
SELECTING WEB SERVICES FOR OPTIMAL
COMPOSITION

Daniela Barreiro Claro1,2, Patrick Albers1, Jin-Kao Hao2
1 ESEO 4, rue Merlet de la Boulaye, BP30926 49009 Angers cedex01 – France ; 2LERIA,
Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01 - France

Abstract: Web services are modular applications that can be described, located and
invoked on the Internet. A user request may not only correspond to one
specific service, but also to a set of web services. Thus, it is necessary that a
composition of services be done in order to obtain the expected result.
Nonetheless, many services with the same goal but different characteristics can
be discovered. Indeed, it is necessary to find non-functional criteria to
distinguish them, in order for a user to be able to choose an optimal solution.
In this paper, we propose service quality variables as non-functional criteria in
order to make an optimal service composition for a goal. We propose then
using multiobjective optimisation techniques to find a set of optimal Pareto
solutions from which a user can choose the most interesting tradeoff. Finally,
we introduce the environment which allows that this composition process be
automatic.

Key words: Service Composition, QoS Model, Multiobjectives Approach.

1. INTRODUCTION
Nowadays many enterprises publish their applications functionalities on the

Internet. This new generation of applications allows greater efficiency and
availability for business. In fact, more and more applications make functionalities
available using a service format.

However there are many services around the web, each one, taken alone, has a
limited utility. For example, if a user wants to travel, it is not sufficient to book a
flight, but also to care about reserving a hotel, renting a car, getting entertained, and
so on. The user needs to execute all these services manually and these tasks can be
time and effort consuming.

For that reason, the notion of composite services is starting to be used as a
collection of services combined to achieve a particular goal. In other words, from a
user perspective, this composition will continue to be considered as a simple service,
even though it is composed of several web services.

Before starting to compose web services, they must first be discovered in order
to be used by a composition mechanism. One of today’s problems is that many
functionally similar services are available increasing the number of services
discovered by search mechanisms. Indeed, the discovery process may retrieve many

Daniela Barreiro Claro1,2, Patrick Albers1, Jin-Kao Hao2

services when, in fact, only one of them will be used in the composition. After
discovering, there is a set of candidate services. Between these services, a selection
must be done. Usually this selection process chooses the most appropriate service to
execute a task. In fact, discovery is a prerequisite for selection, but selection is the
main problem (Sreenath and Singh, 2004).

In order to differentiate services that will be selected, it is necessary to use a non-
functional mechanism able to make this distinction. Hence, a quality of service
(QoS) model is incorporated into each service and service selection will be also
based on these quality criteria.

Evaluating the quality model, it will be composed of more than one criterion, a
large quantity of candidate services and a lot of tasks to be executed by services.
Thus, this makes difficult all possible explorations. As there is more than one
criterion to differentiate services and no preference (weight) is given to them, more
than one tradeoff solution can be found. As a result, this kind of problem should be
treated using a multiobjective approach.

This paper proposes an analysis of quality criteria in order to select from a set of
services those that belong to the composition. It is organized as follows: the next
section describes the related works. The third section describes web service
composition. The fourth section explains the problem model. The fifth section
shows the resolution method. The last section we position this work in our research
and present our conclusion.

2. RELATED WORKS
Many authors have proposed quality of service models for selecting web services. In
general, QoS selection can be organized in categories, for example, authors that use
QoS with agents (Sreenath and Singh, 2004), authors that apply QoS workflow into
web services domain (Cardoso et al., 2004), those who insert QoS models into
centralized registries (Ran 2003), and finally, authors that propose and execute QoS
model for selecting web services (Zeng et al., 2003; Liu, Ngu and Zeng, 2004).

In (Ran 2003) the main idea is to include the QoS model into UDDI registries so
that they centralize all QoS attributes for each service into an information provider.
In (Sreenath and Singh, 2004) the authors propose a mutual evaluation process
between agents to select a web service. It selects the best services based on rates
given to providers by agents. The authors in (Cardoso et al., 2004) retrieve the main
idea from Workflow Quality of Services and transpose it to web services
technologies. They propose some QoS constraints that were implemented into
METEOR workflow management systems for Genomic Projects. Ideas in (Zeng et
al., 2003; Liu, Ngu and Zeng, 2004; Cardoso et al., 2004) are closest to our
proposition, because we do not use agents, nor consider a QoS model in a
centralized approach.

