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Preface

This volume contains the proceedings of the Sixth International Workshop on Graph
Computation Models (GCM 2015). The workshop took place in L’Aquila, Italy, on 20
July 2015, as part of STAF 2015 (Software Technologies: Applications and Foundations)
and co-located with ICGT 2015 (International Conference on Graph Transformation).
The aim of the GCM workshop series is to bring together researchers interested in all
aspects of computation models based on graphs and graph transformation. It promotes
the cross-fertilizing exchange of ideas and experiences among researchers and students
from the different communities interested in the foundations, applications, and imple-
mentations of graph computation models.

Previous editions of GCM were held in Natal (Brazil) in 2006, in Leicester (UK) in
2008, in Enschede (The Netherlands) in 2010, in Bremen (Germany) in 2012, and in
York (UK) in 2014.

These proceedings contain the abstract of an invited talk and seven accepted papers.
Each submission was carefully reviewed by three Programme Committee members. The
topics of the papers include applications of graph transformation to parsing and policy
modelling, parallel execution models of graph transformation, the theoretical foundations
of graph transformation with attributes, and the verification of graph programs. Revised
selected papers from these proceedings will be published as an issue of the international
journal Electronic Communications of the EASST.

I would like to thank all who contributed to the success of GCM 2015, especially the
authors and the Programme Committee for its work in the selection process. I would
also like to thank the ICGT 2015 Programme Chairs and the organizers of STAF 2015
for their support in organizing GCM 2015.

July 20, 2015
L’Aquila, Italy Detlef Plump (editor)
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20 Years of Concurrent Model Driven

Application Engineering with Triple Graph
Grammars (Abstract)

Andy Schürr

FG Real-Time Systems
Technische Universität Darmstadt

Germany

Today model-driven system development is a well-established and successfully
used paradigm in many engineering disciplines including e.g. mechanical, elec-
trical, automation, and software engineering. Models are, therefore, used and
concurrently manipulated in different disciplines at different levels of abstrac-
tions across the whole lifecycle of a single product. Keeping all these models
and related other engineering artefacts synchronized often turns out to be a
nightmare. The situation even becomes worse when product line engineering
principles are used to develop a family of products instead of a single product
on top of a common platform.

Model transformation techniques promise to be a silver bullet for the con-
struction and validation of reliable and efficiently working model synchronizers
on a new level of abstraction. Triple Graph Grammars (TGGs) are a bidirec-
tional model transformation formalism, where a single specification generates a
language of related graph tuples (pairs of models) together with an intermediate
correspondence graph (traceability link database). A single TGG specification
is used as input for a compiler that generates batch transformations as well as
incrementally working synchronizers that assist engineers in their daily work
to keep networks of evolving models and their traceability relationships in a
consistent state.

This talk starts with an introduction to concurrent model driven application
engineering in general, explains how triple graph grammars are specified and
used to generate model transformation and integration tools, and finishes with an
assessment of the state-of-the-art of 20 years of TGG related research activities.
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Coupled Transformations of
Shared Packed Parse Forests

Vadim Zaytsev

Universiteit van Amsterdam, The Netherlands, vadim@grammarware.net

Abstract. SPPF (shared packed parse forest) is the best known graph
representation of a parse forest (family of related parse trees) used in
parsing with ambiguous/conjunctive grammars. Systematic general pur-
pose transformations of SPPFs have never been investigated and are con-
sidered to be an open problem in software language engineering. In this
paper, we motivate the necessity of having a transformation operator
suite for SPPFs and extend the state of the art grammar transforma-
tion operator suite to metamodel/model (grammar/graph) cotransfor-
mations.

1 Motivation

Classically, parsing consumes a string of characters or tokens, recognises its
grammatical structure and produces a corresponding parse tree [1,52]. How-
ever, sometimes we end up in situations when trees are not expressive enough.
The most common scenarios include generalised parsing and Boolean grammar-
based parsing. Generalised parsing algorithms (GLR [43], SGLR [44], GLL [39],
RIGLR [38], etc) differ from the classic ones in dealing with ambiguities [7]:
instead of trying to avoid, ignore or report them, ambiguous parses result in
so called parse forests — sets of equally grammatically correct parse trees. In
practice, these sets usually need to be filtered or ranked in order to make full use
of the available tree-based approaches to program analysis and transformation.
In Boolean grammars [34] and conjunctive grammars [33], we have conjunctive
clauses in a grammar as first class citizens and must treat them properly when
parsing, which means having special kinds of nodes in a parse tree whose descen-
dant subtrees share leaves [35]. Both kinds of structures defined by these two
related approaches conceptually are parse forests.

There have been various attempts in the past to represent parse forests.
The earliest ones required a grammar to be in a Chomsky Normal Form [11]
— theoretically a reasonable assumption since any context-free grammar can
be normalised to CNF, but ultimately we need a parse forest for the original
grammar, not for the normalised one, which would require bidirectional grammar
transformations [46] to be coupled with tree and forest transformations, which
is far from trivial.

The next attempt in representing parse forests revolved around tree merg-
ing [14]: such a parse forest representation would result in a tree-like DAG with
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all the edges of all the trees in the forest. This is obviously an overapproxima-
tion of the forest (see Figure 1), which requires additional information in order
to be unfolded into a set of trees — in other words, in order for any sensible ma-
nipulation to happen. Obviously, having a data structure that requires so much
nontrivial postprocessing overhead, is highly undesirable.

The best representation of a conceptual parse forest (a set of trees with
equal lists of leaves) so far is a so-called shared packed parse forest [43, §2.4],
SPPF from now on: its components are merged from the top until the divergent
nodes, and due to maximal sharing the leaves and perhaps even entire subtrees
grouping leaves together, are also merged. An example of such a graph is given
on Figure 2. Formally, an SPPF is an acyclic ordered directed graph where each
edge is a tuple from a vertex to a linearly ordered list of successors and each
vertex may have more than one successor list. If V is a set of vertices, then edges
are:

E = {〈vi, (vi1, vi2, ..., viki)〉 | vi ∈ V, vij ∈ V } ⊆ V × V ∗

SPPF-like structures are used nowadays both in software language toolkits
that allow explicit ambiguities (such as Rascal [22]) and those that allow explicit
conjunctive clauses (such as TXL [42]). For a detailed view on the implementa-
tion details we refer the readers to a paper on ATerms [5]. However, the theory
of their transformations is underdeveloped — this was pointed out as one of the
major open problems in modern software language engineering by James Cordy
and explained in his recent keynote at the OOPSLE workshop [3].

2 Transformation

For many years trees have been the dominant data structure for representing
hierarchical data in software language processing. They are remarkably easy
to define, formalise, implement, validate, visualise and transform. There are
many ways to circumvent data representation as graphs by considering a tree to-
gether with a complementary component such as a relation between its vertices
that would have turned a tree into a cyclic graph, as well as many optimi-
sations of graph algorithms that work on skeleton trees of a graph. Take, for
instance, traversing a tree — it can be done hierarchically from the root to-
wards the leaves or incrementally from the leaves towards the root, each case
guaranteed termination even if the traversal is not supposed to stop when a
match is made. This naturally provides us with four traversal strategies found
in metaprogramming: bottom-up-continue, bottom-up-break, top-down-continue
and top-down-break [8,22]. More sophisticated and flexible traversal strategies
exist (e.g., Nuthatch [2]), but the actual need for them is rather rare. For a de-
tailed overview of visiting functions, strategic programming and typed/untyped
rewriting we refer the readers to the work of van den Brand et al [9] and the
bibliography thereof. This section is focused on finding existing techniques that
can be or are in fact SPPF transformations.
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Fig. 1. Demonstration that the Earley representation overapproximates parse forests:
(a) a simple ambiguous grammar example; (b) a term with ambiguous parse; (c)&(d)
correct parses; (e) the graph representation of the forest suggested by Earley [14];
(f)&(g) incorrect parse trees that are well-formed according to the grammar (a) and
covered by the parse tree representation (e), but not corresponding to the actual term
(b).

2.1 Disambiguation

One of the relatively well-researched kind of SPPF transformations is disam-
biguation — it is commonly practised with ambiguous generalised parsing be-
cause static detection of ambiguity is undecidable for context-free grammars [10].
However, most of the time the intention of an average grammarware engineer is
to produce one parse tree, so this line of research is mostly about leveraging ad-
ditional sources of information to obtain a parse tree from a parse forest. There
are three main classes of disambiguation techniques:

� Ordered choice, dynamic lookahead and other conventions aimed to prevent
ambiguities altogether or avoid them. These are fairly static, relatively well-
understood and widely used in TXL [12], ANTLR [37] and PEG [16].
� Follow/precede restrictions, production rule priorities, associativity rules and

other annotations for local sorting (preference, avoidance, priorities) that
help to prune the parse forest during its creation. Since these are algorithmic
approaches in a sense that they modify the generation process of an SPPF
and thus are not proper mappings from SPPFs to SPPFs, we will not consider
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}

Fig. 2. One the left, an SPPF graph resulted from parsing the input “2+2+2+2” with
the grammar from Figure 1 (a). On the right, there are five parse trees in a forest, which
are packed in a triple ambiguity, two of subgraphs of which have double ambiguities.
All of them share leaves and subtrees whenever possible. Below the pictures we show
its formal representation as an ordered directed graph.

them in the rest of the paper and refer to other sources primarily dedicated
to them [7,4].

� Disambiguation filters that are run after the parsing process has yielded a
fully formed SPPF: their main objective is to reduce the number of ambi-
guities and ultimately to shave all of them off, leaving one parse tree. An
example of this would be how processing production rules marked for re-
jection is done for SGLR [7] and GLL [4] — even though recursive descent
parsers can handle an equivalent construct (and-not clause) during parsing
without any trouble [42].

Formally speaking, the first class never produces parse forests; the second
class works with disambiguators (higher order functions that take a parser and
return a parser that produces less ambiguous SPPFs) [7]; the third class uses
filters (functions that take an SPPF and produce a less ambiguous SPPF) [23].
In some sources approaches with disambiguators are called “semantics-directed
parsing” and approaches with filters are called “semantics-driven disambigua-
tion” [6], since both indeed rely on semantic information to aid in the syntactic
analysis. Disambiguation filters are still but a narrow case of SPPF transfor-
mation, but they have apparent practical application and are therefore well-
researched.
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2.2 Grammar programming

Grammar programming is like normal programming, but with grammars: there is
a concrete problem at hand which can be solved with a grammar, which is then
being adjusted until an acceptable solution emerges. A representative pattern
here is working with a high level software artefact describing a language (we
assume it to be a grammar for the sake of simplicity, but in a broad sense it
can be a schema, a metamodel, an ontology, etc), from which a tool solving the
problem at hand is inferred automatically.

