
Designing adaptive systems1

João Pimentel, Jaelson Castro

Centro de Informática

Universidade Federal de Pernambuco

Recife, Brazil

{jhcp, jbc}@cin.ufpe.br

Abstract. In this work, we investigate the interplay between requirements and

architecture in the context of adaptive systems. Furthermore, we propose the

Multi-Level Adaptation for Software Systems (MULAS) framework. It is centred

on the iterative and incremental refinement of a goal model, towards the creation

of a design goal model, which can be used at runtime to drive adaptation on a

system that is properly instrumented. Moreover, the framework includes a tool-

supported process for generating statechart behavioural models from a design

goal model.

Keywords: Requirements-driven software adaptation, architecture-driven soft-

ware adaptation, goal-oriented requirements models, model-driven develop-

ment.

1 Introduction

Different approaches to support the development of self-adaptive systems have been

proposed in the literature. However, those are often restricted to a single aspect of soft-

ware development. For instance, the Zanshin framework [1] provides support for han-

dling adaptation at the requirements level, enacting a monitoring-diagnosis-compensa-

tion cycle. With Zanshin, adaptation is specified in terms of stakeholders' goals, tasks,

quality constraints, and other elements.

On the other hand, Rainbow [2] provides similar capabilities, but addressing archi-

tectural models. Thus, it is concerned with properties of systems' components and con-

nectors, e.g., response time, number of servers and load balancing. The differences be-

tween requirements-based and architecture-based approaches are discussed in [3].

Requirements engineering and architectural design, while addressing the system

specification at different abstraction levels, comprise intertwined activities [4]. The for-

mer focuses on the problem at hand, whereas the latter provides solutions for that prob-

lem.

Approaches that only support requirements-based or architecture-based adaptation

thus, lack relevant elements of the adaptation space. For instance, architecture-based

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic pur-

poses.

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

91

approaches might ignore stakeholders' goals and preferences, while requirements-based

ones may not address concerns related to the system implementation, such as algo-

rithms and components.

Hence, the investigation of how to support seamless adaptation mechanisms across

the different phases of software development seems to be a promising venue to improve

the development of self-adaptive software systems. In this paper we provide an over-

view of a design process centred on an extended goal model, which incorporate ele-

ments aiming to support requirements-based and architectural-based adaptation. To il-

lustrate, we adopt a meeting scheduler exemplar.

The remainder of this paper is organized as follows. In Section 2, we present our

process to design adaptive systems, focusing on behavioural specification. Section 3

discusses the limitations of this work. Later, we present ongoing and future work in

Section 4.

2 Design process

The proposed process, which is a part of the Multi-Level Adaptation for Software Sys-

tems (MULAS) framework, comprises eight steps (Fig. 1). The first five steps are re-

lated to the refinement of design goal models: Identify design tasks, constraints and

assumptions; Assign tasks; Define basic flows; Identify indicators, parameters and re-

lations; and Specify adaptation strategies. The other three steps are related to

statecharts: Generate base statechart; Specify transitions; and Include adaptation ele-

ments. While these steps may be followed mostly sequentially, waterfall-like, in realis-

tic settings it is expected that the architect will go back and forth, by introducing addi-

tional refinements to already refined elements.

Assign tasks
Define basic

flows

Identify

indicators,

parameters, and

relations

Generate base

statechart

Identify design

tasks,

constraints, and

assumptions

Specify

adaptation

strategies

+

Task Sub-
process

Start
event

End
event

Sequence
flow

L
e
g

e
n

d

Specify

transitions

+

Include

adaptation

elements

Repeatable
process/task

Fig. 1.MULAS design process

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

92

The first step, Identify design tasks, constraints and assumptions, supports the re-

finement of a goal model by including elements that are not initially required by stake-

holders, but are relevant from the architectural point of view, expressed as design tasks,

design constraints and design assumptions. The second step, Assign tasks, consists of

assigning the responsibilities for the execution of tasks — e.g., tasks that will be per-

formed by an external actor (human or otherwise). This assignment is helpful for de-

fining the scope of the system.

In the next step, Define basic flows, the architect introduces possible flows for every

sub-tree in the goal model. Roughly, these flows describe the order that the sub-ele-

ments are going to be fulfilled or executed, so that their parent element can be consid-

ered fulfilled or executed. These flows are expressed as alternative flow expressions,

introduced as annotations to a goal model using a top-down, bottom-up, or middle-out

strategy. These expressions are later used to automatically generate a statechart that

represents the system’s behaviour.

