
SEMANTICALLY ANNOTATING REACTIVE SERVICES
WITH TEMPORAL SPECIFICATIONS

Monika Solanki, Antonio Cau, Hussein Zedan
Software Technology Research Laboratory,
De Montfort University,
The Gateway, Leicester LE1 9BH, UK.

monika, acau, zedan@dmu.ac.uk

Abstract Most useful Web services are reactive systems that repeatedly act and react in in-
teraction with their environment without necessarily terminating. Current Stan-
dards (XML based/Ontologies) for specifying behavioural semantics of services
consider transformational aspects of service behaviour. Specification of reac-
tive Web services require representation of properties that are temporal in na-
ture. The properties need to be specified in a declarative form that is consistent
with the dialect used for describing other aspects of the service. In the context
of describing semantic Web services, these properties need to be expressed as
ontologies that can be integrated with ontological representation frameworks for
Web services for e.g. OWL-S. In this paper we present “TeSCO-S”, a framework
for enriching Web service interface specifications, described as OWL ontologies
with temporal assertions. The TeSCO-S model is based on Interval Temporal
Logic (ITL), our underlying formalism for reasoning about service behaviour
over periods of time. TeSCO-S provides an OWL ontology for specifying prop-
erties in ITL, a pre-processor, “OntoITL” for transforming ontology instances
into ITL formulae and an interpreter, “AnaTempura” that executes and validates
temporal properties expressed in “Tempura”, an executable subset of ITL.

Keywords: TeSCO-S, Interval Temporal Logic, Reactive, AnaTempura, Semantic Web Ser-
vices, OWL

1. Introduction

Traditionally, Web services have been thought of and designed as being
information-intensive, transformational systems. In order to fully utilise the
distributed nature of control provided by interactive services deployed on the
web, a change in the paradigm is desired. Web services may provide and trans-
form information, but they may also exert control over their environment, fa-
cilitate behaviour, prevent behaviour and facilitate communication. Consider
a typical example of a flight reservation service. The service provides results

for a flight search and reserves tickets for the selected flight, thus changing
the status of a seat from unbooked to booked i.e. transforming information
by execution of a database query. However, the final selection of flight by a
travel agent can span over an unlimited period of time, going through several
rounds of selection. A typical interaction is shown in fig. 1. The service may
also exert control over the environment by terminating the user session after
pre-specified time limits of inactive sessions. Further, once a flight has been
booked, the agent also has the option of cancelling the booking within a stip-
ulated time period. From this and several related scenarios, we observe that
most useful Web services repeatedly act and react in interaction with their en-
vironment without necessarily terminating. Their behaviour can be considered
analogous to an important class of systems called “Reactive systems”1 [14,
15, 23, 8]. Reactive Web services and their compositions generate complex

Flight Booking Service

Travel Agent

Time

Se
ar

ch

Re
su

lts

Re
su

lts

Fi
lte

r

Fi
lte

r

Re
su

lts

Se
le

ct

Bo
ok

Co
nf

irm

Ca
nc

el

Se
ar

ch

Figure 1. A Typical Flight Reservation Scenario

behaviours’ due to their continuous interaction with the environment. Their
execution may last anywhere from a few minutes to a few months. Examples
include, web services deployed and composed as e-commerce applications,
where an order once placed may be cancelled, changed or put on hold because
of unexpected conditions anytime before its fulfillment. In certain cases a re-
fund may also be requested later if the service/product does not meet its spec-
ifications. In corporate e-businesses, it may not be a simple database query
that generates a document, but an entire business process involving multiple
partners. The final generation of the document may span several days. Web

1Reactive systems can be contrasted with transformational systems that take inputs, once in the beginning
and produce outputs, once before terminating

services deployed on wireless devices may take more than expected time to
provide the requested service due to poor connection facilities. In general, re-
active services are required to satisfy real time constraints in response to the
behaviour of the environment. For e.g. the database of the flight reservation
service must be updated fast enough for all requests to be considered in a timely
manner. Reactivity emerges when services communicate to form networks or
compositions. For a service executing as part of a network, the environment
is composed of all other services executing in that network. Further, Web ser-
vices are perceived as black boxes where the internal computation of a process
is not known. Reactive behaviour therefore needs to be specified, both at the
abstract and declarative level as part of the service description.

An important aspect of reactive Web service specification is the represen-
tation of properties/rules that enable/constrain the behaviour of services and
their continuous interactions with other services i.e. properties that are tem-
poral in nature. High level description of services need to be enriched with
properties which would enable reasoning about “ongoing” service behaviour.
The properties need to be specified in a declarative form that is consistent with
the language used for describing other aspects of the service. In the context
of describing semantic Web services, these properties need to be expressed as
ontologies that can be integrated with ontological representation frameworks
for Web services. We observe that current Web service description frameworks
suffer from the lack of their ability to fully specify properties that enable rea-
soning about reactive service behaviour and proving their correctness.