There are at least three common approaches to grammar programming:
manual, semi-automated and operator-based. Manual grammar programming in-
volves textual/visual editing of the grammar file by a grammarware engineer.
It is the easiest method in practice and is used quite often, especially for minor
tweaks during grammar debugging. However, it leads to hidden inconsistencies
within grammars (which require advanced methods like grammar convergence
to uncover [31]), between changed grammars and cached trees (which demand
reparsing) and between grammars and program transformations (which requires
more manual labour). Semi-automated grammar programming adds a level of
automation to that and thus is typically used in scenarios when a baseline gram-
mar needs to be adjusted in different ways to several tasks (parsing language
dialects, performing transformations, collecting metrics, etc). Usually the gram-
marware toolkit provides means to extend the grammar or rewrite parts of it —
examples include TXL [12], GDK [24] and GRK [28]. Arguably the latter two
of these examples also venture into the next category since they contain other
grammar manipulation instruments like folding/unfolding. If we extend this ar-
senal with even more means like merging nonterminals, removing grammar frag-
ments, injecting/projecting symbols from production rules, chaining/unchaining
productions, adding/removing disjunctive clauses, permuting the order and nar-
rowing/widening repetitions, we end up having an operator suite for grammar
programming. The advantage of having such a suite lies in the simple fact that
each of the operators can be studied and implemented in isolation, and the actual
process of grammar programming will involve calling these operators with proper
arguments in the desired order. Examples of operator suites include FST [29],
XBGF [31], ΞBGF [46] and SLEIR [49].

2.3 Coupled transformation

We speak of coupled transformations when two or more kinds of mutually depen-
dent software artefacts are transformed together to preserve consistency among
them: usually one changes, and others co-evolve with it [27]. Naturally, the first
coupled transformation scenario we should think of, involves an SPPF and a
grammar that defines its structure. This change can be initiated from either
side, let us consider both.

Assuming that we have a sequence of grammar transformation steps, we may
want to execute them on the language instances (programs) as well, to make
them compatible with the updated grammar. Such a need arises in the case of
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grammar convergence [30], when a relationship between two grammars is reverse
engineered by programming the steps necessary to turn one into the other, and a
co-transformation can help to migrate instances obtained with one grammar to
fit with the other. For example, we could have a grammar for the concrete syntax
and a schema for serialisation of the same data — a transformation sequence that
strips the concrete grammar from elements not found in the schema (typically
terminals guiding the parsing process such as semicolons and brackets), could
also be coupled with a transformation sequence that removes the corresponding
parts from the graphs defined by them (e.g., a parse tree and an XML document).

Consider another scenario where we have the change on language instances
and want to lift it to the level of language definitions. An example could be
found in program transformation, a common software engineering practice of
metaprogramming. If we want a refactoring like extracting a method, renaming
a variable or removing a go-to statement, it is easy and practical to express it in
terms of matching/rewriting paradigm: in Spoofax [20], Rascal [22], TXL [12],
ATL [19], XSLT [21], etc. However, a correct refactoring should preserve the
meaning of the program, and the first step towards that is syntactic correctness
of this program. For non-refactoring transformations found in aspect-oriented
development, automated bug fixing and other areas, we still want to ascertain
the extent to which the language is extended, reduced or revised. In the case of
strongly typed metaprogramming languages, they will not allow you to create
any ill-formed output, but the development process can lead you to first specify a
breaking transform and then cotransform the grammar so that it “fits” — which
is what coupled transformations are good for.

2.4 Explicit versus implicit

This was already mentioned before, but becomes a crucial point from now on:
parse forests can arise from two different sources — conjunctive clauses in the
grammar used for parsing and generalised parsing with ambiguous grammars.
The latter case can be considered implicit conjunction, since it is present on the
level of language instances but not on the grammar level. In that case, instead
of a more cumbersome construction specifying a precise parse, we use a simpler
grammatical definition which yields a forest. If a grammar is both conjunctive
and ambiguous, this can lead to its both implicit and explicit conjunctive clauses
to be found in SPPFs — with no observable difference on an instance level.

Similarly, some of the transformations will “collapse” conjunctions, making
one branch of a clause equal to another. Formally, for an SPPF node to have
several branches means existence of several edges in the form 〈vi, (vi1, ..., viki)〉,
〈vi, (v′i1, ..., v′ik′

i
)〉, etc. When a transformation results in all vij becoming equal

to the corresponding v′ij , such edges merge in the set. If such conjunctions repre-
sent ambiguities, this is disambiguation; if they represent parse views, it merges
the views and makes them undistinguishable.
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Fig. 3. The XBGF operator suite designed for convergence experiments [30,31,51]
and updated here to the latest version of the GrammarLab. Columns of the table refer
to the effects of the operators on the string language generated by a grammar; rows
classify coupled effects on the SPPFs.

3 Grammar-based gardening

XBGF (standing for “transformations of BNF-like grammar formalism”) was
an operator suite for grammar programming originally developed for grammar
recovery and convergence experiments [30,31] and used for various grammar
maintenance tasks afterwards — e.g., for improving the quality and maturity of
grammars in the Grammar Zoo [47,50]. It has operators like eliminate(n) that
checks whether the given nonterminal n is referenced anywhere in the grammar,
and if not, removes its definition harmlessly; or operators like removeN(x, y)
that ensures that the nonterminal x is found in the grammar while y is not,
and subsequently renames x to y; or even operators like redefine(pk, p

′
k) which

removes all production rules pk defining one nonterminal from the grammar and
replaces them with rules p′k defining the same nonterminal differently. These
operators are relatively well-studied so that we can always make a claim about
the effect that a transformation chain has on the language generated/accepted
by the grammar. Originally [45, §7] XBGF operators were classified according
to their preservation, increase, decrease or revision of the language within two
semantics: the string semantics and the term semantics. The contribution of this
section is their classification according to the coupled effect of the operators on
the SPPFs — see Figure 3 for the overview.

3.1 SPPFs preserved

The best kind of coupled transformation is the trivial one where the initial
transformation triggers no change in the linked artefacts.
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3.1.1 Language-preserving operators

Many operators that preserve the (string) language associated with the grammar,
also preserve the shared packed parse forests of the instances of this language.
Consider, for instance, the eliminate(n) operator we have just introduced in
the previous paragraph: essentially, it removes an unused construct. Since such
a construct is unused in other production rules, it can never be reached from the
root symbol, so it can also never occur in the graphs representing grammatically
correct programs. Hence, any SPPF which was correct for grammar before the
transformation, is still correct for the grammar with the unused part eliminated.
Similarly, introducing a language construct that was not previously there and is
not (yet) linked to the root, has no impact on the forests. The same argumenta-
tion holds for decorating operators that add/remove labels to/from rules of the
grammar or their subexpressions, or rename them.

The last two operators seen in this cell on Figure 3 are vertical(n) and
horizontal(n) — they facilitate switching between a horizontal style of gram-
matical definitions (i.e., “A ::= B | C;”) and a vertical one (i.e., “A ::= B; A
::= C;”) — some grammatical frameworks distinguish between them, but never
on an instance level, since a realisation of a disjunction commits to one particular
branch. Hence, these operators also have no impact on SPPFs.

3.1.2 Language-extending operators

In the same way rearranging alternatives in production rules discussed in the
previous section, has no impact on SPPFs, strict language extension operators
like addV(p) and addH(p) have no impact on the forests. Since disjunctive
clauses are not explicitly visible in SPPFs, any tree or forest derived with the
original grammar, also conforms to the transformed one — the coupled instance
transformation is trivial.

There is even one operator which is very invasive on a grammar level while
being entirely harmless on the instance level — define(p) is a variant of intro-
duce(p) that adds a definition of a nonterminal that is used in some parts in
the grammar reachable from the top symbol. Having such nonterminals (called
“bottom nonterminals”) in a grammar is not a healthy practice and is in general
considered a sign of bad quality since it signals incompleteness [26,41,47]. How-
ever, if we assume for the sake of simplicity that the default semantics for an
undefined nonterminal is immediate failure (or parsing, generation, recognition
or whatever the goal we need the grammar for), we may view define(p) as a
language-extending (not a language-revising) operator. Thus, if we do somehow
obtain a well-formed SPPF for such a grammar, it means it was constructed
while avoiding the bottom nonterminal in question — hence, introducing it is
no different than adding any other unreachable part we have seen so far and as
such has no effect on the SPPFs.
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Fig. 4. SPPF transformations coupled with extraction of a new nonterminal defini-
tion: (a) the original grammar and an SPPF of the term “abc”; (b) after applying
extract(AP::=a+;); (c) after applying extract(ABP::=a+ b+;). The case of extract-
ing one symbol is easier because an SPPF already has nodes for such derivations and it
only needs to be chained; when more than one symbol is present in the right hand side
of a production rule being extracted, then a new node is introduced for all matched
patterns of use.

3.2 SPPFs preserved, if possible

There are several cases when we do not know in advance whether the cotrans-
formation of SPPFs will be possible: when it is, it is trivial.

3.2.1 Language-reducing operators

The operators removeV(p) and removeH(p) are the counterparts of addV and
addH operators we have considered above, which remove alternatives instead
of adding them. The effect of such a transformation on a given SPPF is easy to
determine: if the alternative which is being removed, is exercised anywhere in
the graph, the (co)transformation fails; if it is not, then no update of the forest
is required.

Note that since all branches of the conjunctive clause are present in a given
SPPF, their removal requires a (possibly failing) refactoring: hence, removeC(p)
is considered later in §3.3.2.

The undefine(n) operator takes a valid nonterminal (defined and used within
the grammar) and turns it into a bottom nonterminal (used yet not defined). It
is a language reducing operator since its effect is a strict decrease in the number
of possible correct programs: any parse graph containing a note related to the
nonterminal n, becomes invalid. Hence, the coupled transformation for it checks
whether such a node is indeed found in the given SPPF: if yes, the transformation
fails; if not, it immediately succeeds without updating the SPPF.

10
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Fig. 5. SPPF transformations coupled with inlining a nonterminal definition: (a) the
original grammar and an SPPF of the term “abc”; (b) after applying inline(ABC). The
inlining is fairly straightforward: the node in question is removed, and any previously
incoming edge is replaced with the list of previously outgoing edges.

3.3 SPPFs refactored

In the next subsections we consider cases of less trivial coupled transformations,
when language instances have to change to preserve conformance.

3.3.1 Language-preserving operators

Many transformation operators that preserve the language associated with a
grammar, still have some impact on the parse graphs. When the impact is easy
to calculate in advance and thus encode the coupled transformations as SPPF
refactorings that are parametrised in the same way the grammar transformations
are, we can run commands like extract(p) on both grammars and SPPFs.

Consider Figure 4(a). It shows a simple grammar of a non-context-free lan-
guage {anbncn | n > 0} with three conjunctive views: the first one (a+ b+ c+)
being the most intuitive and hence the most suitable for expressing patterns to
be matched on programs; the remaining two being used to parse the language
(which is well-known to be context-sensitive, so we need the power of two con-
juncts to recognise it precisely). In a sense, the last two conjuncts represent a
recogniser and the first one specifies a parser [40,42]. When a transformation
command extract(AP::=a+;) is executed, the effect on the grammar is appar-
ent: a new nonterminal is introduced and two occurrences of its right hand side
are replaced with it. The effect on an SPPF is also quite easy to calculate: the
node with a+ is replaced with a chain of two nodes (AP and a+); the incoming
edges of the old node are connected as the incoming edges to the first one in the
chain; the outgoing edges of the old node become the outgoing ones of the last in
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the chain (shown on Figure 4(b), changes in bold green). A slightly more compli-
cated case is shown on Figure 4(c), where a new vertex needs to be created when
we extract(ABP::=a+ b+;) because a symbol sequence a+b+ did not correspond
to any vertex in the old graph. For all vertices that had outgoing edges to both
a+ and b+, they got replaced by one edge to the new node. Figure 5 shows the
opposite scenario of inlining a nonterminal in a grammar, coupled with “inlining”
corresponding vertices in a graph by drawing edges through it.

