
Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes.

Formalization of the i* Mapping Rules for Class Diagram

Josenildo Melo¹, Aêda Sousa¹, Celso Agra¹, Fernanda Alencar²

¹Departamento de Engenharia de Computação, Universidade de Pernambuco, Recife, Brazil
{jasm,amcs,clasf}@ecomp.poli.br

²Departamento de Eletrônica e Sistemas, Universidade Federal de Pernambuco, Recife, Brazil
fernandaalenc@gmail.com

Abstract. The phase of requirements gathering of a project is extremely
essential because it identifies all the features that the project should
have. After this phase, they must be modeled to be better understood.
To model solutions, UML (Unified Modeling Language) is one of the
most used languages, but it is not developed to capture domain
requirements for quality. To capture these requirements, models based
on Goal-Oriented Requirements Engineering (GORE) are used, such as
i* (iStar). This paper presents a formalization of i* mapping rules for
class diagram in the context of Model-Driven Development (MDD),
aiming to create more complete class diagram, where quality
requirements are captured.

Keywords: Transformation between models, i*, class diagram, Model-
Driven Development.

1 Introduction

Companies need to respond quickly to new market demands, building new solutions
or performing maintenance on existing systems. So must update your processes and
working properly, without neglecting the quality requirements [1]. It is necessary that
the end of the requirements specification phase, all stakeholders is acutely aware of
the features and system behavior. For this, are proposed and used various models,
especially models of Unified Modeling Language (UML).

The UML is efficient to specify "what" a system does and "how" it does some-
thing, but it is not to describe the "why" it does [2]. It is not designed to capture the
domain requirements (early requirements) [3]. To minimize these problems, came the
Goal-Oriented Requirements Engineering (GORE) [4]. In goal-oriented approaches,
requirements engineering is responsible for discovering, formulating and analyzing
the problem to be solved, as well as conclude because the problem must be solved and
who is responsible for solving the problem. [5]. The need to have more precise speci-
fications of requirements that they consider the reasons, motivations and intentions
captured by GORE approach led to the initial proposal of models mapping rules i*
(goal-oriented) for class diagrams [6] in UML, which subsequently been extended [7].

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

97

This time, contributing to a possible automatic transformation between models could
be thought. The formalization of transformation rules between these models was ini-
tialized in [8] and making it necessary to formalize and test all the rules, to allow
automatic transformations between models (i* to class diagrams).

This paper aims to demonstrate a transformation between models in the context of
Model Driven Development (MDD) [9], which is obtained through the formalization
of mapping rules described above. For this, the present article is organized as follows:
Section 2 briefly define the objectives of the research; Section 3 we discuss the scien-
tific contributions; Section 4 provides the conclusions, and Section 5 presents ongoing
and future works.

2 Objectives of the research

This work aims to demonstrate a transformation between models in the context of
MDD. This will be achieved through the formalization of the guidelines proposed by
[6] and extended by [7]. This guidelines was created to map i* into UML class dia-
gram. The objective of this transformation is to keep the consistency between the
desired software system and the organization objectives, as well to establish the im-
pact that any change of objectives will be able to cause in the system and vice versa.

3 Scientific contributions

Using templates to design complex systems is standard in traditional engineering
disciplines. We cannot imagine the construction of a building, a bridge or a car, with-
out first constructing a variety of designs and simulate them. Models help us under-
stand a complex problem (and possible solutions) through abstraction.

Currently, the Model-Driven Development (MDD) [9] has proved to be a highly
reputable trend [10]. In fact, MDD aims to accelerate the development of software by
automating the development of products and employing reusable models or abstrac-
tions to view the code (or the problem domain). By using the models, or abstractions,
we can describe complex concepts more legibly than computer languages do. This
improves communication between stakeholders, because models are often easier to
understand than the code [11].

The most important contribution of this work is the development of a transfor-
mation between models that covers the MDD. This transformation will be responsible
for creating the most complete class diagrams, which cover better user requirements.

This transformation will be achieved through the formalization of the guidelines
proposed by [6] and extended by [7]. This guidelines are shown in the Table 1. Is not
part of the scope of this study to discuss these rules, but the formalization of them.

Table 1. Mapping Guidelines

Number i* UML

1.1 Agents, roles or position Class.

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

98

Number i* UML

1.2
Relationship ISPART-OF

between positions, agents or

roles.