The main idea of Zeng’s paper is to compose web services by finding the best
plan for the composition. For that, each constraint in the QoS model is measured and
aggregated into one main objective function. To resolve this proposition linear
programming is used to select the best plan. In (Liu, Ngu and Zeng, 2004), in order

Selecting Web Services for Optimal Composition

to improve the last work, the authors propose specific domain criteria for each
service that will be selected.

In our paper, we follow the quality model proposed in (Zeng et al., 2003) and
introduce several improvements. First of all, we reinforced the concepts of
reputation, because the original concept did not measure the pertinence of the rank
given to a service by a user. Thus, in our model, ranking from users with good
knowledge of the service domain are considered more accurate. As a result, we use
fuzzy numbers to measure this criterion. Additionally, we consider that service
composition problem using quality of services is intrinsically a multiobjective
problem. However, in (Zeng et al., 2003) they resolve this problem by aggregating
their objectives into a single objective function. In our work, we resolve this
problem using multi-objective evolutionary algorithms (MOEA), without giving any
weight to any quality criterion. We use a multi-objective genetic algorithm called
NSGA-II to execute this model.

3. WEB SERVICES COMPOSITION
Web service composition originated from the necessity to achieve a

predetermined goal that cannot be realized by a standalone service. From a user’s
perspective, composite services, or more objectively, the set of services should seem
like a single service. Internally in a composition, services can interact with each
other to exchange parameters.

3.1 Problem Description
In order to illustrate our approach, we use a Travel Service as an application
example. Indeed, this scenario is a typical web services composition problems
(Narayanan and McIlraith, 2002;OWL-S Coalition, 2005).

As far as creating the Travel service, we use three atomic services (which are not
composed) that will internally execute the travel; each one independently executes a
task. A task can be described as an activity that applies to a specific domain. In this
work, we treat activity and task as the same things. We choose to use atomic
services to compose the Travel service. However, this is not important since a
composed service is viewed by a user as a single service. There are 3 tasks that will
be executed by 3 services called Airplane service, Hotel service and CarRental
service.

A planner, as explained in section 6, will determine the execution order of these
three tasks. Many services are candidate to execute a given task. These services are
the result of the discovery process.

Daniela Barreiro Claro1,2, Patrick Albers1, Jin-Kao Hao2

3.2 Composition Model
The problem of composing web services can be characterized as a combinatory
problem. In the composition we have a set of candidate services si,]..1[ni∈ that
could execute a set of tasks tj,]..1[mj∈ . However, it is necessary to consider that
one service can be dependent of other services. The main goal is to find the optimal
service composition, considering that there is a set of candidate services for each
task.

Each service i is allocated to one task j, this association can be represented by a
matrix (xij) where si represents the candidate services and tj represents the tasks. This
matrix can represent the service’s allocation to a composition. In our scenario the
number of tasks m is limited to 3: the Airplane, Hotel and CarRental web service.
Thus we can generate the matrix X as shown in Eq. (1).

)1(

For each possible composition, there is a set of candidate services but only one
will be part of the composition. The Eq. (2) will determine which service will belong
to the composition or not.

)2(

Thus, the matrix X’ (Eq.3) represents one of the possible combinations in which
service 3 will execute task 1, service 1 will execute task 2 and task 3 will be
executed by service 2. As a result, this composition will be formed by services 3, 1
and 2 respectively.

)3(

A non-determined number of tasks m can be used to compose a service and an
unlimited number of candidate services n for each task j can be found. In fact, these
possible combinations are considered for a pre-defined plan, which determines
exactly in which order the tasks should be composed. However, concerning this
environment, the plan can also be changed, and so other possible combinations
might be overseen. Moreover, if it is considered that p plans using m tasks can be
created, the problem becomes even harder.

≡

MMM
333231
232221
131211

xxx
xxx
xxx

X

]..1[],..1[
otherwise,0

tasktoallocated isiserviceif,1

mjni

jx ij

∈∀∈∀

≡

≡
001
100
010

'X

Selecting Web Services for Optimal Composition

4. PROBLEM MODELING

In order to differentiate candidate services with identical functionalities, non-
functional (QoS) criteria must be used. The QoS model will be incorporated directly
into services. The quality of service measure belongs to each service and each value
refers to an activity that the service executes.