The next two steps are related to the adaptation capabilities of the system: Identify

indicators, parameters and relations and Specify adaptation strategies. The former is

related to the addition, in the design goal model, of some elements proposed by Zashin

[1], in light of the design elements previously included in the first step. In the Specify

adaptation strategies step it is considered how the system will react to failures — e.g.,

by retrying the execution of a task, or by changing the parameters described in the goal

model.

The second part of the process is related to system behaviour. The first step, Gen-

erate base statechart, makes use of derivation patterns to automatically create a

statechart from the flow expressions previously defined. Although flow expressions are

a useful intermediate abstraction between goal models and statecharts, they are not as

expressive as statecharts. Thus, in the next step, Specify transitions, the transitions of

the statechart are refined with their events and conditions, which are identified by ana-

lyzing when any given transition should take place.

An example of a resulting (Design) Goal Model is shown in Fig. 2, which is an

excerpt from a Meeting Scheduler system [10]. Besides the scheduling itself, the system

supports the characterization of meetings, the gathering of timetables and the

management of meetings, while satisfying the non-functional requirements of scalability

and portability. The excerpt on Fig. 2 depicts the sub-tree of the Define Schedule goal,

which is refined with the Schedule Manually and Schedule Automatically tasks. Both

tasks must be supported by the system, thus it is an AND-refinement. The automatic

scheduling can only be performed if the Rooms Available assumption is satisfied, since

the system is not able to book additional rooms. Moreover, the Schedule Automatically

task is refined with design elements – elements that result from design decisions, i.e.,

they are not mandated by customers or users.

The tasks defined during architectural design (the so called design tasks) in this

example are: Brute Force Algorithm, Heuristics-based Algorithm, and Select Date. The

first two tasks define algorithms that can be executed to perform the scheduling, while

Select Date is a task that must be performed once the algorithms find a set of possible

dates. Additionally, the automatic scheduling presents two design constraints: it must be

performed in less than ten minutes and it must be implemented with web-services. In

particular, the selected web-service must be available at least 90 % of the time.

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

93

Besides goals, tasks, constraints and assumptions, the DGM also contains flow

expressions, an extension of regular expressions that allow the definition of the

execution flow of the system. Six constructs can be used in these expressions: alternative

(vertical bar, |), optional (question mark, ?), sequence (blank space,), repetition (star or

plus symbol, * or +), parallelism (hyphen,–), and idle states (iX, where X is a natural

number).

Each flow expression defines the behaviour for the element which it is on top of. For

instance in Fig. 2, the (t15|t16) expression states that, when the system needs to Define

Schedule, it may either perform Schedule Manually (t15) or Schedule Automatically

(t16). Moreover, for the execution of Schedule Automatically, the expression is

((dt52|dt53) dt54), with this meaning: after performing either Brute Force Algorithm

(dt52) or Heuristics-based Algorithm (dt53), the system will perform the Select Date

task (dt54).

Lastly, the DGM defines what must be monitored during the system execution (the

so called awareness requirements), and what can be modified in the system (the

parameters). In our example, the AR1 awareness requirement, linked to the Schedule

Automatically task, states that it must never fail. AR2, linked to the Rooms Available

assumption, indicates that it should be false no more than twice a week (Max Failure 2,

7d). On the other hand, AR3 linked to the Availability of Service design constraint,

defines that its success rate should not decrease for two days in a row

(NotTrendDecrease 1d, 2).

As illustrated with the aforementioned example, the design goal model allows the

integration of requirements and architectural concerns in a single model. Both

requirements and architecture elements can be used to specify the system adaptation,

with awareness requirements, parameters, relations, and adaptation strategies. In the next

subsection we discuss some of the limitations of the proposed process and the design

goal model.

Fig. 2.Excerpt of the design goal model of the Meeting Scheduler system.

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

94

3 Limitations

This MULAS design process, as well as the design goal model, presents a series of

limitations, regarding the following aspects: expressiveness of the design goal model,

heuristics for selecting optimal flows, tool support, and compositional adaptation.

Expressiveness of the design goal model – The design goal model proposed in this

paper is based on goal model extension [1]. That extension includes awareness require-

ments and parameters, which are relevant as they correspond to the control theory con-

cepts of reference value and control input. However, as a result of the focus on these

control theory concepts, two other important concepts have been partially neglected:

contribution links and context. The explicit use of contribution links and context anno-

tations may improve the expressiveness of the design goal model. Nonetheless, it is

necessary to balance this expressivity with the complexity of the proposed model.