Class aggregation.

1.3
Relationship ISA between

positions, agents or roles.

Class generalization/specialization.

1.4
Relationship OCCUPIES

between an agent and a

position.

Class association named OCCUPIES.

1.5
Relationship COVERS

between a position and a

role.

Class association named COVERS.

1.6
Relationship PLAYS be-

tween an agent and a role.

Class association named PLAYS.

2.1 Tasks defined in SD model. Methods with public visibility.

2.2 Tasks defined in SR model. Methods with private visibility.

3.1 Resources defined in SD

model.

Class if this dependence has the characteristics of an

object.

3.1
Resources defined in SD

model.

Attribute with private visibility in class that repre-

sents the dependee actor if this dependence cannot be

characterized as an object

3.2
Resources (sub resources)

defined in SR model.

Attribute with private visibility in the class that repre-

sents the actor in which the sub resource belongs (if

this sub resource cannot be understood as an object).

3.2
Resources (sub resources)

defined in SR model.

An independent class, otherwise.

4.1 (Soft)Goals in SD model.
Attribute with public visibility in the class that repre-

sents the dependee.

4.2 (Soft)Goals in SR model.
Attribute with visibility public in the class that repre-

sents the actor in wich the sub goal belongs.

5 Task Decomposition.
Represented by pre and posconditions (expressed in

OCL) of the corresponding pUML operation.

6.1 (Soft)Goals-(Soft)Goals.
The disjunction of the means values implies the end

value.

6.2
(Soft)Goal – Task, Resource-

Task.

The post-condition of the means task implies the

value of end.

6.3 Task – Task.
The disjunction of the post-condition of the means

imply the pos-conditions of the end.

The formalization process is shown in Figure 1. The process starts with data input
obtained by iStarTool [12] tool. In iStarTool, the i* element is designed and the tool
generates a corresponding file XMI. In the second step ("transformation between
models"), this XMI file is imported and rules described in ATL language [13] are
applied. In the last step, an output model is generated containing the elements of class

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

99

diagram generated. This output model is another XMI file, that
CASE tool for the class diagram can be viewed.

4 Conclusions

Requirements elicitation is essential for a system to be developed with all the features
and functionality needed, and the application templates can help
tem before its construction begins. Several models exist, the UML is more used.
However, UML does not capture all system requirements, indicating "as" a system
should be done and not "why" should be done. Among the approaches that care about
the needs of the system, stands out i*.

This work presented
der to create class diagrams that addressed user requirements more fully

5 Ongoing and the future work

The objective of this work
features, covering the features i
rules are being formalized in the ATL language.
comparison between the ATL language and
(QVT, ETL and MOFScript)

As future work, it is pla
creation of a tool to automate the whole process.
XGOOD tool [14]. This tool decides which i*

References

1. T. C. Pereira, F. M. R. Alencar, J. R. F. Silva, and J. F. B. Castro, “Requisitos Não
Funcionais em Modelo
Simpósio Bras. Sist. Informação

2. G. A. A. C. Filho, A. Zisman, and G. Spanoudakis, “A Traceability Approach for i * and
UML Models,” in 2nd International Workshop on Software

Multi-Agent Systems

3. F. M. R. Alencar, F. Pedroza, J. F. B. Castro, and R. C. O. Amorim, “New Mechanisms for
the Integration of Organizational Requirements and Object Oriented Modeling,” in
WORKSHOP DE ENGENHARIA DE REQ

This output model is another XMI file, that must be imported by a
CASE tool for the class diagram can be viewed.

Fig. 1. Formalization process.

Requirements elicitation is essential for a system to be developed with all the features
and functionality needed, and the application templates can help us visualize the sy
tem before its construction begins. Several models exist, the UML is more used.

wever, UML does not capture all system requirements, indicating "as" a system
should be done and not "why" should be done. Among the approaches that care about
the needs of the system, stands out i*.

ed the formalization of rules mapping i * to class diagram in o
der to create class diagrams that addressed user requirements more fully.

Ongoing and the future work

The objective of this work is to create more complete class diagrams using the MDD
features, covering the features i* and based on previously created rules. For this, these

are being formalized in the ATL language. Furthermore, we are performing
comparison between the ATL language and others three transformation
(QVT, ETL and MOFScript).