Many other operators of this category from Figure 3 work similarly: chain
replaces a node with a chain of two nodes; fold does the same folding we have
seen above with extract, but without introducing a new nonterminal and pos-
sibly in a limited scope; rassoc and lassoc replace an iterative production rule
with a recursive right/left associative one and thus stretches a node with multi-
ple children into an unbalanced binary subtree; concatT and splitT merge or
unmerge leaves, etc.

3.3.2 Language-extending operators

Above we have considered grammar transformation operators that add disjunc-
tive clauses to the grammar, obviously extending the associated language. In the
case of extended context-free grammars (regular right hand side grammars) that
allow metasyntactic sugar like optionals (x? effectively meaning x|ε) and regu-
lar closures (x+ for transitive and x∗ for reflexive transitive), the widen(e, e′)
operator is used to transform x? to x∗ or x to x+, together with the appear(p)
operator that transforms ε to x? (effectively injecting an optional symbol). The
coupled graph transformations for these cases usually boil down to inserting new
vertices in the right places in order to keep the structural commitments up to
date with the changed grammar.

An even less trivial case of language extension is called “upgrading” and in-
volves replacing a nonterminal by an expression that can be reduced to it. For
instance, in A ::= B C; D ::= B|E; we can upgrade B in A (underlined) to D.
Such a transformation increases the string language associated with a grammar,
as well as rearranges the relations between nonterminals. The coupled transfor-
mation for SPPF is still simple and inserts an extra vertex for D between A and
B (E is still not present in the SPPF).

The removeC(p) operator that eliminates a conjunct, formally also increases
the underlying language since any extra conjunct is possibly an extra condition to
be met, and dropping it makes the combination weaker. Technically the coupled
SPPF transform that removes a conjunct is a disambiguation filter, but it is not
useful to count it as such since the ambiguity being removed is explicit (recall
§2.4).

3.3.3 Language-reducing operators

The disappear(p) operator is used to transform x? or x∗ to ε. The coupled
transformation on SPPFs for it exists, but is completely different from the ones
being considered so far: it is inherently irreversible since if the SPPF in question
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actually contains the x? with x as a child node, then that x is removed and
lost. This is contrasting to folding/unfolding vertices and rearranging the edges
around them.

3.3.4 Language-revising operators

The operators abstractize(p) and concretize(p) eliminate and introduce ter-
minals from production rules (a common practice when mapping abstract syntax
to concrete syntax, hence the names). Since the terminals are present explicitly
in the arguments, we can easily implement our coupled SPPF transformations
by inserting leaves and connecting them to the appropriate places to the graph,
or removing them. These transformations can have a big effect on the SPPF and
are therefore more similar to the coupled transform from the previous paragraph.
The project operator is a stronger version of abstractize or disappear that
works on any symbol, but the transformation coupled with it, is the same: locate
all the parts being removed from the grammar, remove them from the graph.

The rest of language revising operators are coupled with less invasive re-
arrangements of the parse graph: reordering edges (permute), updating the
contents of the leaves (renameT) and splitting one nonterminal into several
(splitN).

3.4 SPPFs refactored, when possible

Cotransformations from the previous section were necessary but could never fail:
they were applicable to all possible graphs. Let us now move on to cotransfor-
mations that could seem successful on the grammar level but fail on the instance
level (causing the combination to fail).

3.4.1 Language-reducing operators

The narrow operator (the reverse of widen discussed above) and the down-
grade operator (the reverse of upgrade) become simple parse graph rearrange-
ments, if the constructs in the SPPF happen to correspond to the new grammar,
and fail otherwise. For instance, if a “wider” option is found in the SPPF, we
have no automated way to update it.

The addC operator, on the other hand, shows us yet another class of coupled
transforms: namely, the one requiring reparsing. Indeed, if the first branch of the
conjunctive clause of S from Figure 4 were to be introduced as a transforma-
tion step, we would need to reconnect the left subnode of S to the appropriate
children, which formally corresponds to parsing. In the current prototype imple-
mentation we reuse the existing parser — to the best of our knowledge, other
frameworks like TXL [12] do the same — instead of exploring possibly more
efficient alternatives.
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3.4.2 Language-revising operators

The most brutal among language revising operators: redefine that replaces
an entire nonterminal definition with a different one; replace doing the same
for arbitrary subexpressions; reroot that changes the starting symbol of the
grammar, — all require reparsing as a part of their coupled transformation
steps.

3.5 Cotransformations destined to fail

Interestingly, there is one particular operator that is always doomed: inject(p)
that works like appear but can insert any symbol anywhere in the grammar. In
order to construct a coupled SPPF transformation for inject, we need to know
how to connect the new node to its children, but this information is ultimately
lacking from the operator parameters. The only cases where it could have worked,
are already covered by other operators (e.g., injecting terminals is concretize,
injecting possibly empty symbols is appear).

4 Related and future work

As said before, we are not the only ones trying to use computation models based
on graphs instead of trees in software language engineering. It remains to be seen
whether systematically using abstract syntax graphs [36] and general purpose
graph transformation frameworks would be much different. In that case gram-
mars can also be represented as graphs similar to Wirth’s syntactic charts [32].

Our approach to couple instance transformations to grammar transforma-
tions and not vice versa has its counterparts in other technological spaces such
as modelware [17] or XML [25] or databases [18], obviously with transforma-
tions of metamodels or schemata as the starting point. Coupled transformations
in general have been re-explained to some extent in this paper, but there is a
much more detailed introduction [27].

Grammar mutations [46,49] are systematic generalisations of grammar trans-
formations used for this paper. There does not seem to be any fundamental prob-
lem in combining that generalisation with our couplings, but the implementation
of coupled mutations remains future work.

The classification of coupled SPPF transformations from Figure 3 corre-
sponds to the two kinds of negotiated evolution: “adaptation through toler-
ance” when SPPFs are preserved and “through adjustment” when they are refac-
tored [48].

There is a lot of work on disambiguation, parse forest pruning and shav-
ing, and it remains to be seen whether our approach can usefully complement
similarly-minded techniques from that area such as van den Brand et al [6]’s
implementation of disambiguation filters with term rewriting.

SPPF transformations could possibly be represented formally as classical
graph replacement systems that rewrite nodes [15] or (hyper)edges [13]. One
of the main objectives of presenting this paper at the workshop is to estimate
potential usefulness of this approach.
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5 Conclusion

In this paper, we have considered coupled transformations of grammars together
with shared packed parse forests defined by these grammars. An implementation
of a transformation operator suite was proposed. Each grammar change was
coupled to one of the following: (1) no change in the parse graphs; (2) rearranging
the graphs; (3) introducing new elements to graphs based on operator arguments;
(4) reparsing; (5) imminent failure. This classification is complementary to the
previously existing ones based on preserving, increasing, reducing or revising the
semantics chosen for the grammar.

The examples given in the paper mostly refer to concrete grammars in the
context of parsing, but the research was done with software language engineering
principles, which means that the contribution is applicable to coupled evolution
of grammars as well as ontologies, API, DSLs, XML schemata, libraries, etc. We
have used Boolean grammars as the underlying formalism due to their power
to represent non-context-free languages, ambiguous generalised parses and parse
views in a uniform way. This is the first project involving coupled transformations
of Boolean grammars.

The computation model proposed in this paper, can be used for formalisations
and proofs of certain properties of transformation chains; for grammar-based
convergence; for manipulating parse views and in general for tasks involving
synchronous consistent changes to Boolean grammars and shared packed parse
forests. This is an area of rapidly growing interest in the software language
engineering community, and its limits, as well as the extent of its usefulness,
remains to be examined.
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Abstract. Organisational policies express constraints on generation and
processing of resources. However, application domains rely on transfor-
mation processes, which are in principle orthogonal to policy specifica-
tions and domain rules and policies may evolve in a non-synchronised
way. In previous papers, we have proposed annotations as a flexible way
to model aspects of some policy, and showed how they could be used to
impose constraints on domain configurations, how to derive application
conditions on transformations, and how to annotate complex patterns.
We extend the approach by: allowing domain model elements to be an-
notated with collections of elements, which can be collectively applied
to individual resources or collections thereof; proposing an original con-
struction to solve the problem of annotations remaining orphan, when
annotated resources are consumed; introducing a notion of contract, by
which a policy imposes additional pre-conditions and post-conditions on
rules for deriving new resources. We discuss a concrete case study of lin-
guistic resources, annotated with information on the licenses under which
they can be used. The annotation framework allows forms of reasoning
such as identifying conflicts among licenses, enforcing the presence of
licenses, or ruling out some modifications of a licence configuration.

1 Introduction

Organisational policies express constraints on generation and processing of re-
sources which are accepted by agents subject to, or anyway acknowledging, the
authority of such organisations. However, agents retain the ability to operate on
such resources according to their own strategies, as long as the results of these
operations conform to the policy, or are used in areas not subject to it.

A typical example is that of licenses, which define ways in which software
resources can be manipulated and made available for usage by third parties.
The diffusion of open data [2] and of public repositories allows a dissemination
of resources which can be employed in different ways, ranging from their simple
replication for integration in local pools, to the creation of sophisticated services.
While non proprietary resources can usually be accessed without restrictions,
access to the results of resource manipulations could be subject to restrictions
related to the safeguard of intellectual property. However, it is usually the case
that the usage of certain resources in the construction of the service prevents
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the possibility of imposing such restrictions, or forces specific forms of access
compatible with those for the used resource.

In [5, 6] we proposed the usage of annotations as a flexible way to indicate
the aspects for which domain model elements can fall under some policy, and
showed how annotations could be used to impose constraints on configurations of
domain resources, how to derive application conditions on their transformations,
and how to annotate complex patterns. In particular, this allows the manage-
ment of situations in which policies of access change, or different policies have to
be simultaneously applied. Annotations are indeed a way of flexibly associating
elements of different domains, and a number of techniques have been developed
to express the constraints which are imposed on transformations modeling the
evolution of elements in an application domain, when they are subject to con-
straints depending on annotations with elements of a contextual domain.

In this paper we extend the notion of annotation in four directions: first
we propose an original construction for transformations of annotated models,
which solves the problem of orphan annotations, which remain dangling when
annotated resources are consumed. Second, we allow domain model elements to
be annotated with collections of elements from the annotations domain, which
can be collectively applied to individual elements or collections thereof. Third, we
consider violations of constraints induced by the creation of elements for which
an annotation must be provided and define constraint repair actions to solve
such situations. Finally, we introduce a notion of contract, by which a policy
imposes additional pre- and post-conditions on rules for deriving new resources.
Again, the use of contracts leads to an original notion of transformation under
contracts. In all the considered cases, the definition of transformations relies on
the specific features of annotations and classical categorial constructions.