Heuristics for selecting optimal flows – In the MULAS framework, we propose the

use of flow expressions to define the possible flows of the system. However, we do not

provide any guidance that helps the architect in the decision of which flow may be best

in different contexts and scenarios. Further investigation is required in order to identify

heuristics, patterns, or techniques to facilitate such decision.

Tool support – A supporting tool was developed specifically to support the MULAS

framework. Even though this tool is functional, more effort is required in order to make

the tool suitable for public use, related not only to actual development but also to the

creation of user documentation, such as user guides or tutorials.

Compositional adaptation – Parameterized adaptation is adaptation related to the

modification of variables. In contrast, compositional adaptation is related to modifying

structural parts of the system. While we have conducted early endeavours on the latter

[6][7] during this research, the MULAS framework is focused only on the former.

4 Ongoing and Future Work

This is an ongoing work, with early results presented in [9][10]. Its most recent results

composed a doctoral thesis [8] which includes: detailed description of the MULAS

framework; description of a support tool; case studies; experiments. We were able to

use this framework for developing information systems, which were verified by means

of simulation. Moreover, a mobile differential drive robot was designed and developed

using the MULAS framework, providing satisfactory results.

Through an experiment with 15 requirements engineering students, we were able to

obtain evidence in favour of the feasibility of the framework. Nonetheless, further ex-

perimentation is required in order to properly evaluate and evolve the proposal, specif-

ically in the context of large industrial system.

Another interesting line of research is to adapt the MULAS framework for devel-

oping context-sensitive systems [11]. As future work, we intend to investigate the inte-

gration of a control theoretic approach (Zanshin) with a context-based one, aiming to

expand the expressiveness of the proposal.

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

95

Acknowledgments

This work has been supported by the ERC advanced grant 267856 “Lucretius: Foun-

dations for Software Evolution”, as well as by the following Brazilian institutions:

FACEPE, CAPES and CNPq.

References

1. Souza, V.E.S.: Requirements-based software system adaptation, Ph.D. Thesis (2012).

2. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-

based self-adaptation with reusable infrastructure. Computer, 37, 2004, pp. 46–54.

3. Angelopoulos, K., Souza, V.E.S., Pimentel, J.: Requirements and Architectural Approaches

to Adaptive Software Systems: A Comparative Study. 8th International Symposium on Soft-

ware Engineering for Adaptive and Self-Managing Systems, 2013, pp. 23–32.

4. Castro, J., Lucena, M., Silva, C., Alencar, F., Santos, E., Pimentel, J. Changing attitudes

towards the generation of architectural models. Journal of Systems and Software, 85, 2012,

pp. 463–479.

5. Yu, Y., Mylopoulos, J., Lapouchnian, A., Liaskos, S., Leite, J.C.S.P. From Stakeholder

Goals to High-Variability Software Design. Technical report csrg-509, University of To-

ronto, 2005.

6. Pimentel. J., Lucena, M., Castro, J., Silva, C., Santos, E., Alencar, F. Deriving software

architectural models from requirements models for adaptive systems: the STREAM-A ap-

proach. Requirements Engineering Journal, 17-4, 2012, pp.259–281.

7. Dermeval, D., Soares, M., Alencar, F., Santos, E., Pimentel, J., Castro, J., Lucena, M., Silva,

C., Souza, C.: Towards an i*-based Architecture Derivation Approach. Fifth International

i* Workshop, 2011, pp. 66-71.

8. Pimentel, J.: Systematic Design of Adaptive Systems — A Control-Based Framework, Ph.D.

thesis (2015). Available at http://www.cin.ufpe.br/~ler/supplement/istar2015/

9. Pimentel, J.; Angelopoulos, K.; Souza, V. E. S.; Mylopoulos, J.; Castro J. From Require-

ments to Architectures for Better Adaptive Software Systems. 6th International i* Work-

shop, 2013, pp. 91-96.

10. Pimentel, J. et al. From requirements to statecharts via design refinement. 29th Symposium

on Applied Computing, 2014, pp. 995–1000.

11. Vilela, J.; Castro, J.; Pimentel; J.; Soares, M.; Lima, P.; Lucena, M. Deriving the behavior

of context-sensitive systems from contextual goal models. 30th Symposium on Applied

Computing, 2015.

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

96

http://www.cin.ufpe.br/~ler/supplement/istar2015/