4.1 Qos Model
We propose four criteria as parameters for the quality model: cost, time,

availability and reputation. Each one is presented below and a difference is made
between the QoS of single service and the composition.

4.1.1 Cost

The cost quality (Zeng et al., 2003) cij is the amount that a service requester needs to
pay to execute this service i using task j. In reference to composition, this can be
expressed in Eq. 4.

)4(

4.1.2 Time

The time quality (Zeng et al. 2003) tij measures the execution time between the
moment the request is sent and the moment the results are received. The time can be
expressed in reference to composition (Eq. 5).

)5(

4.1.3 Availability

The quality availability aij is the probability that the service can be accessed and
used. It means that this quality is obtained by the number of times the service
answers a request divided by the number of total requests. We can express this using
the formula seen in Eq.6.

)6(

req is the number of successful requests to service i using task j, and tot is the
total number of invocations. We decided to measure the probability based on

∑ ∑= =

n
i ij

m
j c1 1

0, ≠= ij
ij

ij
ij tottot

reqa

∑ ∑= =

n
i ij

m
j t1 1

Daniela Barreiro Claro1,2, Patrick Albers1, Jin-Kao Hao2

[]aaaa ,0,~ =

discrete values, as success times by total times. If we consider a composition, the
availability can be expressed as the average value for each service in the
composition, as shown in Eq. 7.

)7(

4.1.4 Reputation

The reputation quality rij is the measure of its trustworthiness. It depends on the
user’s experience using the service. Different end users can have different opinions
about the same service. For many authors (Zeng et al., 2003; Liu, Ngu and Zeng,
2004), reputation can be defined as the average ranking given to the service by end
users as shown in Eq. 8.

)8(

k(si) is the ranking applied to a service (si) and n is the number of times the
service is ranked.

However, in real world, when something is judged for example, a paper in a
conference, the reviewers have to give their knowledge domain, prior to giving their
judgment. In the case where a reviewer receives a paper that she classifies as
belonging only 60% to her area (knowledge domain), the grade that is given must be
moderated based on 60% of knowledge. If the same grade is given by a reviewer
with 90% of know-how on the domain, for sure her grade will be more accurate.
Translating this real scenario into our reputation quality, we must include the
knowledge domain of end users. After service execution, the user ranks the service,
and gives a percentage about her knowledge on the service’s domain. It will be, for
instance, a simple question as “how much do I know about this area”.

In order to measure this criterion, we used fuzzy logic to represent an imprecise
quantity, as “nearly 8” or “practically 15” (Moura, 2002). We used the notion of
fuzzy number which is represented as where ã is the fuzzy
number with minimal limit, modal value and maximal limit respectively. The
linguistic variables that represent our reputation values are: bad, average and good,
as shown in Figure 1.

0,1 1 >
∑ ∑= = nn

an
i

m
j ij

n
sksq

n
i i

rep
∑ == 1)()(

Selecting Web Services for Optimal Composition

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10

rank

me
m

be
rsh

ip Bad
Average

Good

Figure 1. Fuzzy set representation

Figure 1 shows that until number 4, all grades are considered bad, from 5 to 7,
grades are average, and after 8, all grades are good. The measure between 4 and 5,
for example, depends on membership’s values. The membership or degree of
pertinence means how much a value is inside a set, for example the bad set or inside
the average set. Thus, if a service has a rank 4.8 we need to analyze its membership
µ(di). The µbad=0.33 (it belongs to bad set) and µaverage=0.66 (it belongs to average
set). Each service will be ranked n times, so we will have a set of fuzzy numbers.
However, at the end, what we need is a crisp number that characterizes the
reputation value, and for that we need to convert fuzzy sets to a crisp number.
Defuzzification is the final phase that does this conversion. There are several
defuzzification methods, but we use the CENTROID method that calculates the
hypothetical center of gravity for the output fuzzy set (Löfstedt, Svensson, 2000;
Fuzzy, 2005). Thus, our reputation criterion is shown in Eq.9.

