
A Textual Syntax with Tool Support

for the Goal-oriented Requirement Language

Vahdat Abdelzad, Daniel Amyot, Sanaa A. Alwidian, Timothy C. Lethbridge

EECS, University of Ottawa, Ottawa, Canada

{v.abdelzad, damyot, salwidia, Timothy.Lethbridge}@uottawa.ca

Abstract. Most goal-oriented modeling languages, including i*, Tropos, KAOS

and the Goal-oriented Requirement Language (GRL), offer a graphical syntax,

sometimes accompanied by a textual interchange format (e.g., in XML). Graph-

ical representations of goal models excel at supporting discussions and at visu-

alizing analysis results. However, creating/modifying goal models is often a te-

dious task with current graphical environments. Textual languages are often

more efficient for creating/ modifying models, in particular large ones. This pa-

per proposes a programming-like textual syntax for GRL supported by an ad-

vanced editor for the Eclipse platform. Such syntax and editor enable modelers

to create GRL models with complex features (e.g., strategies and contribution

overrides) in a way that is simpler than with the most popular GRL editor,

namely jUCMNav. The paper also introduces a converter from the GRL textual

syntax to jUCMNav, so that models can be visualized and analyzed.

Keywords: Editor · Goal-oriented Requirement Language · Textual Language.

1 Introduction

Graphical modeling languages bring benefits over textual languages in that they can

represent information in two dimensions (rather than linearly) using intuitive picto-

grams and other visual clues. Unsurprisingly, goal modeling languages such as i*,

Tropos, Techne, KAOS and the Goal-oriented Requirement Language (GRL) have

chosen graphical syntaxes for supporting visual modeling and analysis activities [5].

However, there are still two important issues in that context: 1) it is difficult to design

a graphical modeling language that offers good cognitive fitness for different types of

users and purposes, and most goal modeling languages have much room for im-

provement in that regard [8]; and 2) graphical editors are often cumbersome to use

and inefficient for creating goal models [9]. Textual syntaxes, although not very use-

ful for visualizing analysis results, are often less cognitively challenging than graph-

ical syntaxes, and are often faster to use for creating/modifying models via intelligent

editors and simpler copy/pasting semantics. This is something we have observed with

Umple, a textual language that integrates concepts from UML class/state diagrams

and patterns with programming languages such as Java [3].

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes.

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

61

In this context, we have decided to explore the design of a textual syntax for GRL,

which is part of the User Requirements Notation (URN) standard [6]. GRL modeling,

analysis and transformations are currently supported by jUCMNav [10]. The designed

language, called TGRL, supports full GRL, including basic concepts such as inten-

tional elements, links and actors, but also advanced features such as indicators,

metadata, strategies, and contribution overrides.

Section 2 provides an overview of our textual syntax, based on standard GRL and

jUCMNav’s metamodel. The Eclipse-based editor and the converter that transforms

TGRL models into jUCMNav ones are introduced in Section 3. Section 4 discusses

early experience with the language and its editor, and provides pointers to future work

items. Please note that the full grammar and the editor are available online [1].

2 TGRL: A Textual Syntax for GRL

To define the TGRL textual syntax, we used guiding principles inspired from the

design of Umple, including simplicity, consistency, and a programming language-like

look and feel. In addition, we aligned the syntax and especially keywords with

jUCMNav’s metamodel (which served as inspiration for GRL in the standard URN

metamodel [6], except for several exploratory features) in order to simplify the con-

version from/to GRL models in jUCMNav. In addition:

 GRL elements are usually defined through keywords using CamelCase boundaries

(e.g., a softgoal intentional element is represented by a softGoal).

 String values are surrounded by quotation marks.