Paper organisation. After discussing related work in Section 2 and recalling
fundamental notions in Section 3, we provide a construction for avoiding orphan
annotations in Section 4 and introduce a motivational case study concerning
linguistic resources annotated with licenses in Section 5. The model for rewriting
under annotation constraints and contracts, illustrated via the case study, is
presented in Section 6. Section 7 concludes the paper.

2 Related Work

A number of approaches have considered the management of inconsistencies in
the field of graph transformations. In particular, mechanisms for ensuring that
invariants are maintained throughout transformations have lead to the identifi-
cation of mechanisms for the generation of pre- or post-application conditions to
be associated with rules, or for manipulation of the left-hand or right-hand side
of a rule. This topic was started in [12] and extensively explored in [13]. In [5,
6], we have shown how the separation of the application and contextual domains
allows some simplified constructions for such a generation.

Another line of research involves the identification of inconsistencies of a
model with respect to some desired (or undesired) property established at the
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metamodel level. For example, conformance to a pattern can be imposed by com-
pleting the missing required parts of the pattern by a co-limit construction [4],
required ordering for refactorings can be established by analysis of their con-
flicts [16], explicit transformations can be associated with guidelines to repair
violations [1]. In this paper we consider only inconsistencies involving annota-
tions, again leveraging domain separation.

Contracts were introduced in the form of pairs of graphs indicating pre- and
post-conditions of operations [14]. In this way they define rule schemes which
are typically instantiated by setting some parameters [8]. Based on this, one
can consider satisfaction of conditions for service composition [17] or generate
tests against these schemes to check correctness of model evolutions [22]. Our
usage of contracts allows the definition of multiple contracts for a single rule
and provides a basis for enforcing correctness on a local basis, as opposed to
corrections required by violations of global constraints.

The need for a formalisation of licenses has been addressed for services, where
service composition has to take into account that different services may run un-
der different licenses, as part of service level agreement, focusing mostly on
service behaviour [10]. As for data, work on the definition of ontologies for the
management of digital rights have been conducted by Garcia et al. [11] and
Rodŕıguez-Doncel et al. [20]. Graph transformations have been employed in the
closely related field of access control, where techniques similar to the ones em-
ployed here were used (see e.g. [15]).

3 Preliminaries

Graphs and morphisms. We introduce classical notions from graph transfor-
mation theory (see [7]).

Definition 1. A graph is a tuple G = (VG, EG, s, t), where VG is a set of nodes,
EG is a set of edges, s : EG → VG and t : EG → VG are the source and target
functions, i.e. graphs are considered to be directed.

Definition 2. Given two graphs G1 and G2 a morphism µ : G1 → G2 is a
pair of functions µV : VG1 → VG2 , µE : EG1 → EG2 such that µE preserves the
images of sources and targets, i.e. for e ∈ E we have: s2(µE(e)) = µV (s1(e))
and t2(µE(e)) = µV (t1(e)).

We use morphisms for a number of purposes, some of which exemplified
through Figure 1.

Typing. For G1 a graph, and GT a type graph, µ : G1 → GT is a typing morphism
if µ is total. Typed graphs are extended to attributed typed graphs defining
specific sets of attributes for them. A node of a certain type will be associated
with a value for each of the attributes defined by the type.

Transformation rule. One (as in the Single Pushout Approach, SPO, see Fig-
ure 1 (c)) or two (as in the Double Pushout Approach, DPO, see Figure 1 (a))
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Fig. 1. (a) DPO Derivation, (b) satisfaction of constraint, (c) SPO derivation with AC.

type-preserving morphisms are used to define rules. Regardless of the form, a
rule p identifies a graph G1 and the applicability of p to a graph G3 depends
on the existence of a total type-preserving morphism m : G1 → G3. If a rule
p is applied to a graph G3 to produce graph G4, we write (G3, G4) ∈=⇒p.

Constraint. µ : G1 → G2 defines a constraint together with a satisfaction rela-
tion, |=: for any graph G3, G3 |= µ iff for each morphism µ3 : G1 → G3, there
exist a morphism µ4 : G2 → G3 such that the triangle of Figure 1(b) com-
mutes1. A negative constraint, denoted by ¬µ : G1 → G2, is satisfied by G3 if
no such morphism µ4 exists for some µ3. The particular case ¬µ : G1 → G1,
defines a forbidden graph and is represented by the single graph G1.

Application condition. Given a (DPO or SPO) rule p with identified graph G1,
µ1 : G7 → G8 is an application condition (AC) for p if it restricts the rela-
tion =⇒p to pairs (G3, G4) for which there exist morphisms µ3 : G1 → G7,
µ4 : G7 → G3 and µ5 : G8 → G3 such that the triangles in the diagram of
Figure 1(c) commute (in the SPO approach the square in it is a pushout,
analogously for the two squares in Figure 1(a)). The requirement that no
such µ4 exist is called a negative application condition (NAC).

All of the above is naturally extended to sets of rules and to attributed type
graphs, so that constraints and application conditions can refer to prescribed
values that attributes of the matched nodes must have. Rules can require updates
on the values associated with preserved nodes, or assignment of values for the
created nodes. In all these cases,we follow the approach of symbolic attributed
graphs [19], using constraint satisfaction to evaluate conditions and attributes.

Annotations. Annotations of nodes of a domain D1 with nodes of a domain
D2 are defined via nodes of types derived from AnnotationNodeType. We call A
the domain of such annotation nodes. Each annotation node a ∈ A participates
in exactly one instance of the pattern πa = x

e1←− a
e2−→ y, where x ∈ D1,

y ∈ D2, e1 is an edge of an application-dependent type and e2 is an edge of type
annotatesWith. We work on type graphs TG resulting from the disjoint union
of the type graphs defining D1 (TG1) and D2 (TG2), together with the relevant
annotation node and edge types, and we consider two types of constraints related
to annotations, assuming that all the constraints on the application domain are

1 G1 is also called P , from premise, and G2 is also called C, from conclusion.
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preserved by the domain rules. Constraints of the first type are derived from πa

and are of the form µ : A → X
e1←− A e2−→ Y , for X some node type in TG1, Y

some node type in TG2, A an annotation node type and e1 and e2 as described
before, with possible restrictions on the association of X and Y . Well-formedness
results from conformance with the disjunction of all such constraints. Given a
type graph TG we call Lπa(TG) the language of all the graphs in TG which are
well-formed with respect to the individual domains and the annotation pattern.
The second type of constraints expresses specific policies via morphisms of the
form µ : G1 ⇀ G2 where G1 is typed on the TG1 component of TG, G2 is typed
on TG with well-formed annotations, and its projection on TG1 is isomorphic
to G1. We call these annotation constraints. In Section 6 we will also introduce
contracts based on morphisms involving two graphs typed on TG. All the rules in
the paper are typed on TG1, and all the constraints are annotation constraints.

4 Annotations and collections

Definition 3 from [6] extend graphs and morphisms to include the notion of box.

Definition 3. A (directed) graph with boxes (or B-graph) is a tuple G =
(V,E,B, s, t, cnt), where: (1) V and E are as in Definition 1; (2) B is a set
of boxes, such that B ∩ (V ∪ E) = ∅; (3) s and t extend their codomains to
V ∪B; (4) cnt : B → ℘(V ∪B) is a function associating a box with its content2

with the property that if x ∈ cnt(b1) and b1 ∈ cnt(b2), then x ∈ cnt(b2).

A type B-graph includes a set of box types BT which are sources or targets
for edge types. Moreover, a function cntT : BT → ℘(V T ∪ BT ) associates each
type of box with the set of types of elements it can contain. Similarly, a (total)
morphism on B-graphs was defined in [6] by adding a component µB , preserving
the content function, i.e. for all x ∈ V ∪B, b ∈ B, one has x ∈ cnt1(b) =⇒
µV ∪B(x) ∈ cnt2(µB(b)), with µV ∪B the (disjoint) union of µV and µB . In [6]
total morphisms allowed DPO transformations of B-graphs.

Based on these notions, annotation nodes can be used not just with reference
to individual nodes in TG1 and values in TG2, but also to collections in either
domain, i.e. a collection of annotation values can be used in an atomic way to
annotate some resource or collection thereof. However, in the original formula-
tion of rewriting with boxes in [6], removing an annotated element from a model
G′ ∈ Lπa(TG) would create dangling annotation edges, forbidding rule applica-
tion in the DPO form. Nor can deletion in the SPO form be employed. Even if
in this case the annotation edges would be removed, we would be left with or-
phan annotations, i.e. annotation nodes to which no annotation edge is attached,
resulting in a graph not in Lπa(TG). Hence, we devise an original mechanism,
based on Construction 1, to complement a transformation performed according
to the DPO appproach in TG1 so that well-formedness is preserved.

Construction 1. With reference to Figure 2, let its top two rows depict the usual
DPO application of a rule L← K → R to a graph G obtained by applying to G′

2 Here and elsewhere ℘ denotes the powerset.
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L

m
�� PO

K

��

loo r //

PO

R

m∗��
G_�

�� PB

Doo //

�� PO

H

hπ��
G′

f1

>>

D′
g′oo h′ // H ′

Fig. 2. Avoiding orphan
annotations.

the morphism f1 induced by the forgetful functor given
by the restriction of TG to TG1. The unique mor-
phism induced by the immersion of the image of f1(G′)
into G′ is also derived. Then D′ is the unique (up
to isomorphisms) graph in Lπa(TG), i.e. with well-
formed annotations, which is maximal with respect
to the occurrences of the annotation pattern and for
which the left square at the bottom of the diagram
in Figure 2 is a pullback (hence its restriction to the
elements typed on TG1 is isomorphic to D). Finally,
H ′ is given by the pushout of H and D′ along D.

Figure 3 illustrates Construction 1 with a model example where teams in
an organisation temporarily gather members for specific tasks [6]. G′ describes a
configuration where frank - a member, together with paul, of the softEng team
- is also the only member of the security team. For both frank and security,
time annotations indicate that they can operate within the organisation only at
daytime. The DPO rule at the top, removing a team with only one member,
is applied to G, the projection according to f1 of G′, by identifying security

and frank with 1:Team and 2:Member in L, respectively. As a consequence, the
annotation on security and the edges touching it are removed, updating the
cnt function accordingly, while the one for paul is preserved.