)9(

where dij represents the domain value of service i for task j and µ(dij) is the
membership value for that domain point. We can consider that the rank is [0, 10],
and the knowledge domain given by the user µ(d) is [0,1]. Using this model,
reputation ranks is more precise and trustworthy. In the composition context, the
reputation is the average between all services. We can express our composition
formula as Eq.10.

)10(

We sum the reputation quality rij of each service in the composition and divide it
by the number of services in this composition.

∑ ∑
∑ ∑

= =

= == n

i
ij

m

j

n

i
ijij

m

j
ij

dµ

dµd
r

1 1

1 1

)(

)(

0,1 1 >
∑ ∑= = nn

rn
i ij

m
j

Daniela Barreiro Claro1,2, Patrick Albers1, Jin-Kao Hao2

4.2 Objectives
In order to select services to obtain tradeoff composition, non-functional (quality of
services) features will be used to distinguish between the candidate services. The
quality of services criteria used was described in the previous section and
corresponds to cost, time, availability and reputation. Existing studies reported in
literature often aggregate all criteria into a single objective. This resolution approach
is known to be limited from a multiobjective optimization perspective since it leads
to one single solution instead of a set of solutions which are needed in a
multiobjective context.

Here we highlight the most important difference between our work and Zeng et
al’s work (Zeng et al., 2003), because we do not give any weight to any criterion.
We treat all criteria with the same importance using a multiobjective optimization
approach. Even though our objectives are contradictory, they are taken into account
simultaneously by our resolution algorithm. Thus, our travel problem explained
earlier can be viewed as a multiobjective problem. Our goal is to minimize cost and
time and to maximize availability and reputation, considering them together
simultaneously. MOEA algorithms take into account contradictory objectives and
also aim at finding other solutions that in an aggregate approach. In the case of bi-
objectives, the Pareto optimal Front can be graphically depicted as a curve.

In our problem, we have four objectives to be simultaneously taken into account.
The first one is cost minimization (Eq. 11).

)11(

Cost objective needs to be minimized in order to participate to optimal solutions.
Additionally, this value will be obtained based on quality model cost criterion cij.
The variable pij means the service ability to execute a task. Since we do not consider
composed services to belong to our composition, it is necessary to distinguish
between them, highlighting which is able to execute a specific task. In our model,
we consider that a service is specialized only in one task, for example, a service for
airplane reservation, cannot do hotel reservations tasks. Thus, pij is a binary variable
to inform that a service is able or not to execute task j. The binary variable xij is
responsible to express if a service belongs or not to the composition. It is the
allocation matrix expressed in section 3.2.

Another objective is concerning the time (Eq. 12). Time objective needs also to
be minimized to be part of service composition.

)12(

In our model, time value is attributed to tij. The other variables as pij and xij are
the same functionality as explained earlier.

On the other hand, availability objective (Eq.13) shows the probability that a
service can be accessed and used. In this case, this objective must be maximized,
because it is preferable that its probability is as high as possible.

)13(

∑∑
= =

n

i

m

j
ijijij xpcMin

1 1

∑∑
= =

n

i

m

j
ijijij xptMin

1 1

∑∑
= =

n

i

m

j
ijijij xpaMax

1 1

Selecting Web Services for Optimal Composition

{ }1,0∈ijx

Variable aij should thus belong to [0,1]. The last objective is related to the
reputation (Eq. 14) a service has about a determined domain.

)14(

The rij stands for reputation value. Also, reputation needs to maximize the objective,
because the higher the reputation the better the service is judged. Thus these four
objectives must be used together, and no preference (weight) is given to any of
them.

4.3 Constraints
In order to model the problem, the constraints should also be verified. In our

model three constraints must be satisfied in all interactions. The first one (Eq. 15)
means that only one service belongs to a composition for each task.

)15(

The variable xij specifies whether or not a service belongs to a composition
(matrix X). The variable pij means that a service i is able to execute a task j. The
second restriction (Eq. 16) concerns user’s budget.

)16(

This constraint means that the cost of using a service in a composition should not
exceed a given value W. Finally, the last constraint used is only to verify that xij
must have binary values: .These binaries values will represent which
services belong or not to the composition.

5. RESOLUTION METHOD
One of the main contributions of this work concerns the resolution approach
employed. As explained earlier, we have four objectives and solutions should be
searched considering these four criteria simultaneously. To achieve this, we use a
multi-objective evolutionary algorithm NSGA-II.