The need for more expressive service specification also becomes evident,
while reasoning about the composition of services and validation of the com-
position at runtime. Model checking [12] and theorem proving are commonly
used techniques for formal verification. In the context of analysing services
and their composition at runtime, these techniques are not feasible due to the
possible exponential growth in the number of reachable global states. In con-
trast to formal verification, practical validation techniques provide a mecha-
nism to verify only properties which are of interest to the service requester or
provider. Our notion of validation is different from the classical technique of
“testing”, generally associated with it. We believe, validation is a process of
checking for inconsistent, redundant, incomplete or incorrect properties for a
service. Properties are checked not for all possible behaviours [30] as in ver-
ification, but for a particular trace or execution of a service. As shown in our
earlier work on service composition [17, 26], the objective of runtime valida-
tion is not to prove individual service implementation correct. It is to ensure
that no undesirable behaviour emerges, when the service is composed with
other services.

In this paper we propose a methodology to augment the semantic descrip-
tion of a reactive service, with temporal properties that provide the required

support for reasoning about “ongoing” behaviour. The properties are specified
in Interval Temporal Logic (ITL) [19, 20, 18, 3], our underlying formalism for
reasoning about service behaviour over periods of time. These properties are
specified only over observable behaviour, and do not depend on any additional
knowledge about the underlying execution mechanism of the services. We
present “TeSCO-S”, a framework for enriching Web service interface specifi-
cations, described as OWL [7] ontologies with temporal assertions. TeSCO-S
provides an OWL ontology for specifying properties in ITL, a pre-processor,
“OntoITL” for transforming ontology instances into ITL formulae and an inter-
preter, “AnaTempura” that executes and validates temporal properties in “Tem-
pura”, an executable subset of ITL.

The paper is organised as follows: We begin by presenting a motivating
example of an e-Bookshop in section 2, which we follow throughout the paper,
to explain vital concepts and constructs. Section 3 briefly discusses ITL, as
our formal model for TeSCO-S. Section 4 provides a detailed presentation on
TeSCO-S and its architecture. Section 5 discusses the relationship of TeSCO-S
with existing standards and finally section 6 outlines conclusions and ongoing
work.

2. A Motivating Example

The e-Bookshop as shown in fig 2 is a sequential composition of four ser-
vices: Book search, Book buy, Payment validation and Book delivery. Each of
these services is a reactive service, as they continuously interact with the cus-
tomer. The e-Bookshop requires the customer to be registered with the service,
in order to search or buy a book. The customer sends the ISBN number of the
book to the Book search service, which returns a message with the search re-
sults. The customer can continue searching for more books, always supplying
the ISBN number or proceed to buy the book. The Book buying service, takes
as input the list of books selected by the customer, the delivery address and
the credit card details. The Card details and address are passed to the Payment
validation service. If the card is validated, then depending on the amount paid
and mode of delivery selected (standard or express), the book is arranged to
be delivered to the customer. We informally define properties of the compo-
sition, some of which we formalise in the subsequent sections. We perceive
Web services as black boxes and hence the properties strictly characterise the
observable behaviour of services in the composition.

At all times during the execution of the composed service, the customer
is required to be a registered member of the e-Bookshop. This is a use-
ful property to validate, when an inactive customer session is activated
after a considerable period of time. Most services store customer regis-

Time

Book search Book Buy
Card

Validation

User Agent

Return BookBook Delivery

Message
exchange

Figure 2. A Typical Book Buying Scenario

tration details as session data, which is reset after a predefined period of
inactivity.

Once a customer starts searching for a book, the price of the book has to
be constant till the search is over or if the customer buys the book, the
price has to be constant till the book has been delivered to the customer.

During the search, at any time if the customer sends an ISBN number,
he gets back the search results, for the same ISBN number.

Once a book or a list of books have been selected and ordered, the pa-
rameters of the book (title, language etc) should not change, till the book
has been delivered to the customer.

In order to buy a book, the customer needs to have a valid credit card.

Once the credit card has been validated, the e-Bookshop makes a com-
mitment to deliver the book as per the delivery terms and conditions
agreed with the customer.