 Model element properties and sub-elements (if any) are set inside curly brackets.

grl SimpleExample {
 comment "This is a simple TGRL illustrative model"; // Model comment

 actor User {
 // Default name is the ID name, "User" in this case.
 // Goal with specific name and quantitative importance.
 softGoal EasyToUse {name = "Have a system that is easy to use";
 importance = 100;}
 indicator LowLearningTime; // Indicator definition
 }
 actor System {
 // Goal with qualitative importance, and OR decomposition type
 goal ProvideMainFunctionality {importance = high;
 decompositionType = or;}
 task FirstOption {metadata stereotype="SomeValue";}
 task SecondOption {description = "Better alternative";}

 ProvideMainFunctionality decomposedBy FirstOption, SecondOption;
 FirstOption contributesTo User.EasyToUse {hurt}; //Inside element
 }

 // Links defined outside its elements, with quantitative value
 System.SecondOption contributesTo User.EasyToUse {name=C1;50};
 User.LowLearningTime contributesTo User.EasyToUse {name=C2;40};
}

Fig. 1. Simple illustrative TGRL model

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

62

 Every definition ends with a semicolon except when a pair of curly brackets is

utilized to include either sub-elements or properties.

Most elements have a textual identifier (ID) as well as optional metadata (name-value

pairs). Intentional elements (goals, softgoals, tasks and resources) also have qualita-

tive/quantitative importance values (to their containing actor). For example, Fig. 1

shows the TGRL representation of a simple GRL model with two actors, their inten-

tional elements, and various links. IDs are used as names unless specified otherwise

(e.g., a name attribute can be quite long, with special symbols). Qualitative values

(e.g., high for importance, make/hurt for contributions) and quantitative values (be-

tween –100 and 100) can be used interchangeably. Lists can be used for definitions

and usages (e.g., see the decomposedBy relationship in the example).

As in Umple [3], links can be specified inside one element or outside the relevant

elements, depending on the modeler’s preference. In Fig. 1, one contribution is de-

fined inside the System actor, whereas two other contributions are defined outside

both actors. Note that scoping is also used to resolve potential naming issues. For

example, in the contribution inside the System actor, task FirstOption is local but

softgoal EasyToUse is defined elsewhere, and hence must be prefixed by its contain-

ing actor (leading to User.EasyToUse). Dependency links are handled similarly.

TGRL also supports evaluation strategies (initial values given to some intentional

elements before invoking a propagation algorithm for model analysis) and handles

advanced constructs such as strategy inclusion (for reuse), indicator initialization, and

value ranges. For example, Fig. 2 adds a group of three strategies to the model in Fig.

1. The first one selects the first task option in the system, and sets the parameters of

the User.LowLearningTime indicator. During analysis, an indicator converts a strate-

gy’s eval value to a satisfaction value by comparing it to the target, threshold, and

worst values [6]. The second strategy extends the first one (and hence includes its

initializations) but overrides existing initializations or adds new ones. The third strat-

egy refines the first one through a range of values (in this example: 10, 15, 20, 25, 30,

35, 40), leading to ranges of results for all intentional elements and actors after evalu-

ating the strategy against the model. In jUCMNav, the creation and management of

GRL strategies is rather complicated and not user-friendly, especially if indicators and

ranges are involved. This is handled in a much simpler and explicit way in TGRL.

 strategy SelectFirst {
 System.FirstOption = satisfied;
 User.LowLearningTime = {unit="minutes"; target=30.0; threshold=60.0;
 worst=120.0; eval=90.0;}
 }
 strategy SelectSecond extends SelectFirst { // Strategy inclusion
 System.FirstOption = none; // Overridden
 System.SecondOption = 100; // Added, quantitatively this time
 }
 strategy RangeExample extends SelectFirst {
 System.FirstOption = {start = 10; end = 40; step = 5;}
 }
 strategyGroup MyGroup includes SelectFirst, SelectSecond, RangeExample;

Fig. 2. Sample GRL strategy definitions in TGRL

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

63

TGRL also supports advanced model modifications such as contribution overrides,

which can be applied to a GRL model to change the weights of existing contribution

links, prior to the evaluation of strategies [6]. Overrides are useful when stakeholders

disagree on the weights of contributions; different options can be evaluated while

having only one model to manage [9]. As shown in Fig. 3, contribution overrides can

be grouped and their new values can be specified via a name given to the modified

contribution (in Fig. 3, one contribution was named C1 and another one C2). The syn-

tax is quite similar to those of TGRL strategies; as illustrated by SecondOverride,

contribution overrides can extend others, possibly with ranges of values.