2 : Team 

1 : Member 

L 

1 : Member 

K 

1 : Member 

R 

2 : Team 

1 : Member 

NAC 

3 : Member 

security : Team 

frank: Member 

G '  

paul : Member 

D' H' 

: TimeAnn 

dayTime: Period 

1  cnt(2) 
3  cnt(2) 

frank  cnt(security) 
security  cnt(softEng) 
frank  cnt(softEng) 
paul   cnt(softEng) 

security: Team 

paul : Member 

G 

paul : Member 

D 

paul : Member 

H 

softEng : Team 
softEng : Team 

softEng: Team 
softEng : Team softEng : Team 

f1 

ta : TimeAnn 

dayTime: Period 

ta : TimeAnn 

paul : Member 

softEng : Team 

dayTime: Period 

ta : TimeAnn 

2  security 
1  frank 

1  cnt(2) 

paul: Member 

frank : Member frank : Member 

frank : Member 

frank : Member 

frank : Member 

Fig. 3. An example of Construction 1 for the removal of an annotated team.
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Note that Construction 1 applies to removal of the application domain ele-
ments, not of contextual ones. Actually, we assume here that contextual domains
are fixed. The correctness of Construction 1 is expressed by Proposition 1.

Proposition 1. For G′ ∈ Lπa(TG) and a rule L ← K → R, the graph H ′

generated as in Construction 1 is in Lπa(TG). Moreover, Ann(H ′) ⊆ Ann(G′),
where Ann(X) denotes the set of annotation nodes in a graph X.

Proof. We first observe that Ann(H ′) = Ann(D′), so that Ann(H ′) ⊆ Ann(G′),
since H, which is typed on TG1, does not present any new annotation. Since D′

is well-formed, none of its annotation nodes is an orphan.

5 Case study: licenses

A license specifies admissible forms of access, usage and redistribution of re-
sources and of the results of manipulating them. While individual resources can
be associated with specific licenses, the licenses connected to a resource usually
depend on some policy associated with the repository from which it is extracted.
Moreover, such repositories often publish resources under a number of licenses,
which must be all simultaneously respected, and which are normally transferred
to the extracted resources. As this imposes some form of compatibility among li-
censes, deciding whether a certain usage is admitted may become complex. As an
example, elements published under a Creative Commons, CC, scheme can be as-
sociated with combinations of the following licenses: NC for NonCommercial (the
resource cannot be used for commercial purposes), BY for Attribution (credit
to the author is acknowledged), SA for ShareAlike (derived resources must be
redistributed preserving the original licenses), and ND for NoDerivatives (remix-
ing, transforming, or building upon the resource may not grant redistribution).
Each element is considered to be of PublicDomain (PD).

BabelNet3 [18] is a multilingual semantic network containing millions of con-
cepts (e.g. the apple fruit concept) and named entities (e.g. the Apple Inc.
entity), interlinked via semantic relations. A single node in the network is called
a Babel synset and contains a set of synonyms which express a given concept
or named entity in different languages. For instance, the apple fruit concept is
represented by the synset {apple EN, pomme FR, mela IT, . . . , manzana ES}.
A word occurring in a synset is called sense (e.g., apple EN in the above synset
is the fruit sense of the ambiguous word apple).

BabelNet itself is obtained as the result of the automatic mapping (which is in
turn considered a kind of resource unique to BabelNet) and integration of several,
publicly available, knowledge repositories. However, each repository provides re-
sources (e.g. synsets and senses) under different licenses. For example, WordNet
[9], Wikidata4 and parts of the OMWN project [3] are released under a permissive
license, which allows any use, either commercial or non-commercial, of the data;

3 http://babelnet.org
4 http://wikidata.org
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Wikipedia and Wiktionary are released with a CC-BY-SA license; OmegaWiki
and other wordnets in OMWN are released under CC-BY; the Basque wordnet in
OMWN is released under CC-BY-NC-SA and so is the BabelNet mapping between
all these resources. Unfortunately, not all of the licenses are compatible with one
another, as shown in the compability chart for CC licenses in Table 1, where X
indicates compatibility, × incompatibility, and ! that usage is not recommended.
For instance, Wikipedia, whose license is CC-BY-SA, cannot be merged with data
from the Basque wordnet or the BabelNet mapping. Interestingly, some mergings
can be done in one direction only, e.g. from a resource in a CC-BY repository, such
as OmegaWiki, one can derive a new resource with a more restrictive CC-BY-SA

license, thereby making it compatible with, e.g., Wikipedia.

Table 1. The compatibility chart for Creative Commons licenses.

Compatibility chart
Terms that may be used for a derivative work or adaptation

BY BY-NC BY-NC-ND BY-NC-SA BY-ND BY-SA PD

Status of
original work

PD √ √ √ √ √ √ √

BY √ √ √ √ √ √ !

BY-NC ! √ √ √ ! ! !

BY-NC-ND × × × × × × ×

BY-NC-SA × × × √ × × ×

BY-ND × × × × × × ×

BY-SA × × × × × √ ×

However, the opposite is not possible, as no-one can modify a SA license. As
a result, some licenses, such as CC-BY-NC-SA and CC-BY-SA, are inherently and
mutually incompatible. To solve this problem, BabelNet is viewed as a collection
of knowledge resources with heterogeneous licenses. For instance, it is possible to
consider a subset of resources which can be used commercially, e.g. Wikipedia,
WordNet and others. However, the resources with NC license (e.g. the Basque
wordnet and the BabelNet mapping) cannot be used commercially. As the map-
ping is the enabling technology for interconnecting the various resources into a
whole unified, multilingual network, any commercial use is subject to obtaining
a commercial license from the BabelNet’s authors.

5.1 A model of linguistic services and licenses

To represent the management of licenses and languages in BabelNet, we model
synsets, senses, etc. as nodes (or boxes) of specific types from a domain, R,
of Resources. Similarly, licenses are modeled as nodes of type License, from
the domain of Licenses, L, with an attribute name ranging over strings iden-
tifying the different kinds of license, and languages are modeled as nodes of
type Language, from the domain of Languages, K, with name ranging over the
available languages. We consider R as the application domain, and L and K as
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contextual domains, typing the annotation edges accordingly. Thus, for xxx a
type in R, edges of types xxxLicAnnotation and xxxLangAnnotation allow
its annotation with elements of L and K, through edges of type annotatesWith.

Figure 4 presents the type graph TG for BabelNet. Stereotypes indicate
whether an element is of the Node or Box sort, and if it comes from the domain
R, L or K, or is an AnnotationTypeNode. In the domain R, a Sense is charac-
terised by an attribute content, with values in the sort of strings. Moreover, the
three types of box, Synset, Collection and LicenseBundle, can contain only
elements of suitable types, namely Sense, Synset and License, respectively.
The attribute concept for Synset indicates the concept represented by that
collection of senses. The type LicenseBundleAnn, of the Node sort and derived
from AnnotationTypeNode, can be used to relate resources with LicenseBundle.
However, as it inherits from LicenseAnn, one can annotate any element in the
resource domain with single licenses or with license bundles. A Request to obtain
a Collection can be annotated with both license and language information (not
indicated to avoid cluttering) and activates a Service producing the collection.

-concept : string

<<Box>>
<<Resources>>

Synset

<<Node>>
<<Annotation>>

LicenseAnn

<<Node>>
<<Annotation>>
LanguageAnn

-name : string

<<Node>>
<<Licenses>>

License

-name : string

<<Node>>
<<Languages>>

Language

<<Node>>
<<Annotation>>

LicenseBundleAnn

<<Box>>
<<Licenses>>

LicenseBundle

<<Node>>
<<Resources>>

Repository
-content : string
-id : Identifier

<<Node>>
<<Resources>>

Sense

<<Node>>
<<Resources>>

Mapping

<<Node>>
<<Resources>>

Service

<<Box>>
<<Resources>>

Collection

-concepts : string[]

<<Node>>
<<Resources>>

Request

annotatesWith

senseLangAnnotation

synsetLicAnnotation

annotatesWith

annotatesWith

reposLicAnnotation

in

origin

collLicAnnotation
produces

puts

activates obtains

servLicAnnotation

Fig. 4. The type graph for modeling the running example

We first model the basic working of BabelNet services via increasing rules
in the Resources domain. Rule createCollection in Figure 5 (top) creates an
initially empty collection for the synsets to be served in response to a query to
define the concepts in a set Z. Two rules allow the inclusion in the collection of a
synset for a concept in the request. Rule addSynset in Figure 5 (middle) is used
to add an already available synset in the collection if it is not already there, as
indicated by the NAC. The other one, not shown, creates and adds a synset for
a concept, if it does not exist already. Rule createMapping in Figure 5 (bottom)
is used to populate synsets with senses representing the concept, according to a
mapping, with a NAC to avoid including a sense twice.
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1 : Service 
name = "MAP" 

3 : Request 
concepts = Z  

4 : Repository 
name = "BABELNET" 

5: offers 

 6 : Collection 

: produces 

2: activates 1 : Service 
name = "MAP" 

3 : Request 
concepts = Z  

4 : Repository 
name = "BABELNET" 

5: offers 

2: activates 

cnt(6)= 

L=H R 

 6 : Synset 
concept = Y 

1 : Service 
name = MAP 

3 : Request 
concept = Z  

5 : Collection 

4 : produces 

2: activates cnt(5)  {6} 

NAC 

1 : Service 
name = MAP 

  6 : Synset 
concept = Y 

3 : Request 
concepts = Z  

1 : Service 
name = MAP 

3 : Request 
concepts = W  

5 : Collection 

cnt(5)= H{6}, W=Z\{Y}  

2: activates 
4 : produces 

5 : Collection 

4 : produces 
2: activates 

cnt(5) = H, YZ 

  6 : Synset 
concept = Y 

L=H R 

2 : Sense 
content = X  

: Mapping 

: in 

: puts 

isRepr(Y,X), 
cnt(5)=H 

2 : Sense 
content = X  

  5 : Synset 
concept = Y 

  5 : Synset 
concept = Y 

cnt(5)=H{2} : Mapping 

: in 

: puts 
2 : Sense 

content = X  

  5 : Synset 
concept = Y 

NAC L=H R 

Fig. 5. Rule createCollection prepares a container for serving a request (top). Rule
createSynset sets up a synset for a requested concept (middle). Rule createMapping

relates a sense to a synset (bottom). Vertical lines separate NACs from rule morphisms.

In all these cases, the bundle of licenses associated with the invoked ser-
vice must be associated with the produced collection, as will be discussed in
Section 6.2. Moreover, requests can be further characterised, for example by
annotating them with particular licenses or languages, so that only senses an-
notated with those licenses or languages are included in the obtained collection,
as per suitable application conditions, following the constructions in [5].

6 Maintaining consistency with constraints and contracts

While the result of applying a rule is guaranteed to produce a correctly typed
graph, it might be the case that such a graph does not conform to further
conditions imposed on the model at hand. We identify two dimensions along
which conditions can be distinguished: one pertaining to the identification of the
domain for which the condition is defined (whether the application domain or the
domain resulting from the annotation process) and one relative to the scope of
the condition (whether global to the domain or local to specific transformations).

Concerning the latter dimension, we use constraints, as introduced in Sec-
tion 3, to impose well-formedness conditions for a domain. We assume that the
host graph to which a rule is applied is well-formed, and we identify mechanisms
to ensure that the transformation process produces another well-formed graph.
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In [6], we have presented some constructions to derive application conditions
for rules from annotation constraints. By leaving the rule morphism alone, we
maintain a form of separation of concerns, making rule reuse simpler when dif-
ferent forms of annotation are involved. Intuitively, those constructions work
when a rule adds elements related to elements matched by the left-hand side,
but the annotation constraint imposes these relations to exist only between el-
ements annotated in specific ways. An application condition ensures that such
an annotation context already exists in the host graph when the rule is applied.