3. Interval Temporal Logic

In this section we present the formal framework underlying TeSCO-S. We
base our work on Interval Temporal Logic (ITL) and its executable subset Tem-
pura. Our selection of ITL is based on a number of points. It is a flexible
notation for both propositional and first-order reasoning about periods of time.
Unlike most temporal logics, ITL can handle both sequential and parallel com-
position and offers powerful and extensible specification and proof techniques
for reasoning about properties involving safety, liveness and projected time.
Timing constraints are expressible and furthermore most imperative program-
ming constructs can be viewed as formulas. Tempura, an executable subset of

ITL, provides a framework for developing, analysing and experimenting with
suitable ITL specifications.

An interval is considered to be a (in)finite sequence of states, where a state
is a mapping from variables to their values. An intervalσ in general has a
length|σ| ≥ 0 and a nonempty sequence of|σ| + 1 statesσ0 . . . σ|σ|. Thus the
smallest intervals have length 0 i.e. one state.

The syntax of ITL is defined below whereµ is an integer value,a is a static
variable (doesn’t change within an interval),A is a state variable (can change
within an interval),v a static or state variable,g is a function symbol andp is
a predicate symbol. ITL contains conventional propositional operators such as

Expressions
e ::= µ | a | A | g(exp1, . . . , expn)

Formulae
f ::= p(e1, . . . , en) | ¬f | f1 ∧ f2 | ∀v q f | skip | f1 ; f2 | f∗

Figure 3. Syntax of ITL

∧, ¬ and first order ones such as∀ and =. There are temporal operators like
“; (chop)”, “* (chopstar)” and “skip”. Additionally in ITL, there are temporal
operators like©(next) and�(always). Expressions and formulae are evaluated
relative to the beginning of an interval.

The informal semantics of the most interesting temporal constructs are de-
fined as follows:

skip : unit interval (length 1).
The formulaskip has no operands and is true on an interval iff the inter-
val has length 1 (i.e. exactly two states).skip :

σ0• σ1•

f1; f2 : A formulaf1; f2 is true on an intervalσ with statesσ0 . . . σ|σ| iff
the interval can be “chopped” into two sequential parts (i.e. a prefix and
a suffix interval) sharing a single stateσk for somek ≤ |σ| and in which
the subformulaf1 is true on the left partσ0 . . . σk and the subformulaf2

is true on the right partσk . . . σ|σ|.

f∗ : A formulaf∗ is true over an interval iff the interval can be chopped
into zero or more sequential parts and the subformulaf is true on each.

Figure 4 pictorially represents the semantics ofskip, chopandchopstar. Some
ITL formula together with intervals which satisfy them are shown in fig 5

Some of the frequently used abbreviations are listed in Table 5. We do
not present the formal semantics of ITL, due to lack of space. We refer the
interested reader to [19, 20, 18, 3].

 skip

 f1 f2;

 f *

f1 f2

f fff
0 1 n

0 1

0 1 n

Figure 4. Informal illustration of ITL semantics

1

1

1

I:
I =1

1

2

I:
I =1;skip

2

4

5

1

I:
skip;I=1
 (○I=1)

4

1

1

true;I≠1
 (◊I=1)

1
I:

1

1

1

1

 ┐(true;I≠1)
 ( I=1)

1
I:

1

Figure 5. Some sample ITL formulae and satisfying intervals

3.1 Formalising the e-Bookshop in ITL

We now formalise some of the interesting properties of the e-Bookshop ser-
vice from section 2. The temporal properties that are required to hold at various

©f b= skip ; f next

more b= ©true non-empty interval

empty b= ¬more empty interval

♦f b= finite ; f sometimes

�f b= ¬♦¬f always

fin f b= �(empty ⊃ f) final state

♦i f b= f ; true some initial subinterval

�i f b= ¬(♦i ¬f) all initial subintervals

♦a f b= finite ; f ; true some subinterval

�a f b= ¬(♦a ¬f) all subintervals

Table 1. Frequently used abbreviations

stages of the composition are as shown in fig 6. We also define the interval over
which the properties are required to hold.

At all states (σ0 . . . σl) during the execution of the composed service, the
customer is required to be a registered member of the e-Bookshop.

�(isRegistered(userID))

Once a customer starts searching for a book, the price of any book re-
turned as a result has to be constant till the search is over or if the cus-
tomer buys the book, the price has to be constant till the book has been
delivered to the customer i.e. the price of the book has to be constant at
all states (σ0 . . . σl).

�(isNotChanged(bookPrice))

During the search (σ0 . . . σm), at any state if the customer sends an ISBN
number, he gets back the search results, for the same ISBN number in
the next state.

�((searchBook(ISBN)) ⊃ ©(searchResults(ISBN)))

Once a book or a list of books have been selected and ordered, the pa-
rameters of the book (title, language etc) should not change, till the book
has been delivered to the customer (σm . . . σl).