The last example is shown at the bottom of Fig. 3, and is concerned with URN

links, which are user-specified typed links that can connect any pair of elements in a

URN model [6]. In this example, a new type of link (independentFrom) is defined

and then used to connect two actors in the model. URN links and metadata are con-

structs that are useful in extending or profiling URN to specific domains.

 // Contribution overrides
 contributionGroup SomeOverrides includes FirstOverride, SecondOverride;
 contribution FirstOverride {
 C1 = 30;
 C2 = make;
 }
 contribution SecondOverride extends FirstOverride {
 C1 = {start = -40; end = 0; step = 10;}
 }

 // URN links
 link independentFrom; // Link type definition
 User independentFrom System; // Link instance between two actors

Fig. 3. Sample GRL contribution overrides and URN links

3 TGRL Editor

We developed a TGRL editor for the Eclipse environment. We specified our grammar

with Xtext [11], often used for the development of textual domain-specific languages.

The TGRL editor supports syntax highlight (as shown in the code snippets from the

previous figures), an outline view, annotation of syntactic errors, content assistance,

and code formatting. Fig. 4 gives an overview of the editor.

Fig. 4. Overview of the TGRL editor, with content assistance

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

64

The modeler, using Control-Space, can invoke code completion at any moment. Not

only is this available for the keywords found in the grammar, this is also available for

references to existing elements. For example, in Fig. 4, several suggestions are pro-

vided as potential targets of an incomplete contribution link.

Together with the editor, we provided a mechanism (converter) that enables the

transformation of a textual model to a graphical model in jUCMNav, ready to be ana-

lyzed and visualized. The transformation was developed using Acceleo [2], which is a

pragmatic model-to-text transformation language. We have chosen to use such trans-

formation rather than a model-to-model one because jUCMNav stores its models in

textual (XML) files. Further validation of the models, based on GRL’s semantics, is

performed through rules deployed in the body of the converter. This transformation

does not handle the layout of diagrams, but jUCMNav has several features for creat-

ing views of a model and for automatically laying out elements. For example, Fig. 5

shows the GRL model corresponding to the ongoing example, as imported by

jUCMNav (with automatic and some manual layout). The evaluation of the strategy

SelectFirst is also shown, using quantitative values.

Fig. 5. Sample GRL model imported in jUCMNav, with a strategy evaluated quantitatively

4 Discussion and Future Work

In this paper, we illustrated a new textual syntax for GRL, called TGRL, with a full

coverage of the language. TGRL is supported by a feature-rich Eclipse-based editor,

supplemented by an automated conversion to GRL models readable by jUCMNav.

This work contributes a simple and practical way of creating/modifying GRL models.

The idea of having a textual syntax for GRL is not new. In the first draft of the

GRL language (from 2001), Liu and Yu provided a textual grammar and an XML-

based interchange format [7]. TGRL is however not based on this earlier attempt.

Rather, it focuses on adding a textual syntax to an already existing metamodel defini-

tion. TGRL also covers many concepts that did not exist in [7], such as indicators,

strategies, contribution overrides, metadata and URN links. Formal Tropos also has a

textual syntax [4] but its goal modeling syntax (outer layer) is more declarative, ver-

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

65

bose, and limited in scope. Formal Tropos however supports an inner layer for declar-

ing constraints on attributes and supports temporal logic properties. Tool support for

Formal Tropos (T-Tool) does not include a feature-rich editor. To our knowledge,

TGRL is the first tool-supported textual syntax for an i*-like modeling language.