In this section we focus on situations in which the addition of application
conditions is not sufficient, since the required context cannot already exist, in
particular if a newly created element must be annotated in specific ways. This
would require the right-hand side of a rule to be enriched with the appropriate
annotation, but then the rule would no longer be defined only on the application
domain. To approach this problem, we consider separately situations violating
global constraints, and situations violating conditions on specific rules, that we
model as contracts. Since we are interested in rules which add new elements, i.e.
L = K for a DPO rule, we present them as simple morphisms.

6.1 Management of constraints

As shown in Table 1, licenses can require or forbid the presence of one another.
While the first case can be modelled by a positive constraint5, we model the
second via forbidden graphs. Figure 6 (left) shows the forbidden graph expressing
that no resource can be annotated with both licenses SA and ND. An analogous
graph will forbid the presence of both licenses in the same bundle. The constraint
on the right requires that each resource be PD, where we use the generic type
name Resource to refer to any of the types from the Resource domain.

: Resource 

: LicenseAnnotation 

: License 
name="SA" 

: License 
name="ND" 

: LicenseAnnotation 

FG 

1 : Resource 

1 : Resource 

: LicenseAnn 

: License 
name="PD" 

: resLicAnnotation 

: annotatesWith 

P 

C 

Fig. 6. A graph forbidding the simultaneous presence of licenses SA and ND (left) and
a positive constraint assessing that each resource is PD.

The application of a rule may disrupt a constraint, typically by not creating
the proper annotations. Hence, given a constraint µ, constraint repair actions
are automatically inferred and applied, which modify the derivation relation so
that the result satisfies µ.

5 This would be a constraint with annotations both in P and C, not considered here.
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Definition 4 (Constraint repair action). Let µ1 : G1 → G2 be a rule and
µ2 : G3 → G4 an annotation constraint. We define the relation =⇒µ1,µ2

with
reference to Figure 7. For any two graphs G5 and G6 such that (G5, G6) ∈=⇒µ1

as witnessed by the leftmost square, and G6 6|= µ2 (i.e. there exists a morphism
µi5 : G3 → G6 but no morphism µ6 : G4 → G6 for which the triangle formed by
µ2, µi5 and µ6 commutes), we have (G5, G7) ∈=⇒µ1,µ2

, where G7 is constructed
as the colimit of all the diagrams constructed by taking the pushout of µi5 and µ2

along G3 for each µi5 via the morphisms µi7 : G4 → Gi7 and µi4 : G4 → Gi7. The
set of all the µi4 is called a constraint repair action.

G1
µ1 //

m

��
PO

G2

m∗

��

G3

µi5

~~}}}}}}}}

µ2 //

PO

G4

µ6

S�

µi7
��

=

G5
α // G6

µi4 // Gi7
CL // G7

Fig. 7. Direct Derivation Diagram for a rule with constraint repair action.

Following Proposition 2 a repair action produces a graph compliant with µ2.

Proposition 2. Given G7 and µ2 as in Definition 4 we have G7 |= µ2.

Proof. We know that G3 has a match in G5, so that the constraint is violated by
the presence of some element without proper annotation, which is added in each
Gi7 as an effect of the pushout. Since we only deal with annotation constraints,
each Gi7 does not present violations of µ2 which were not in G4, but actually
presents one less violation. By taking the colimit, no violation appears in G7.

Proposition 3 allows the cumulative application of repair actions.

Proposition 3. Let G6 be as in Definition 4 and M2 = {µj2 : Gj3 → Gj4 | G6 6|=
µj2}. Then, let G′7 the colimit of all the graphs G7 constructed as in Definition 4

for each µj2 ∈M2. Then G′7 |= µj2 for each µj2 ∈M2.

Proof. Since the premise of each µj2 does not contain annotation elements, no G7

constructed for one constraint can add new violations of any other constraint.
The result then follows by the associativity of colimits.

6.2 Contracts

Contracts define situations in which the application of a rule requires the produc-
tion of some annotation, but only in situations in which elements in its left-hand
side are associated with specific annotations.

Definition 5 (Contract). Given a rule µ2 : G3 → G4, a contract on µ2, γ,
is given by a morphism µ1 : G1 → G2 (G1 and G2 typed on TG) together with

spans G1
µ3← G5

µ4→ G3, G4
µ5← G6

µ6→ G2 (formed by total injective morphisms)
and a morphism µ7 : G5 → G6, (G5 and G6 typed on TG1), such that all the
closed paths in the upper part of Figure 8 commute.
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G1

µ1

((

µ10
//

G5
? _µ3oo � �

µ4 //
µ7

**

=

G3 µ2 //

m

��
PO

G4

m∗

��

G6
? _µ5oo � �

µ6 //

PO

G2

µ8
m m m m

vvm m m m µ9

��
G7 α // G8 µ11 // G9

Fig. 8. Direct Derivation Diagram for a rule with contract enforcement action.

As an example, the top contract in Figure 9 describes the overall policy
for license assignment: each collection is generated with the same collection of
licenses of the generating service. Here, numbers are used to identify the nodes
common to the rule and the contract, and letters for identifying elements related
by the contract morphism.

 6 : Collection 

7 : produces 1 : Service 3 : Request 
2: activates 

b : LicenseBundleAnn 
 f : servLicAnnotation g : annotatesWith 

 a: LicenseBundle 

1 : Service 3 : Request 
2: activates 

b : LicenseBundleAnn  f : servLicAnnotation 

g : annotatesWith 

 a: LicenseBundle 

 : LicenseBundleAnn 
  : collLicAnnotation 

 : annotatesWith 

 : Resource 

 e: LicenseBundle 

1 : Resource 

b : LicenseBundleAnn 

d: License 
name="SA" 

c : License 
name=X 

 f : resLicAnnotation 

 a: LicenseBundle 

g : annotatesWith 

dcnta), 
ccnt(a) 

1 : Resource 

b : LicenseBundleAnn 

d: License 
name="SA" 

c : License 
name=X 

 f : collLicAnnotation 

 a: LicenseBundle 

g : annotatesWith 

dcnt(e), 
ccnt(e) 

 : LicenseBundleAnn 

: annotatesWith 

 : collLicAnnotation 

Fig. 9. A contract stating that each collection comes with the license of the service
which generated it (top) and a contract specifically modeling the SA licence (bottom).

We can now model the asymmetry in license extension described in Section 5
with reference to the contract in Figure 9 (bottom): if a copy of a resource
annotated with a bundle including the SA license is generated, the bundle anno-
tating the new resource must preserve all the original licenses. This forbids the
possibility of contracts which remove some license when SA is present, while it
allows adding more licenses to the bundle, if not in contrast with others already
present. Analogous contracts can be devised for multiple annotations with single
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licenses, rather than with a bundle of licenses. It is important to note that the
directionality inherent to this contract would not be expressible via constraints,
which would either impose or forbid the presence of annotations in the bundles
both before and after rule application.

The application of a domain rule creating new elements typically violates
contracts requiring that they be annotated in certain ways. Hence, actions must
be taken, as specified in Definition 6

Definition 6 (Contract enforcement action). Let µ2 : G3 → G4 and γ be
as in Definition 5. A derivation (G7, G8) ∈=⇒µ1 fulfills the contract γ iff for
each morphism µ10 : G1 → G7 such that the leftmost square in the diagram of
Figure 8 commutes, and for each morphism µ5i : G6 → G4 there exists at least
one morphism µ8i : G2 → G8 so that the triangle m∗ ◦ µ5i ◦ µ7 : G5 → G8,
µ1 ◦ µ3 : G5 → G2 and µ8i : G2 → G8 commutes.

If the above does not hold, the pair (G7, G8) is said to breach the contract µ1.
A breach can be repaired by a contract enforcement action µ11 for µ1, µ2 on G7

by constructing G8
µ11→ G9

µ9← G2 as the pushout of the span G8

m∗◦µ5i← G6
µ11→ G2.

We denote the derivation thus obtained by (G7, G9) ∈=⇒µ2,µ1
. Note that if no

µ10 exists, then (G7, G8) also fulfills the contract.

Whenever multiple contracts apply to µ2, the final graph to be obtained for
its application is represented by the colimit of all the diagrams thus formed,
noting that in all such diagrams the pushout formed by G7 ← G3 → G4 and
G7 → G8 ← G4 remains the same. Notice also that by a straightforward appli-
cation of the associativity and commutativity of colimits, the same result can be
obtained by successively applying the above construction to individual contracts,
regardless of the order. The proof of Proposition 4 is then straightforward.

Proposition 4. For a rule µ2 and a contract µ1 on it, each derivation in
=⇒µ2,µ1 fulfills µ1.

Theorem 1 states that applying the enforcement action is equivalent to ap-
plying a rule resulting from the composition of µ2 and µ1.

Theorem 1. Given a rule µ2 : G3 → G4 and a contract µ1 : G1 → G2 on
µ2, there exists a rule µ′2 such that for each pair (G7, G9) ∈=⇒µ2,µ1

, we have
(G7, G9) ∈=⇒µ′2 .

Proof (Sketch.). Referring back to the diagram in Figure 8, the new left-hand

side is constructed as the pushout of the span G1
µ3← G5

µ4→ G3, while the right-

hand side as the colimit of the collection of spans G4
µ5i← G6

µ6→ G2. Shown in
Figure 10 are the induced matching morphism G′3 → G7, the new rule µ′2 : G′3 →
G′4, and the result G9 of applying µ′2 to G′7 via the induced matching. Since G′4
already ”contains” G2, there is no need for a subsequent enforcement action.

We can also define negative contracts, indicated as µ1 : G1
¬→ G2 such that

(G5, G6) ∈=⇒µ1,µ2
only if G6 6|= µ2. This prevents the application, to the same

µ1, of other contracts of the form µ′1 : G′1→G′2 with G′1 ↪→ G1 and G2 ↪→ G′2.
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Fig. 10. Direct Derivation Diagram for composition of rule and contract.

The constructions above can be adapted to general, i.e. not only increasing,
DPO rules G3 ← G10 → G4 by considering contracts in the form of spans G1 ←
G11 → G2 and identifying the spans G5 ← G12 → G6 and G10 ← G13 → G11.

In all these cases, we consider morphisms which are injective in the restric-
tions to D1 of the involved graphs, as well as in the immersion of D1 into D,
while they can be non-injective in the restriction to D2.

7 Conclusions and Future Work

We have extended the theory of annotation from [5, 6] by considering the prob-
lem of orphan annotations, left when annotated elements are deleted, and in-
troducing contracts, relating pre- and post-conditions on the usage of annotated
elements. We have used annotations to model the role of licenses in the open data
environment defining the approved usages for resources. In this context, license
bundles have been seen as a technique to manage sets of resources homogeneous
with respect to the applicable licenses.