�(isBook(selectedBook))

In order to buy a book, the customer needs to have a valid credit card.
that stays valid atleast till the book has been delivered to the customer

Time

Book search Book Buy Card
Validation

User Agent

□isRegisteredCustomer(userID)

□isBook(SelectedBook)

 keep (¬ receivePayment(BookPrice,UserID)) ∧
 (fin receivePayment(BookPrice, UserID))

(fin validCard(UserID, CardNumber)) ;
□ (DeliveryPeriod = CalculatedDays)

□isNotChanged(BookPrice)

BookSearch BookBuy Card Validation

Temporal
Properties

0 m n

Book Deliver

Return BookBook Delivery

□ (searchBook(ISBN) ⊃  searchResults (ISBN))

k  l

□validCard(cardNumber)

Message
exchange

Figure 6. Temporal Properties for the e-Bookshop

(σm . . . σl).

�(validCard(userID, cardNumber))

Once the credit card has been validated, the e-Bookshop makes a com-
mitment to deliver the book as per the delivery terms and conditions
agreed with the customer (σn . . . σl).

(fin validCard(UserID,CardNumber));(DeliveryPeriod = CalculatedDays)

3.2 Assumption-Commitment properties for Web services

An important class of tempoal properties for Web services are “Assumption-
commitment” properties. In our earlier work [26, 16, 17] on service compo-

sition, we have shown the power of assumption-commitment style of speci-
fication for compositional reasoning of ongoing service behaviour. In brief,
assumption-commitment is a compositional specification and verification method-
ology for the precise and clear specification of the behaviour of reactive ser-
vices. The assumption-commitment specification can be thought of as a pair
of predicates(As,Co) where the assumptionAs specifies the environment
in which the specified service is supposed to run, and the commitmentCo
states the requirement which any correct implementation of the service must
fulfill whenever it is executed in an environment that satisfies the assumption.
Since we are interested in the observable, ongoing behaviour of services, we
model assumption-commitment as temporal properties defined over their inter-
face specification.

We have also proposed compositional proof rules based on assumption-
commitment properties that allow validation of ongoing behaviour of services.
Keeping in perspective the e-Bookshop service which is sequentially com-
posed, we present the rules here for sequential composition.

ω1 ω2
'ω1

'
 ⊃ ω2

S1 S2

S1 ;S2

Figure 7. Sequential Composition

A Service,S, in ITL is expressed as a quadruple

(As,Co) : {ω}S{ω′}

where,

ω : state formula about initial state
As : a temporal formula specifying properties about the environment
Co : a temporal formula specifying properties about the service
ω

′
: state formula about final state

We consider the sequential composition (ref. Fig. 7) of two services,S1 and
S2. For a detailed explanation of the rules and its proof obligations, the inter-
ested reader is referred to [26, 17].

` (As, Co) : {ω1}S1{ω
′
1} (1)

` (As, Co) : {ω2}S2{ω
′
2} (2)

` ω
′
1 ⊃ ω2 (3)

` As ≡ �a As (4)
` Co ≡ Co∗ (5)

` (As, Co) : {ω1}S1; S2{ω
′
2} (6)

4. TeSCO-S: Temporal SemantiCs for OWL enabled
Services

TeSCO-S is a framework (ref. Fig.8) for semantically annotating and vali-
dating Web service specifications with temporal properties, defined using ITL
and its executable subset “Tempura”. The objective is:

to provide an ontology for service providers to declaratively specify tem-
poral properties in ITL.

to provide a pre-processor for service requesters/composing middleware/-
software agents to process the declarative markup of properties and trans-
form them into concrete ITL/Tempura formulae.

to provide an execution engine for the generated tempura formulae, which
can be used to validate properties about the service as well as perform
runtime validation of assumption - commitment properties for service
composition.

The semantics of the formulae and expressions modeled using TeSCO-S are
the semantics as defined in ITL and implemented in its executable subset Tem-
pura. TeSCO-S uses OWL as the ontology representation language. The choice
of OWL as a representation format over XML is motivated by two objectives:
(a) Our ultimate goal is to be able to automate reasoning about ITL formulae
and expressions. (b) we want to be able to seamlessly use the ontology within
standrads like OWL-S for services. Tools for reasoning about ITL-Tempura
ontology, can be integrated with automated reasoning tools for services speci-
fied in OWL. For realising the objectives highlighted above, TeSCO-S includes
the following components:

An OWL ontology for first order formulae, expressions and temporal
constructs as defined in ITL and Tempura.

A pre-processor that transforms ontological representations of ITL and
Tempura constructs defined in the ontology above to concrete formulae
and expressions.

An interpreter,“AnaTempura” that provides execution support for Tem-
pura.

