the output fuzzy set (Löfstedt, Svensson, 2000; 
Fuzzy, 2005). Thus, our reputation criterion is shown in Eq.9. 

 

)9(

where dij represents the domain value of service i for task j and µ(dij) is the 
membership value for that domain point. We can consider that the rank is [0, 10], 
and the knowledge domain given by the user µ(d) is [0,1]. Using this model, 
reputation ranks is more precise and trustworthy. In the composition context, the 
reputation is the average between all services. We can express our composition 
formula as Eq.10. 
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We sum the reputation quality rij of each service in the composition and divide it 
by the number of services in this composition. 
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4.2 Objectives 
In order to select services to obtain tradeoff composition, non-functional (quality of 
services) features will be used to distinguish between the candidate services. The 
quality of services criteria used was described in the previous section and 
corresponds to cost, time, availability and reputation. Existing studies reported in 
literature often aggregate all criteria into a single objective. This resolution approach 
is known to be limited from a multiobjective optimization perspective since it leads 
to one single solution instead of a set of solutions which are needed in a 
multiobjective context. 

Here we highlight the most important difference between our work and Zeng et 
al’s work (Zeng et al., 2003), because we do not give any weight to any criterion. 
We treat all criteria with the same importance using a multiobjective optimization 
approach. Even though our objectives are contradictory, they are taken into account 
simultaneously by our resolution algorithm. Thus, our travel problem explained 
earlier can be viewed as a multiobjective problem. Our goal is to minimize cost and 
time and to maximize availability and reputation, considering them together 
simultaneously. MOEA algorithms take into account contradictory objectives and 
also aim at finding other solutions that in an aggregate approach. In the case of bi-
objectives, the Pareto optimal Front can be graphically depicted as a curve.  

In our problem, we have four objectives to be simultaneously taken into account. 
The first one is cost minimization (Eq. 11). 

 
)11(

Cost objective needs to be minimized in order to participate to optimal solutions. 
Additionally, this value will be obtained based on quality model cost criterion cij.
The variable pij means the service ability to execute a task. Since we do not consider 
composed services to belong to our composition, it is necessary to distinguish 
between them, highlighting which is able to execute a specific task. In our model, 
we consider that a service is specialized only in one task, for example, a service for 
airplane reservation, cannot do hotel reservations tasks. Thus, pij is a binary variable 
to inform that a service is able or not to execute task j. The binary variable xij is 
responsible to express if a service belongs or not to the composition. It is the 
allocation matrix expressed in section 3.2. 

Another objective is concerning the time (Eq. 12). Time objective needs also to 
be minimized to be part of service composition.  

)12(

In our model, time value is attributed to tij. The other variables as pij and xij are 
the same functionality as explained earlier.  

On the other hand, availability objective (Eq.13) shows the probability that a 
service can be accessed and used. In this case, this objective must be maximized, 
because it is preferable that its probability is as high as possible.   
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Variable aij should thus belong to [0,1]. The last objective is related to the 
reputation (Eq. 14) a service has about a determined domain.  

 
)14(

The rij stands for reputation value. Also, reputation needs to maximize the objective, 
because the higher the reputation the better the service is judged. Thus these four 
objectives must be used together, and no preference (weight) is given to any of 
them. 

4.3 Constraints 
In order to model the problem, the constraints should also be verified. In our 

model three constraints must be satisfied in all interactions.  The first one (Eq. 15) 
means that only one service belongs to a composition for each task. 
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The variable xij specifies whether or not a service belongs to a composition 
(matrix X). The variable pij means that a service i is able to execute a task j. The 
second restriction (Eq. 16) concerns user’s budget. 
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This constraint means that the cost of using a service in a composition should not 
exceed a given value W. Finally, the last constraint used is only to verify that xij 
must have binary values: .These binaries values will represent which 
services belong or not to the composition. 

5. RESOLUTION METHOD 
One of the main contributions of this work concerns the resolution approach 
employed. As explained earlier, we have four objectives and solutions should be 
searched considering these four criteria simultaneously. To achieve this, we use a 
multi-objective evolutionary algorithm NSGA-II. 

5.1 Genetic Algorithm - NSGA-II 
The multi-objective evolutionary algorithms (MOEA) are among the most 

powerful resolution methods for multiobjective optimization (Coello Coello et al., 
2002). Thanks to its population, such an algorithm is able to produce naturally a set 
of non-dominated solutions for each run of the algorithm. In this paper, we used 
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NSGA-II (Non-dominated Sorting Genetic Algorithm) (Deb et al. 2002), though any 
other MOEA such as SPEA (Zitizler and Thiele, 1998), PAES (Knowles and Corne, 
1999) and PICPA (Barichard and Hao, 2003) could have been used. 

In NSGA-II, the tournament selection, crossover and mutation operators are used 
to create a child population that will be added to a result population given by the 
later generation. The new population is sorted based on non-domination. In this step, 
elitism is ensured because the best non-dominated sets will be chosen for the next 
population. Using constraints, the relation of domination between two individuals 
can be characterized as a feasible or infeasible solution. Thus, the ranking will be 
done based also on feasible solutions.  

Using the NSGA-II algorithm, it is not necessary to create a mathematical 
expression to determine the weights associated to the criteria which would be 
necessary with an aggregation approach. 

5.2 Experimentation 
Applying this algorithm to our problem, several experiments using our optimal 

composition model were done in order to validate the multiobjective approach for 
selecting web services. 

5.2.1 Tests set 
The main objective of our tests was to find a set of optimal compositions from 
which a user can select her preferred solution. Thus our main contribution is creating 
optimal compositions based on discovered services. The first test that we did was 
using the same number of services, but changing the number of generations and 
populations. The number of services was fixed to 15 services and the number of 
tasks to 3. We choose to allocate the same number of candidate services to each 
task. This was done in order to see how the algorithm treats services composition. 