With respect to the theory, future research will involve considering con-
straints with annotations also in the premise, and to study dependencies and
conflicts [21] within sets of contracts and within compositions of rules and con-
tracts. Also, we want to generalise the notion of contract to that of contract
schemes, allowing the customised generation of contracts for different rules.

As concerns the application domain considered in the paper, we plan to
extend this work towards a generic framework for managing licenses, taking into
consideration also other licensing schemes, by which declarative specifications
of resource usages could be checked for verification of conformance to licenses.
Moreover, the mentioned analysis tools in the field of graph transformations can
be applied to verify the internal consistency of license bundles.
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Abstract. In this paper, we consider Global Graph Transformations
where all occurrences of a set of predefined local rules are applied al-
together synchronously so that each part of the original graph gives rise
to a part of the result graph, without any reference to the original one.
The particularity here is that our framework is deterministic. This is
achieved by incorporating a notion of mutual agreement between its lo-
cal rules. Our proposition is first motivated and illustrated on existing
problems coming from different domains. It is then formalized as a cat-
egorical construction which is finally compared to more usual algebraic
constructions, in particular to the strongly related Amalgamation The-
orem. Applications of this work include the generalization of cellular
automata and the clarification of some frameworks of complex systems
modeling where the usual mutual exclusion of rule applications can be
replaced by a concept of mutual agreement.

1 Introduction

The framework proposed herein has been designed with the need to model de-
terministic dynamical systems by graph transformations. The state of such a
system is represented by a graph and its global dynamics is specified through a
set of local evolution rules.

One such example is the simple framework of cellular automata (CA). The
state of a CA is usually represented by a labeled regular graph where the nodes
are the cells, the labels encode the cell states, and the edges represent the neigh-
borhood relation between cells. A global evolution step consists of a synchronous
update of all the labels relying on a local evolution function, the structure of the
graph remaining unchanged. From another point of view, each patch of neighbor
cells (e.g. triple of consecutive cells in 1D CA with radius 1, square of 9 cells in
2D Moore CA) gives rise to a new node with the updated label. All these new
nodes are then connected together to form the next state graph representation
which is independent from the current one. Recently, different formalizations
based on this point of view have been proposed to generalize CA to arbitrary
graphs with dynamic structures [1,2]. This paper is an attempt to show that an
algebraic approach can provide an interesting alternative to those formalisms.

Other work was already devoted to the simulation of the so called Dynamical
Systems with Dynamical Structure [5,20]. In these approaches, a rewriting of cell
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complexes (an extension of graphs to higher dimensions, see Section 3) has been
developed to simulate concurrent interaction rules. The resulting programming
language, called MGS, has been shown as a unification of many computation
models including CA, Lindenmayer systems, membrane computing systems, etc.
So far, MGS parallel rule application strategies rely on a maximal-parallel prop-
erty: only mutually exclusive matchings can be applied simultaneously. This
leads to some non-determinism since there might be different maximal sets of
mutually exclusive matchings. This paper arises as an attempt to model systems
where the natural mutual agreement between the local rules applications can be
used to overcome the difficulties introduced by the concept of mutual exclusion.

As a result of these two motivations, the transition mechanism of the modeled
system is described in our setting by a set of rules that do not send rooted
graphs to nodes as in CA, nor nodes to graphs as it is often the case in graph
transformation [7], but that send graphs to graphs. Moreover, the reconstruction
of the resulting global state from the local applications of these rules on the
current state, relies on the following coherence property of the rules: when two
rule matchings overlap on an input graph, the local behavior of the common part
has to be shared by the two rules. This intuition can be seen as a compound
of two instances of a simpler situation: any time a first matching includes a
second matching, the result of the first matching has to include the result of
the second matching. Because the proposed formalism is a direct expression of
the coherence property, we believe that this framework allows to model very
intuitively any desired deterministic system, and can be easily adapted to any
particular need (e.g., non-determinism, presence of terminals/non-terminals). Of
course, as for any modeling framework, it certainly asks for some getting-used-to
to users already accustomed with other modes of thinking.

The proposed framework reminds some existing ones. The statement of the
coherence above is the same leading to the concept of sub-rule and amalgamation
in the double-pushout approach [3]. It is also reminiscent of the connecting or
gluing mechanisms used in node or edge based parallel graph grammars (see
Sect. 2). This very simple inclusion intuition can be applied in various settings,
as cell complexes in the following. In section 5, it is expressed categorically; this
allows a short and intrinsic formalization with possible instantiations to different
kinds of objects. Finally the evolution described by a total function in the CA
setting simply becomes functors on a full subcategory in our setting.

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 provides some comparison with existing approaches of parallel graph
transformation. Section 3 gives some formal preliminaries. Section 4 considers the
example of triangular mesh refinement in order to expose the idea of the proposed
framework informally. This example has been chosen because it encompasses
many considerations about the proposed framework. Section 5 formalizes the
concept of global transformation. It is then compared with the double-pushout
approach and the strongly related concept of amalgamation of productions. Sec-
tion 6 discusses the remaining aspect of the work and concludes.
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2 Related Work

In this section, we describe briefly existing approaches of parallel rewriting sys-
tems with a final comparison to global transformations.

One of the first parallel rewriting systems are Lindenmayer Systems (LS),
which are parallel string rewriting in contrast with sequential Chomsky gram-
mars. A 〈k, l〉 LS (k, l ∈ N) is a context-sensitive system gathering productions
in a transition table, so that each sub-word of length k + 1 + l (i.e., a letter
with a left context of length k and a right context of length l1) is associated
with (possibly many) words. The parallel rewriting of a word is done as follows:
each letter is substituted accordingly to its left and right contexts by one of its
associated words in the transition table. Obviously, the LS is deterministic if the
transition table is a function (i.e., associates a unique word with each entry).
LS have been extensively studied for their expressive powers and compared to
the classic Chomsky hierarchy of formal languages [19]. They have also been
used in the modeling of unidimensional and tree-like dynamical systems [16].
LS can be seen as a special case of parallel graph transformation, restricted to
linear/sequential graphs. Other special cases of graphs can be addressed. For
example, Paŭn Systems (roughly speaking, nested parallel multiset rewriting
systems [15]) can be considered as complete graph transformations. Such sys-
tems derive naturally from LS by considering rewriting modulo associativity and
commutativity: any two symbols of a string representing a multiset can be made
neighbors by permuting the letters of the word. In this setting, a production is
a metaphor of a chemical reaction. The left hand side (l.h.s.) of a production
designates a sub-multiset which is entirely replaced by its associated right hand
side (r.h.s.) (in contrast with LS where each letter is replaced independently).
To avoid the consumption of the same symbol by two different reactions, the
maximal-parallel strategy is considered leading to non-determinism.

Extension of LS to arbitrary graph transformation is not an easy task [7]. A
first idea consists in encoding the graph using sets, multisets, sequences or terms,
and their associated well-known and rich techniques. As an example, [17] bridges
graph rewriting to set rewriting by considering a graph as a set of (hyper-)edges,
an hyper-edge being a sequence of vertices. On the other hand, some works ad-
dress the issue of a direct rewriting of graphs. Classical work in graph grammars
includes node-rewriting and hyperedge-rewriting graph grammars [18]. These
works have some interesting relation with our framework when they are used in
a parallel setting, that is, when each node (resp. edge) chooses a production rule
to apply. In this case, all of them provide a resulting graph and these graphs are
connected (resp. glued) together in some way or another by an embedding mech-
anism. In the node setting, edges are used to specify the connection between
the graphs while, in the hyperedge setting, the nodes specify the gluing between
the graphs. In fact, any deterministic instances of these systems can easily be
represented in our framework.

1 An extra dummy symbol, the marker, is used to deal with boundaries.
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Fig. 1. On the left, a cell complex composed of three 0-cells (c1, c2, c3), of three 1-cells
(e1, e2, e3) and of a single 2-cells (f). On the right, the Hasse diagram of its incident
relationship.

The previous examples are set-theoretic approaches: graph transformations
are expressed in terms of sets and set operations. Graph transformations can also
be represented algebraically using the double-pushout and the simple-pushout
approaches which formalize the idea of local replacement in a categorical man-
ner [18]. The double-pushout approach is inherently local so that it needs to
be extended to deal with parallel applications leading to the concepts of par-
allelism [4] and amalgamation [3]. Roughly speaking, parallelism allows to ap-
ply many mutually exclusive matchings simultaneously. Amalgamation provides
a more general setting where the set of productions is augmented with sub-
productions that handle some kind of overlaps. Therefore, many matchings can
be applied together as long as sub-productions are chosen to deal with the over-
lapping sub-parts which is reminiscent of the coherence property stated above.
Multi-amalgamation [6] is an extension of amalgamation to consider maximal
matchings. However, the amalgamation theorem makes clear that a compound
production can be applied only when each of its parts can be applied. This
constraint makes (multi-)amalgamation unusable straightforwardly in the cases
where the transformation of matchings only makes sense when taken altogether.

3 Formal Preliminaries and Notations

Since the present article follows naturally work introduced in [20], we consider
cell complexes, a more general setting than graphs. Like a graph, a cell complex
is a formal construction that builds a space in a combinatorial way through more
basic objects called topological cells. Each topological cell abstractly represents
a part of the whole and is characterized by a natural integer called dimension. A
topological cell of dimension d is called d-cell. The structure of the whole space,
corresponding to the partition into topological cells, is considered through the
incidence relationships, relating two “neighbor” cells in the partition. A graph
can then be seen as a cell complex composed of 0-cells and 1-cells, respectively
the nodes and the edges, so that the incidence relationship of the complex coin-
cides with the usual notion of incidence in graphs. More generally, a cell complex
using only two dimensions is an undirected multi- and hyper-graph. There exist
many possible formal definitions of cell complexes coming from different fields
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(algebraic topology [12], digital topology [8], geometric modeling, etc.). We con-
sider here the definition of [20].

Let L be an arbitrary set of symbols. A labeled abstract cell complex K with
labels in L is given by a tuple 〈CK,≺K,dimK, lK〉 where CK is the set of abstract
topological cells, ≺K is a locally finite2 strict partial order relation over CK,
dimK : 〈CK,≺K〉 → 〈N, <〉 is a strictly monotonic map assigning the dimension
to each cell, and lK : CK → L is a map assigning a label to each cell. An
example of an abstract cell complex is shown on Fig. 1. We denote Acc the set
of abstract cell complexes. In the following, we use the term cell complex (resp.
cell) for abstract cell complex (resp. topological cell) since there is no possible
ambiguity.

A cell complex morphism h : K → K′ from a cell complex K to a cell complex
K′ is given by a strictly monotonic map Ch : 〈CK,≺K〉 → 〈CK′ ,≺K′〉 such that
lK = lK′ ◦Ch, and dimK = dimK′ ◦Ch. A cell complex inclusion i : K → K′ from
a cell complex K to a cell complex K′ is a cell complex morphism from K to K′
such that Ch is injective.

We consider the category AccML of cell complexes and cell complex mor-
phisms between them on one hand, and the sub-category AccIL of cell complexes
and cell complex inclusions between them on the other hand, together with the
associated inclusion functor UL : AccIL → AccML. In the following, the sub-
script L is omitted, the set of labels is clear from the context and we never
consider different sets of labels simultaneously. For the categorical discussion,
we use the concepts of categories, functors, natural transformations, pushouts,
colimits and comma categories. For formal definitions of these concepts, we refer
to [10].