OntoITL
pre-processor for ITL and

Tempura Ontologies
 Concrete ITL./Tempura

Instance Ontologies

AnaTempura
execution and validation engine

Ontology for ITL and Tempura

Tcl/TK Interface

Validation
Result

Validation
Result

TeSCO-S
Architecture

Figure 8. The TeSCO-S Architecture

The following sections present a detailed discussion of each of these compo-
nents.

4.1 The ITL-Tempura Ontology

The objective of the ITL-Tempura ontology is to express the syntactical
framework of ITL and Tempura, as concepts and properties in OWL. ITL is
very expressive and provides a number of primitive and derived constructs for
the specification of a wide variety of temporal assertions. We have restricted
the ontology to only a specific set, which we believe will be most useful and
sufficient to express the kind of properties that most service providers would
want to expose. On the other hand, the ontology itself is very modularly struc-
tured to enable future extensions. As discussed in section (3), the syntax of
ITL is defined primarily by Expressions and Formulae. Expressions can be
of various types for e.g. static and state variables, functions, and constants.
Similarly formulae can be subclassed as being atomic: e.g. “skip”,composite:
e.g. “f1 ; f2” and predicates: e.g. “isRegistered(userID)“ amongst oth-
ers. Expressions and Formulae in the ontology are built incrementally. The
root class of all Formulae is “Formula”, while that of Expressions is “Expres-

sion”. Formula has several subclasses such as “Atomic”, “Composite” and
“Prefixed” amongst others.“TempuraFormula”, defines formulae specified in
Tempura and which can be executed by AnaTempura. “Operator” denotes the
kind of operators that can be used with formulae and expressions. Classes
have properties and restrictions associated that define the kind of parameters
that are required to build the expression or formula. Properties provide the
link between expressions/formulae and operators. We follow an incremental
approach to building ontology instances using the ITL-Tempura ontology as
shown in the e-Bookshop example presented in secton 4.2. The modular ap-
proach to building ITL and Tempura formulae allows reusability of formulae
and expression instances between ontologies.

We use the Protege OWL plugin [4] for modelling the ontology. Table 4.1
shows how formulae and expressions are structured. A complete description
of the ontology is beyond the scope of the paper. A graphical and hierarchical
representation of the classes in the ontology can be found at [1]. The complete
ontology itself can be found at [2].

ITL-Tempura Ontology::= Formula| Expressions| TempuraConstuct
Connective| Operator| Quantifier

Formula::= Atomic| TempuraAtomic| Equality|
Composite| CompositeWithExpressions| Len |
Negated| Prefixed| PrefixedWithExpressions
Predicate| Quantified| Suffixed|

Expression::= StateVariable| StaticVariable| Constant|
Function| CompositeExpresions| MathFunc|
NextExpression| PrefixExpression

Operator::= EqualityOperator| TemporalOperator
TemporalOperator::= InfixOpeartor| PrefixOperator| SuffixOperator

Table 2. Primitives for the ITL-Tempura Ontology

4.2 Modelling the e-Bookshop service

In this section, we model some interesting properties of the e-Bookshop
service 3.1 using the ITL-Tempua ontology. Since most of the properties are
composite formulae, we begin by defining the “Composite” formula class in
the abstract Description Logic (TBox) syntax2.

2For brevity and readability purposes, we have abstained from providing the actual ontological representa-
tion. The syntax has been specified here as abstract Description Logic syntax. For more details, please refer
to the ontology

Compositev Formulau (∀ hasPrefixedSubFormula.Formula)
u (∀ hasSuffixedSubFormula.Formula)u (=1 hasInfixOperator.Operator)
u (=1 hasPrefixedSubFormula.Formula)u (=1 hasSuffixedSubFormula.Formula)

We choose the following properties from the e-Bookshop example

Property (1): During the search, at any state if the user sends an ISBN
number, he gets back the search results, for the same ISBN number in
the next state.

�((searchBook(ISBN)) ⊃ ©(searchResults(ISBN)))

We define the properties as assertional axioms (ABox) in Description
Logic. We build the formula incrementally as shown below:

ABox representation of Property (1):

ISBN:StateVariable, P1:Predicate, P2:Predicate
(P1, searchNook):hasName, (P1, ISBN):hasExpressionList
(P2, searchResults):hasName, (P2, ISBN):hasExpressionList
PR1:Prefixed, (PR1, Next):hasPrefixOperator, (PR2, P2):hasSubFormula
C1:Composite, (C1, Imp):hasInfixOperator
(C1,P1):hasPrefixedSubFormula, (C1, PR1):hasSuffixedSubFormula
PR2:Prefixed, (PR2, Always): hasPrefixOperator, (PR2, C1):hasSubFormula

Property (2): Once the credit card has been validated, the e-Bookshop
makes a commitment to deliver the book as per the delivery terms and
conditions agreed with the user.