The other we did was aimed at studying the scalability of the service composition 
algorithm with regards to the number of candidate services and to the number of 
tasks. Population and generation were kept constant in all experiments, but the 
number of services and tasks was changed. In fact, we increased candidate services 
for each tasks. The population was fixed to 50 individuals and the generations were 
fixed to 100. These values were taken considering other experiments using the 
NSGA-II algorithm. 

The number of services is proportional to the number of variables, because each 
service is represented as a variable in our model. We consider in our experiments 
that the numbers of candidate services for each task are equal.  

5.2.2 Algorithm’s Parameter 
In the first experiment we used populations range from 5 to 100 and generation 
range from 10 to 500. The crossover probability was 0.9 and the mutation was 1/l
where l is the number of binary variables. In our case, we used 15 binary variables. 
These 15 binary variables represent 3 tasks and each task can be executed by 5 
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candidate services. The crossover used was single-point. We used 4 objective 
functions and 4 constraints as previously defined in our model. The 3 constraints 
determine the candidate services and the last one represents maximal budget given 
by the user. This value was fixed for all compositions. A QoS value was given 
randomly to each service.   

In the second test, the population size was fixed to 50 and generation was fixed 
to 100. We did these experiments taking 15, 30 and 60 services and 3 and 5 tasks 
respectively. It means that, for example, using 60 services and 3 tasks, we have 20 
candidate services evenly distributed for each task. The crossover mutation and 
probability was maintained, of course changing according to the number of 
variables. In both experiments, all constraints are verified and they must be satisfied 
in all generations. Only solutions with satisfied constraints were selected for the next 
generation. Thus optimal solutions must satisfy all constraints. 

5.2.3 Results 

As execution results, a set of chromosomes is found and each one represents an 
optimal composition. Since we defined a population size of 50, the maximum 
number of optimal solutions found was also 50. Between these 50 optimal solutions, 
the user can select one of them to be executed. 
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Figure 2. Non-dominated set solutions - Population by generations 

In figure 2, we show the evolution of our model based on the number of optimal 
solutions found. We can ensure that when population is over 20, tradeoff solutions 
are found at the 8th generation. The tradeoff solutions do not violate any constraints. 
Thus, using 15 services for 3 tasks, results show that a GA does not have any 
problem in finding tradeoff solutions. In fact, found solutions are non-dominated, 
since once the solutions are achieved, they are maintained. 
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Figure 3. Non-dominated set solutions - 3 tasks 

The next experiment consisted in changing the number of services and the number 
of tasks. In figure 3 we can ensure that as the number of services increases, more 
generations are necessary to obtain a set of optimal solutions. In some cases, as seen 
with 60 services, any optimal solution was found without constraint violation. The 
optimal solutions will only be found at the 155th generation. Also here, using 60 
services for 3 tasks, it means that there are 20 candidate services. The difficulty in 
finding tradeoff solutions increases with the number of candidate services. In order 
to show this fact, we changed the number of tasks, minimizing the number of 
candidate services. We considered 5 tasks for 60 services given, so only 12 
candidate services for each task. Augmenting the number of tasks also means 
increasing the number of constraints and so facilitating the acquisition of tradeoff 
compositions solutions. All obtained solutions are composed of a set of binary 
variables that form a chromosome. This chromosome represents the composition 
chain and each binary variable indicates whether the service belongs to the optimal 
composition or not. Thus we can ensure that the experiments done can validate our 
approach to make tradeoff services compositions. 
 

6. PROPOSED ENVIRONMENT 
 
This work is positioned as part of an environment that includes a planner, a 
discovery method and an optimization structure. The planner is responsible for 
determining the execution order of the tasks. However, in order to determine tasks 
plan, the planner must know the tasks definitions. In this way, all possible tasks will 
be located into a repository that the planner can consult for getting tasks interfaces. 
This repository can be represented as ontology. Thus, before knowing the tasks 
interface, it is necessary to find a composition which satisfies user request. A 
planner can automatically resolve this type of problem (McIlraith and Son, 2002). 
Indeed, the problem is composed of three components: user request, services and 
user initial parameters. These three components represent respectively the goal, the 



Selecting Web Services for Optimal Composition 
 
actions and the initial planning state. In this paper, we pre-defined that tasks should 
be executed in sequence as: Airplane, Hotel and at last CarRental.  

After creating the initial plan, the discovery process will take place. It is 
responsible for finding services that correspond to each task that belongs to the plan. 
For discovering services, we use the profile ontology from OWL-S (OWL-S 
Coalition, 2005). The next phase is aimed at optimizing services composition and is 
the point treated in this paper. The user can choose any one of these solutions to 
execute. In the execution phase, if any service has a problem such as invalid URL or 
changed location, the environment proposes another optimal solution to the user. If 
after some predefined time the problem continues, the environment will propose to 
construct another plan, for example, by reordering the tasks. 

7. CONCLUSION 
In this paper we have explained how to select a service in order to make an optimal 
web service composition. We proposed some improvement on quality models, 
highlighting reputation. Reputation is calculated based on fuzzy numbers, but at the 
end, we use a defuzzification method to convert this fuzzy numbers into crisp 
values. Furthermore, when optimizing composite services using non-functional 
features (QoS), we can have contradictory objectives. Moreover, we do not wish to 
give any preference (weight) to anyone of these objectives. Thus we treat services 
composition as a multiobjective problem. We used a multiobjective evolutionary 
algorithm called NSGA-II. As a result, we obtained the population (a set of 
chromosomes) representing the optimized compositions. Each solution is 
represented by a set of binary values that determines which service belongs to the 
composition or not. The experimentations done validate our approach and show its 
feasibility in a real world problem.   
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