5.1 Genetic Algorithm - NSGA-II
The multi-objective evolutionary algorithms (MOEA) are among the most

powerful resolution methods for multiobjective optimization (Coello Coello et al.,
2002). Thanks to its population, such an algorithm is able to produce naturally a set
of non-dominated solutions for each run of the algorithm. In this paper, we used

∑∑
= =

n

i

m

j
ijijij xprMax

1 1

[]mpx j
n

i
ijij ,1,1

1
∈∀=∑

=

0,
1 1

>≤∑∑
= =

WWxc
n

i

m

j
ijij

Daniela Barreiro Claro1,2, Patrick Albers1, Jin-Kao Hao2

NSGA-II (Non-dominated Sorting Genetic Algorithm) (Deb et al. 2002), though any
other MOEA such as SPEA (Zitizler and Thiele, 1998), PAES (Knowles and Corne,
1999) and PICPA (Barichard and Hao, 2003) could have been used.

In NSGA-II, the tournament selection, crossover and mutation operators are used
to create a child population that will be added to a result population given by the
later generation. The new population is sorted based on non-domination. In this step,
elitism is ensured because the best non-dominated sets will be chosen for the next
population. Using constraints, the relation of domination between two individuals
can be characterized as a feasible or infeasible solution. Thus, the ranking will be
done based also on feasible solutions.

Using the NSGA-II algorithm, it is not necessary to create a mathematical
expression to determine the weights associated to the criteria which would be
necessary with an aggregation approach.

5.2 Experimentation
Applying this algorithm to our problem, several experiments using our optimal

composition model were done in order to validate the multiobjective approach for
selecting web services.

5.2.1 Tests set
The main objective of our tests was to find a set of optimal compositions from
which a user can select her preferred solution. Thus our main contribution is creating
optimal compositions based on discovered services. The first test that we did was
using the same number of services, but changing the number of generations and
populations. The number of services was fixed to 15 services and the number of
tasks to 3. We choose to allocate the same number of candidate services to each
task. This was done in order to see how the algorithm treats services composition.

The other we did was aimed at studying the scalability of the service composition
algorithm with regards to the number of candidate services and to the number of
tasks. Population and generation were kept constant in all experiments, but the
number of services and tasks was changed. In fact, we increased candidate services
for each tasks. The population was fixed to 50 individuals and the generations were
fixed to 100. These values were taken considering other experiments using the
NSGA-II algorithm.

The number of services is proportional to the number of variables, because each
service is represented as a variable in our model. We consider in our experiments
that the numbers of candidate services for each task are equal.

5.2.2 Algorithm’s Parameter
In the first experiment we used populations range from 5 to 100 and generation
range from 10 to 500. The crossover probability was 0.9 and the mutation was 1/l
where l is the number of binary variables. In our case, we used 15 binary variables.
These 15 binary variables represent 3 tasks and each task can be executed by 5

Selecting Web Services for Optimal Composition

candidate services. The crossover used was single-point. We used 4 objective
functions and 4 constraints as previously defined in our model. The 3 constraints
determine the candidate services and the last one represents maximal budget given
by the user. This value was fixed for all compositions. A QoS value was given
randomly to each service.

In the second test, the population size was fixed to 50 and generation was fixed
to 100. We did these experiments taking 15, 30 and 60 services and 3 and 5 tasks
respectively. It means that, for example, using 60 services and 3 tasks, we have 20
candidate services evenly distributed for each task. The crossover mutation and
probability was maintained, of course changing according to the number of
variables. In both experiments, all constraints are verified and they must be satisfied
in all generations. Only solutions with satisfied constraints were selected for the next
generation. Thus optimal solutions must satisfy all constraints.

5.2.3 Results

As execution results, a set of chromosomes is found and each one represents an
optimal composition. Since we defined a population size of 50, the maximum
number of optimal solutions found was also 50. Between these 50 optimal solutions,
the user can select one of them to be executed.