(fin validCard(UserID,CardNumber));(DeliveryPeriod = CalculatedDays)

ABox representation of Property (2):

UserID:StateVariable, CardNumber:StateVariable
DeliveryPeriod:StateVariable, CalculatedDays:StateVariable
P1:Predicate, (P1, validCard):hasName, (P1, (UserID,CardNumber)):hasExpressionList
PR1:Prefixed, (PR1, fin):hasPrefixOperator, (PR2, P1):hasSubFormula
EQ1:Equality, (EQ1, Equals):hasEqualityOperator, (EQ1, DeliveryPer-
iod):hasPrefixExpression
(EQ1, CalculatedDays):hasSuffixExpression
C1:Composite, (C1, Chop):hasInfixOperator
(C1,P1):hasPrefixedSubFormula, (C1, EQ1):hasSuffixedSubFormula

4.3 OntoITL: A pre-processor for Temporal Ontologies

So far, we have seen how ITL formulae and expressions can be modelled
using the ITL-Tempura ontology. This enables service providers to specify
temporal constraints as part of their service specification. In order to interpret
this semantic markup of temporal properties, a utility is needed to generate
concrete formulae and expressions from the OWL representation. The idea
behind providing such a tool is to automate the process of generating, inter-
preting and analysing temporal properties of services. Service requestors and
composers can use the tool to extract temporal properties that they would like
to validate, while interacting with the service. At runtime, the properties are
monitored against the behaviour of the interacting services.

OntoITL is a pre-processor that generates concrete ITL and executable Tem-
pura formulae from instance ontologies built using the ITL-Tempura Ontology.
The instances are defined using the core ontology as described in Section 4.1
or from ontologies that import these instances. It provides as output, complete
information about instances of State and Static variables, Expressions, Formu-
lae and Temporal Formulae modeled in the ontology. An output of the pre-
processor for properties of the e-Bookshop, modeled using the ITL-Tempura
Ontology and as explained in section 4.2 is shown in the Fig. 9: OntoITL takes
as input, the instance ontology in OWL for a formula or a set of formulae. It
then generates ITL/Tempura formulae keeping the syntactical structure of the
formula intact. OntoITL offers several options to store the generated ITL and
Tempura formulae. It also provides the facility to directly pass the tempura for-
mula to the AnaTempura interpreter, that executes the formulae and validates
temporal properties. Alternatively, OntoITL stores the generated outputs in
files that can be executed via the Tcl/Tk interface of AnaTempura as discussed
in section 4.4.

4.4 AnaTempura: Runtime Validation of Tempura
specification

AnaTempura (available from [3]), which is built upon C-Tempura, is an
integrated workbench for the runtime verification of systems using ITL and its
executable subset Tempura. AnaTempura provides

specification support

verification and validation support in the form of simulation and runtime
testing in conjunction with formal specification.

An overview of the run-time analysis process in AnaTempura is depicted in
Fig. 10. There are two ways of validating properties via AnaTempura:

Figure 9. The OntoITL pre-processor for ITL-Tempura Ontology

Desired
 Properties

(Tempura Code)
Validate

Service
Implementation

Figure 10. The Analysis Process

Concrete Tempura formulae generated by the OntoITL pre-processor are
directly passed to AnaTempura. The results of the validation and execu-
tion are returned to OntoITL for display.

Concrete Tempura formulae generated by the OntoITL pre-processor are
stored in files for validation at a later stage. The results of the validation
and execution can be displayed via the Tcl/Tk interface of AnaTempura.

AnaTempura generates a state-by-state analysis of the system behaviour as the
computation progresses. At various states of execution, values for variables of
interest are passed from the system to AnaTempura. The Tempura properties
are validated against the values received. If the properties are not satisfied
AnaTempura indicates the errors by displaying what is expected and what the
current system actually provides. The approach goes beyond a “keep tracking”
approach, i.e. giving the running results of certain properties of the system, by
not only capturing the execution results but also comparing them with formal
properties. The general architecture that employs AnaTempura for validation
of service properties is shown in Fig. 11. The validation results of the instance-

OntoITL
pre­processor for ITL and

Tempura Ontologies
 Concrete ITL./Tempura

Instance Ontologies

AnaTempura
execution and validation engine

Ontology for ITL and Tempura

TeSCO­S
Architecture

Composing
agent

Web
service

Middleware

Service
Requester

Validation

Result

Validation
Result

Validation
Result

Tcl/Tk
Interface

Validation
Result

Validation
Result

Figure 11. General Architecture for Web services

ontology-formulae, generated from the TeSCO-S framework, can be returned
to the composing agents, the middleware or to the service requestor depending
on the design of the service composition.