As future work, it is planned to finalize the formalization of the rules, as well as the
creation of a tool to automate the whole process. Also is planned the adaptation of

. This tool decides which i* elements must be mapped.

T. C. Pereira, F. M. R. Alencar, J. R. F. Silva, and J. F. B. Castro, “Requisitos Não
Funcionais em Modelos de Processos de Negócio : Uma Revisão Sistemática,” Proc. do IX

Sist. Informação, 2013.
G. A. A. C. Filho, A. Zisman, and G. Spanoudakis, “A Traceability Approach for i * and

2nd International Workshop on Software Engineering for Large

Agent Systems, 2003.
F. M. R. Alencar, F. Pedroza, J. F. B. Castro, and R. C. O. Amorim, “New Mechanisms for
the Integration of Organizational Requirements and Object Oriented Modeling,” in
WORKSHOP DE ENGENHARIA DE REQUISITOS, 2003.

must be imported by a

Requirements elicitation is essential for a system to be developed with all the features
visualize the sys-

tem before its construction begins. Several models exist, the UML is more used.
wever, UML does not capture all system requirements, indicating "as" a system

should be done and not "why" should be done. Among the approaches that care about

i * to class diagram in or-

agrams using the MDD
For this, these

we are performing a
transformation languages

rules, as well as the
Also is planned the adaptation of

T. C. Pereira, F. M. R. Alencar, J. R. F. Silva, and J. F. B. Castro, “Requisitos Não-
Proc. do IX

G. A. A. C. Filho, A. Zisman, and G. Spanoudakis, “A Traceability Approach for i * and
Engineering for Large-Scale

F. M. R. Alencar, F. Pedroza, J. F. B. Castro, and R. C. O. Amorim, “New Mechanisms for
the Integration of Organizational Requirements and Object Oriented Modeling,” in VI

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

100

4. A. van Lamsweerde, “Goal-oriented requirements engineering: a guided tour,” in
Requirements Engineering, 2001. Proceedings. Fifth IEEE International Symposium on,
2001, pp. 249–262.

5. J. Pimentel, M. Lucena, J. Castro, C. Silva, E. Santos, and F. Alencar, “Deriving software
architectural models from requirements models for adaptive systems: the STREAM-A
approach,” Requir. Eng., vol. 17, no. 4, pp. 259–281, Jun. 2011.

6. F. M. R. de Alencar, “Mapeando a Modelagem Organizacional em Especificações
Precisas,” UFPE, 1999.

7. J. F. Castro, John Mylopoulos, F. M. R. Alencar, and G. A. C. Filho, “Integrating
Organizational Requirements and Object Oriented Modeling,” in Proceedings of the Fifth

IEEE International Symposium on Requirements Engineering, 2001, p. 146–.
8. U. D. E. A. Oliveira, “Uma Metodologia DSDM para Integração de Requisitos

Organizacionais e UML no Desenvolvimento de Sistemas de Agentes Utilizando i* (i-
Star),” Universidade Federal de Sergipe, 2009.

9. B. Selic, “The pragmatics of model-driven development,” IEEE Software, vol. 20, no. 5,
pp. 19–25, Sep-2003.

10. J. M. Vara, V. A. Bollati, Á. Jiménez, and E. Marcos, “Dealing with Traceability in the
MDD of Model Transformations,” vol. 40, no. 6, pp. 555–583, 2014.

11. E. Yu, “Why Agent-Oriented Requirements Engineering,” in 4th International Workshop

on Requirements Engineering: Foundations of Software Quality, 1998, pp. 15–22.
12. Á. Malta, M. Soares, E. Santos, J. Paes, F. Alencar, and J. Castro, “iStarTool: Modeling

requirements using the i; framework,” CEUR Workshop Proc., vol. 766, no. iStar, pp. 163–
165, 2011.

13. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model transformation tool,” Sci.

Comput. Program., vol. 72, no. 1–2, pp. 31–39, Jun. 2008.
14. F. Pedroza, F. Alencar, J. Castro, F. R. C. Silva, and V. F. A. Santander, “Ferramentas para

Suporte do Mapeamento da Modelagem i * para a UML : eXtended GOOD – XGOOD e
GOOSE,” Proc. 7th Work. Requir. Eng. - WER 2004, pp. 164–175, 2004.

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

101