0

20

40

60

80

100

120

5 8 10
Ge ne r a t i ons

POP5
POP10
POP20
POP50
POP100

Figure 2. Non-dominated set solutions - Population by generations

In figure 2, we show the evolution of our model based on the number of optimal
solutions found. We can ensure that when population is over 20, tradeoff solutions
are found at the 8th generation. The tradeoff solutions do not violate any constraints.
Thus, using 15 services for 3 tasks, results show that a GA does not have any
problem in finding tradeoff solutions. In fact, found solutions are non-dominated,
since once the solutions are achieved, they are maintained.

Daniela Barreiro Claro1,2, Patrick Albers1, Jin-Kao Hao2

3 tasks

0

10

20

30

40

50

60

15 25 50 100
G e n e r a t i o n s

15 services
30 serv ices
60 serv ices

Figure 3. Non-dominated set solutions - 3 tasks

The next experiment consisted in changing the number of services and the number
of tasks. In figure 3 we can ensure that as the number of services increases, more
generations are necessary to obtain a set of optimal solutions. In some cases, as seen
with 60 services, any optimal solution was found without constraint violation. The
optimal solutions will only be found at the 155th generation. Also here, using 60
services for 3 tasks, it means that there are 20 candidate services. The difficulty in
finding tradeoff solutions increases with the number of candidate services. In order
to show this fact, we changed the number of tasks, minimizing the number of
candidate services. We considered 5 tasks for 60 services given, so only 12
candidate services for each task. Augmenting the number of tasks also means
increasing the number of constraints and so facilitating the acquisition of tradeoff
compositions solutions. All obtained solutions are composed of a set of binary
variables that form a chromosome. This chromosome represents the composition
chain and each binary variable indicates whether the service belongs to the optimal
composition or not. Thus we can ensure that the experiments done can validate our
approach to make tradeoff services compositions.

6. PROPOSED ENVIRONMENT

This work is positioned as part of an environment that includes a planner, a
discovery method and an optimization structure. The planner is responsible for
determining the execution order of the tasks. However, in order to determine tasks
plan, the planner must know the tasks definitions. In this way, all possible tasks will
be located into a repository that the planner can consult for getting tasks interfaces.
This repository can be represented as ontology. Thus, before knowing the tasks
interface, it is necessary to find a composition which satisfies user request. A
planner can automatically resolve this type of problem (McIlraith and Son, 2002).
Indeed, the problem is composed of three components: user request, services and
user initial parameters. These three components represent respectively the goal, the

Selecting Web Services for Optimal Composition

actions and the initial planning state. In this paper, we pre-defined that tasks should
be executed in sequence as: Airplane, Hotel and at last CarRental.

After creating the initial plan, the discovery process will take place. It is
responsible for finding services that correspond to each task that belongs to the plan.
For discovering services, we use the profile ontology from OWL-S (OWL-S
Coalition, 2005). The next phase is aimed at optimizing services composition and is
the point treated in this paper. The user can choose any one of these solutions to
execute. In the execution phase, if any service has a problem such as invalid URL or
changed location, the environment proposes another optimal solution to the user. If
after some predefined time the problem continues, the environment will propose to
construct another plan, for example, by reordering the tasks.

7. CONCLUSION
In this paper we have explained how to select a service in order to make an optimal
web service composition. We proposed some improvement on quality models,
highlighting reputation. Reputation is calculated based on fuzzy numbers, but at the
end, we use a defuzzification method to convert this fuzzy numbers into crisp
values. Furthermore, when optimizing composite services using non-functional
features (QoS), we can have contradictory objectives. Moreover, we do not wish to
give any preference (weight) to anyone of these objectives. Thus we treat services
composition as a multiobjective problem. We used a multiobjective evolutionary
algorithm called NSGA-II. As a result, we obtained the population (a set of
chromosomes) representing the optimized compositions. Each solution is
represented by a set of binary values that determines which service belongs to the
composition or not. The experimentations done validate our approach and show its
feasibility in a real world problem.

8. ACNOWLEDGEMENT
The authors would like to thank all anonymous reviewers that helped us improve

the contents of the paper. Daniela Barreiro Claro is supported by a research
scholarship given by the Région du Pays de La Loire (2003-2006).

9. REFERENCES
Barichard V. and Hao J-K. 2003. A population and Interval Constraint Propagation

Algorithm. In Second International Conference Evolutionary Multi-Criterion
Optimization (EMO) Lecture Notes in Computer Science 2632: 88-101.