4.5 Validating the Customer : e-Bookshop Composition

We have validated some of the properties of the e-Bookshop as formalised
in section 3.1. We present the validation of one such property,

�(isRegistered(UserID)

We adopt the second approach to validating properties as mentioned in sec-
tion 4.4. The property is extracted as a tempura formula, from its ontological
representation using the OntoITL pre-processor and stored in a file. At the
initial state, the customer registers using his login details3. The login de-
tails are set for the customer session and passed to AnaTempura. For each

Customer

e­Bookshop

AnaTempura

Book Search Book Buy

 isRegistered(userID)  isRegistered(userID)

Warning
message

Figure 12. Validating the Customer:e-Bookshop Composition

phase of the composition (search, buy etc.) and for every interaction between
the e-Bookshop and the customer, at any state, the property is validated by
AnaTempura against the values set in the session for that state. If the values in
the session are found to be reset and do not match the ones passed to AnaTem-
pura in the initial state, a warning message is sent to the e-Bookshop as shown
in fig. 12. It is worth noting that AnaTempura only validates the properties
of interest. It does not define the behaviour of the service in case the proper-
ties are not satisfied. This is a design decision that has to be taken before the
composition is realised.

3For practical purposes, we do not model the registration process over an interval, although this may well
be the case if the user enters incorrect login details, and takes several attempts to correct login.

5. Relationship with Existing standards

Based on service interfaces definitions [24] and message exchange protocols
[5], standards [10, 28, 21, 25, 27] have been proposed for specifying compos-
ite services, by defining declaratively, their data and control flows. BPEL4WS
[28] provides distinct constructs for specifying abstract and executable pro-
cesses. BPEL, however does not prevent complex computation from being in-
cluded in an abstract process, thus revealing implementation details. Within the
context of semantic Web services frameworks like OWL-S [27] and WSMO
[29], specification of pre/post-conditions and effects contribute to some extent
towards their behavioural description. However they are limited to describing
transformational behaviour. There is no support available for describing and
reasoning about changes over time. This is due to the lack of explicit modeling
of “states” in these languages. Rule languages for the web include RuleML
[6] and within the context of semantic web, initiatives such as SWRL [13] and
DRS [11]. These approaches are limited to describing only certain kinds of
properties. The expressivity of the languages is restricted to specifying static
rules and constraints. There are no constructs available for specifying ongoing
behavioural semantics or temporal properties of services. Other related work
in this area is mostly concerned with representation of time as a first-class citi-
zen [22, 9] i.e. reasoning about time points, complex time intervals, calendars
and durations.

TeSCO-S provides an OWL ontology for modelling temporal properties of
services and a tool to validate them. In our earlier work, we have shown how
temporal properties for services can be declaratively specified in SWRL. The
ITL-Tempura ontology provides richer expressiveness in the specification of
properties due to more concepts and properties being available. It can be in-
tegrated very easily with SWRL and with existing Web service standards that
describe service interfaces in OWL. As an example, the definition of “State-
Variable ” can be extended to define it as a SWRL variable. Similarly “head”
and “body” atoms can be defined in terms of “Predicate” in the ITL ontol-
ogy. Temporal properties that define execution monitoring of OWL-S services
can be readily defined as Tempura formulae, which AnaTempura validates at
runtime.

6. Conclusion and Future Work

In this paper, we provide a modular approach, TeSCO-S, to building and
executing temporal properties of services, with interfaces described as OWL
ontologies. TeSCO-S is based on Interval Temporal Logic (ITL) and Tempura,
its executable subset. Our pre-processor “OntoITL” enables transformation of
the bulky XML representation of temporal properties into concrete ITL and
Tempura formulae, that can be handled readily by AnaTempura. The ontol-

ogy within the TeSCO-S framework can be used by service providers to de-
scribe temporal capabilities of services. Service requestors and composing
agents can use “OntoITL” and AnaTempura for on-the-fly transformation and
validation of these temporal properties. The ontology provides constructs not
only for specifying temporal expressions and formulae, but general first order
predicates and formulae as well. It can therefore, also be used to specify pre-
conditions/post-conditions and effects in frameworks like OWL-S and WSMO.
Ongoing work in TeSCO-S is providing reasoning support over temporal on-
tologies and tools for exploiting ITL formulae to build temporal ontologies. It
is planned to have a protege plugin for defining temporal ontologies, that could
be used along with the OWL-S editor for modelling OWL-S services.