In terms of coverage and usability, one of us (S.A. Alwidian, not involved in the

design and implementation of the grammar and tool, to avoid bias) validated the lan-

guage and the tool through two simple examples from the GRL literature. Her feed-

back was overall positive, and solutions to some issues raised with earlier versions

were incorporated in the grammar and the tool to improve their usability.

This new technology opens the door to many future opportunities. The language

and the tool obviously require further and more rigorous validation, for example

based on how well existing models are supported. However, they also enable compar-

isons with graphical tools (e.g., jUCMNav) in terms of efficiency and usability for

model creation and manipulation tasks. One important feature currently missing is the

availability of a transformation from jUCMNav to TGRL, which would enable mod-

elers to go back and forth between the two representations. The editor could also be

improved by the inclusion of additional static semantic rules to ensure the correctness

of the GRL models created (e.g., to prevent cyclical contribution links or the mixed

use of quantitative/qualitative values, or to detect bad smells and anti-patterns). We

also envision opportunities to combine TGRL (for goals) with Umple (for design and

implementation) as they provide complementary concepts.

References

1. Abdelzad, V.: Textual Modeling Language for GRL (2015) https://github.com/vahdat-

ab/TGRL

2. Acceleo (2015) http://www.eclipse.org/acceleo/

3. Forward, A., Badreddin, O., Lethbridge, T.C., Solano, J.: Model-driven rapid prototyping

with Umple. Softw., Pract. Exper. 42(7), 781–797 (2012) http://umple.org/

4. Fuxman, A. et al.: Specifying and analyzing early requirements in Tropos. Requir. Eng. 9,

2, 132–150 (2004).

5. Horkoff, J., Yu, E.S.K.: Comparison and evaluation of goal-oriented satisfaction analysis

techniques. Requir. Eng. 18(3), 199–222 (2013)

6. ITU-T: Recommendation Z.151 (10/12): User Requirements Notation (URN) – Language

definition. Geneva, Switzerland (2012)

7. Liu, L., Yu, E.: GRL – Goal-oriented Requirement Language. University of Toronto, Cana-

da (2001) http://www.cs.toronto.edu/km/GRL

8. Moody, D.L., Heymans, P., Matulevičius, R.: Visual syntax does matter: Improving the

cognitive effectiveness of the i* visual notation. Requir. Eng. 15(2), 141–175 (2010)

9. Mussbacher, G., Amyot, D., Heymans, P.: Eight Deadly Sins of GRL. 5th International i*

Workshop (iStar 2011). CEUR-WS, Vol-766, 2–7 (2011)

10. Roy, J.-F. Kealey, Amyot, D.: Towards Integrated Tool Support for the User Requirements

Notation. SAM 2006. LNCS 4320, 198–215. Springer (2006) http://softwareengineering.ca/

jucmnav

11. Xtext (2015) http://www.eclipse.org/Xtext/

Proceedings of the Eighth International i* Workshop (istar 2015), CEUR Vol-978

66

https://github.com/vahdat-ab/TGRL
https://github.com/vahdat-ab/TGRL
http://www.eclipse.org/acceleo/
http://dblp.uni-trier.de/pers/hc/f/Forward:Andrew
http://dblp.uni-trier.de/pers/hc/b/Badreddin:Omar_Bahy
http://dblp.uni-trier.de/pers/hc/s/Solano:Julian
http://dblp.uni-trier.de/db/journals/spe/spe42.html#ForwardBLS12
http://umple.org/
http://dblp.uni-trier.de/pers/hc/y/Yu:Eric_S=_K=
http://dblp.uni-trier.de/db/journals/re/re18.html#HorkoffY13
http://www.cs.toronto.edu/km/GRL
http://link.springer.com/search?facet-creator=%22Raimundas+Matulevi%C4%8Dius%22
http://www.eclipse.org/Xtext/