Cardoso J., Sheth A., Miller J., Arnold J., Kochut K. 2004. Quality of service for
workflows and web service processes. In Web Semantics: Sciences, Services and
Agents on the World Wide Web 1(2004) 281-308, Elsevier.

Daniela Barreiro Claro1,2, Patrick Albers1, Jin-Kao Hao2

Coello Coello C.A, Van Veldhuizen D.A and Lamont G.B, 2002. Evolutionary

algorithms for solving multi-objective problems. Kluwer Academic Publishers,
New York.

Deb K., Pratap A., Agarwal S., Meyarivan T. 2002. A Fast and Elitist Multi-
Objective Genetic Algorithm: NSGA-II, in Journal IEEE Trans Evol Computat,
Volume 6, pp. 182-197, April, Indian Institute Technologic.

Fuzzy Logic Fundamentals. 2005. Chapter 3, pg 61-103, Retrieved June 4, 2005,
Available on http://www.informit.com/content/images/0135705991/
samplechapter/ 0135705991.pdf.

Knowles J., Corne D, 1999. The Pareto archived evolution strategy: A new baseline
algorithm for multiobjective optimization. In proceedings of the 1999 Congress
of Evolutionary Computation, Piscataway, New Jersey: IEEE Service Center, pp.
98 – 105

Liu Y., Ngu A.H.H., Zeng L, 2004. QoS Computation and Policing in Dynamic
Web Service. In proceedings of the Thirteenth International Conference of
WWW 2004, May 17-22, New York, New York, USA.

Löfstedt J. and Svensson M., Baltazar - A Fuzzy Expert for Driving Situation
Detection, 2000. Master Diss., Department of Sciences, Lund University.

McIlraith, S. and Son, T.C. 2002. Adapting Golog for Composition of Semantic
Web Services. In 8th International Conference on Principles of Knowledge
Representation and Reasoning, April 22-25, Toulouse, France.

Moura L. 2002. A Genetic algorithm to fuzzy multiobjective optimization. Master
diss. Department of Electric Engineer, Campinas University.

Narayanan S. and McIlraith S.A. 2002. Simulation, Verification and Automated
Composition of Web Services. In Proceedings of Eleventh International World
Wide Web Conference (WWW 2002), Honolulu, May 7-10.

OWL-S Coalition. 2005. OWL-S: Semantic Markup for Web Services. OWL
Services Coalition. Retrieved June 4, 2005, from
http://www.daml.org/services/owl-s/1.1/.

Ran S. 2003. A Model for Web Services Discovery with QoS. in ACM SIGecom
Exchanges, Volume 4, Issue 1, Spring, pp. 1-10, ACM Press, New York, NY,
USA.

Sreenath R.M., Singh M.P. 2004. Agent-based service selection. In Web Semantics:
Science, Service and Agents on the World Wide Web, pp.261-279, 2004.

Zeng L., Benatallah B., Dumas M., Kalagnanam J., Sheng Q.Z. 2003. Quality
Driven Web Services Composition. In proceedings of the Twelfth International
Conference of WWW, May 20-24, Budapest, Hungary.

Zitizler E., Thiele L, 1998. Multiobjective optimization using evolutionary
algorithms – A comparative case study. In Parallel Problem Solving from Nature
V, A.E.Eiben, T.Bäck, M.Schoenauer and H-P. Schwefel, Eds. Berlin, Germany:
Springer, 1998, pp. 292-301.

	1. INTRODUCTION
	2. RELATED WORKS
	3. WEB SERVICES COMPOSITION
	3.1 Problem Description
	3.2 Composition Model

	4. PROBLEM MODELING
	4.1 Qos Model
	4.1.1 Cost
	4.1.2 Time
	4.1.3 Availability
	4.1.4 Reputation

	4.2 Objectives
	4.3 Constraints

	5. RESOLUTION METHOD
	5.1 Genetic Algorithm - NSGA-II
	5.2 Experimentation
	5.2.1 Tests set
	5.2.2 Algorithm’s Parameter
	5.2.3 Results

	6. PROPOSED ENVIRONMENT
	7. CONCLUSION
	8. ACNOWLEDGEMENT
	9. REFERENCES