References

[1] A Graphical representation of Class Hierarchies in the ITL-Tempura Ontology.
http://www.cse.dmu.ac.uk/~monika/TeSCO-S/OntoITL.jpg.

[2] An Ontology for ITL and Tempura.
http://www.cse.dmu.ac.uk/~monika/TeSCO-S/OntoITL.owl.

[3] ITL and (Ana)Tempura Home page on the web.
http://www.cse.dmu.ac.uk/~cau/itlhomepage/itlhomepage.html.

[4] The protege ontology editor and knowledge acquisition system.

[5] Simple Object Access Protocol.
http://www.w3.org/TR/2002/CR-soap12-part0-20021219/.

[6] The Rule Markup Initiative.
http://www.dfki.uni-kl.de/ruleml/.

[7] OWL Web Ontology Language Reference, 10 February 2004.
http://www.w3.org/TR/owl-ref/.

[8] A. Pnueli. Applications of temporal logic to the specification and verification of reactive
systems - a survey of current trends.Current trends in Concurrency, LNCS 224:510–584,
1986.

[9] F. Bry and S. Spranger. Temporal constructs for a web language, 2003.

[10] Dr. Frank Leymann, IBM Software Group. Web Services Flow Language (WSFL) Ver-
sion 1.0, 2001.

[11] Drew McDermott and Dejing Dou . Representing Disjunction and Quantifiers in RDF
Embedding Logic in DAML/RDF. International Semantic Web Conference, 2002.

[12] E.M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press, Cam-
bridge, Massachusetts, 1999.

[13] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, Mike
Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML . Tech-
nical report, Version 0.5 of 19 November 2003.

[14] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems:
Specification.Springer-Verlag, New York, 1991.

[15] Z. Manna and A. Pnueli.The Temporal Verification of Reactive Systems: Safety.Springer-
Verlag, New York, 1995.

[16] Monika Solanki, Antonio Cau, Hussein Zedan. Introducing compositionality in webser-
vice descriptions. Paris, France, 2003. 3rd International Anwire Workshop on Adaptable
Service Provision, Springer-Verlag.

[17] Monika Solanki, Antonio Cau, Hussein Zedan. Introducing Compositionality in Web
Service Descriptions. Suzhou, China, May 26-28 2004. 10th International Workshop
on Future Trends in Distributed Computing Systems - FTDCS 2004, IEEE Computer
Society Press.

[18] B. Moszkowski.Executing temporal Logic Programs.Cambridge University Press, Cam-
bridge, England, 1986.

[19] B. Moszkowski. Programming Concepts, Methods and Calculi, IFIP Transactions, A-
56., chapter Some Very Compositional Temporal Properties, pages 307–326. Elsevier
Science B. V., North-Holland, 1994.

[20] B. Moszkowski. Compositionality: The Significant Difference, volume 1536 of LNCS,
chapter Compositional reasoning using Interval Temporal Logic and Tempura, pages
439–464. Springer Verlag, Berlin, 1996.

[21] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher, Yves Lafon. Web
Services Choreography Description Language Version 1.0:W3C Working Draft 17 De-
cember 2004, 2004.

[22] Feng Pan and Jerry R. Hobbs. Time in OWL-S. InProceedings of AAAI Spring Sympo-
sium Series on Semantic Web Services, 2004.

[23] A Pnueli. Applications of temporal logic to the specification and verification of reactive
systems: a survey of current trends. pages 510–584, 1986.

[24] Roberto Chinnic, Martin Gudgin,Jean-Jacques Moreau, Sanjiva Weer-
awarana. Web Services Description Language (WSDL) Version 1.2, 2003.
http://www.w3.org/TR/2003/WD-wsdl12-20030124/#intro.

[25] Satish Thatte. XLANG: Web Services for Business Process Design, 2002.

[26] Monika Solanki, Antonio Cau, and Hussein Zedan. Augmenting semantic web service
descriptions with compositional specification. InProceedings of the 13th international
conference on World Wide Web, pages 544–552. ACM Press, 2004.

[27] The OWL-S Coalition. OWL-S 1.1 Release., 2004.
http://www.daml.org/services/owl-s/1.0/.

[28] Tony Andrews et al. Business Process Execution Language for Web Services, Version
1.1, 2003. http://www-106.ibm.com/developerworks/library/ws-bpel/.

[29] Web Service Modelling Ontology, 2004. http://www.wsmo.org.

[30] Shikun Zhou.Compositional Framework for the Guided Evolution of Time-Critical Sys-
tems. PhD thesis, Software Technology Research Laboratory, De Montfort University
UK, 2003.