4 Specification of a Triangular Mesh Refinement

Mesh refinement is an approach used in geometrical modeling to generate smooth
surfaces from an initial set of control points. Mesh refinement algorithms con-
sist generally in iteratively generating new control points from current ones by
applying a set of creation rules. Such procedures are commonly used in numeri-
cal resolution schemes and can be specified through graph transformations [14].
In [20], the declarative expression and implementation of these algorithms as a
maximal-parallel cell complex rewriting are discussed.

Although mesh algorithms are intuitively described by local graphical schemes,
they operate on the whole mesh and then turn out to be global and synchronous.
Let us illustrate this issue by considering the Loop subdivision procedure [11]
which is one of the simplest algorithms for refining triangular meshes (cell com-
plexes where all 2-cells respect the incidence given in Fig. 1). It relies on the
polyhedral subdivision where each triangle of the original mesh is substituted
by four triangles as shown on Fig. 2a. This rule is quite informal. In particular,
notice the dashed edges: they are definitively not part of the local transformation

2 For any elements x, y ∈ CK, the interval [x, y] = { z | x ≺K z ≺K y } is finite.
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(a) Inner Rule (b) Boundary Rule

Fig. 2. Polyhedral Subdivision Scheme

of the triangle but express how the new pattern has to be merged with the hypo-
thetical applications of the same rule on some neighbor triangles. However, this
detail —in the sense that the primary role of the rule is to specify the refinement
of one triangle— has serious consequences on the algorithm since it forbids to
consider the application of the rule on only one triangle and worse it only allows
the transformation of the whole mesh. The reason of such a constraint comes
from the considered class of cell complexes, i.e., the mesh must remain triangu-
lar. This particularity makes mesh refinement an excellent candidate to illustrate
our approach. In this section, we first specify a set of transformation rules for
polyhedral subdivision, and then we detail how these rules are applied in the
context of a global transformation.

4.1 Rules Specification

For the sake of illustration, let us consider that the refinement is restricted
to a sub-part of the mesh. The region is specified by white or black labeled
nodes so that the subdivision only occurs on triangles incident to three black
nodes. Solutions exist to stop the natural propagation of the procedure over the
whole mesh. Here, we consider an additional rule (see Fig. 2b) which deals with
triangles located on the boundary of the region to be refined, i.e., incident to
exactly two black nodes. Other triangles are left unchanged.

The use of dashed contexts in Fig 2 is not accurate. Let us design a complete
set of rules allowing the refinement of a triangular mesh in one global step. As a
starting point, we specify the transformation of any single triangle of the mesh
by considering two subdivision rules, ρ1 and ρ2 (corresponding to Fig. 2 with-
out dashed context), and two more additional rules, ρ3 and ρ4, for unmodified
triangles. These rules are shown on top of Fig. 3a.

Obviously, there is a lack of specification since connections between triangles
are not taken into account. For instance, let us consider two triangles with only
black nodes connected by a common edge as shown on the left of Fig. 4. Two
matchings of the l.h.s. of rule ρ1 are clearly identified. Therefore, the resulting cell
complex should be composed of two instances of the r.h.s. of rule ρ1. However,
nothing specifies the way to built it. Forgetting mesh refinement for a moment,
many possible constructions are conceivable: leaving the r.h.s. instances isolated,
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Fig. 3. Polyhedral Subdivision Rules
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Fig. 4. Overlapping between two triangles

or merging them by a vertex or an edge, or even identifying them in only one
instance, and so on and so forth.

In the case of mesh refinement, when two triangles share an edge, the two cor-
responding edges on the r.h.s. should also be shared on the resulting cell complex.
There are two ways to specify such a behavior: one union-based method where a
super-rule is designed for pairs of triangles, and another dual intersection-based
method where an agreement is given about the transformation of the common
edge. Here, we choose the latter method focusing on the evolution of an edge
incident to two black nodes. Two things are required: firstly rule ρ5 of Fig. 3a
specifies the subdivision of that edge; secondly for each edge found on the l.h.s.
of rule ρ1, the associated divided edge is identified in the r.h.s. of ρ1 as shown
on Fig. 3b.

With this information at hand, the previous example of two side-by-side
triangles is clarified: there are two matchings of ρ1 and one matching of ρ5
included in the two former matchings. The result cell complex is the unique cell
complex where we can see two instances of the r.h.s. of ρ1 and one instance of
the r.h.s. of ρ5 with inclusions between them being exactly the ones dictated by
the inclusion rule. This can be observed in Fig. 4 where the inclusions between
the l.h.s. matchings and the correspondence with the associated r.h.s. inclusions
between the corresponding r.h.s. instances are depicted.

Iterating this design process for all possible intersections between rules, we
obtain all the rules of Fig. 3a and all the inclusions given in Fig. 3b. Rules
ρ6 and ρ7 describe the conservation of edges incident to a white node and the
conservation of nodes is specified in ρ8 and ρ9. The latter are necessary for
triangles sharing only one node. After transformation, their r.h.s. must also be
connected by a node3.

3 As a byproduct of this intersection-based methodology, rules ρ5-ρ9 are used to man-
age isolated edges and nodes, which seems coherent with the refinement process. If
these effects are not desired then the union-based methodology is applicable, leading
to more transformation rules, namely 32 pair-rules since there are 4 types of trian-
gles and two triangles are either incident by an edge or a node. This allows to stay
strictly concerned with triangles.
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(a) (b) (c) (d)

Fig. 5. Application Steps

As for the rule ρ5, all inclusions between the l.h.s.’s of these new rules are
found and the associated r.h.s.’s are identified. This association of inclusion has
to be seen as a set of rules too, that we call inclusion rules: for each inclusion
of one l.h.s. in another l.h.s., an inclusion rule specifies an associated inclusion
between the two corresponding r.h.s. Put in another way, theses inclusion rules
express a kind of mutual agreement between the rules. When a rule indicates a
transformation on a l.h.s., and this l.h.s. includes the l.h.s. of another rule, the
former rule must achieve the transformation required by the latter rule, and this
is materialized by an inclusion rule indicating where this required transformation
can be found. So no mutual exclusion is necessary. This is reminiscent of the
notion of sub-production in amalgamation. The comparison with this concept is
delayed to Sect. 5.3.

4.2 Rules Application

The construction procedure described above about the transformation of two
side-by-side triangles can be generalized to any mesh as follows:

1. Pattern matching (Fig. 5a ⇒ 5b): the original mesh is split into all the
matchings of the local rules l.h.s. together with all the inclusion information
between these matchings. Any unmatched part of the mesh is lost.

2. Local rule application (Fig. 5b ⇒ 5c): each l.h.s. instance is locally replaced
by its corresponding r.h.s. The inclusion information is also updated: each
l.h.s. inclusion is replaced by its corresponding r.h.s. inclusion.

3. Reconstruction (Fig. 5c ⇒ 5d): the inclusion information are finally used to
merge the different r.h.s. giving rise to the transformed mesh.

Fig. 5 illustrates the computation of a global transformation step on a mesh
composed of four triangles. Note that Figs. 5b and 5c only show more explicitly
for the four-triangles case the inclusion structures already described in Fig. 4 for
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the two-triangles case.

This construction of the polyhedral subdivision based on mutual agreement
has to be compared with the equivalent construction in [20] using mutual ex-
clusion. Mutual exclusion prevents the computation of refinement in one global
step. The solution of [20] consists of a two-step procedure: a first transformation
focuses on the subdivision of all edges and a second transformation splits the
obtained hexagons and squares into triangles. Exclusion holds since the l.h.s. of
each rule consists of only one element (a 1-cell for the first step, a 2-cell for the
second step). Obviously the results of both approaches are the same. However
the exclusion based approach suffers from two main drawbacks:

1. A marking is required in the facets subdivision step to identify the nodes
generated by the edge subdivision step. For example, in the substitution of
an hexagon by four triangles, the three newly created edges surrounding the
central triangle are incident to new nodes.

2. The intermediate cell complex contains hexagons and squares and then is
not a regular triangular mesh. An implementation of this approach requires
the use of a data structure allowing the representation of such a complex.
This is beyond the ability of data structures classically used in geometric
modeling which strongly rely on the triangular nature of the meshes.

5 Global Transformations

In this section, we begin by formalizing the constructions described in the ex-
ample using categorical concepts. Then, we compare the double-pushout (DPO)
approach and global transformations, showing in particular some correspondence
in the particular case where some conservation rules are specified. We also com-
pare global transformations to the Amalgamation Theorem. The similarity is
explained, and some differences are identified.

5.1 Categorical Characterization

Here, we want to give a formal specification of the objects and constructions
presented in Section 4. A transformation rule ρ is a pair of two cell complexes,
the l.h.s. and the r.h.s. A set of transformation rules gives rise to a function
R0 : L0 → Acc, where L0 ⊂ Acc denotes the set of l.h.s., that maps each l.h.s. to
its corresponding r.h.s. An inclusion rule between two transformation rules ρ and
ρ′ associates an inclusion of the l.h.s. of ρ′ in the l.h.s. of ρ with an inclusion of
the r.h.s. of ρ′ in the r.h.s. of ρ. Let us denote L1 the set of all inclusions between
any pair of l.h.s. of L0, the set of inclusion rules can be interpreted as a function
R1 mapping any element of L1 to its corresponding inclusion in Acc. A set of
inclusion rules is said to be complete if the associated function is total. A set of
inclusion rules is said to be consistent if all the inclusions agree on composition.
In that sense, the set of inclusion rule given in Fig. 3b for the mesh refinement
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example is complete and consistent4. It is trivial to see that these two properties
induce the determinism of a global transformation since any case that could be
encountered is taken into account by a mutual agreement (completeness) and
there is no contradiction between these agreements (consistency).

This situation can be nicely summarized in terms of categorical concepts.
Considering that L0 and L1 form a sub-category L of the category AccI, R0

and R1 form a functor R from L to AccI. While consistency holds since R, as
a functor, respects the morphism composition in AccI, completeness is grabbed
when L is a full sub-category where all possible inclusions are considered. This
leads to the following definition:

Definition 1 (Global Transformation). A global transformation T is given
by a tuple 〈LT ,LT ,RT 〉 where LT is a full subcategory of AccI corresponding to
the l.h.s. with LT : LT → AccI its associated inclusion functor and RT : LT →
AccI is a functor from LT to AccI.

We now formalize how a global transformation T is applied on a cell complex
K to build the associated result TK. Following the decomposition presented in
Section 4.2, we get:

1. Pattern matching : all the matchings of the l.h.s. of T in K and the way
they are included one in each other exactly correspond to the objects and
morphisms of the comma category LT /K. Objects of LT /K are pairs 〈l ∈
LT , i : LT l → K〉 where l is a l.h.s. and i an inclusion of this l.h.s. in K.
Morphisms of the comma category are inclusions between the matchings,
i.e., a morphism from a matching 〈l, i〉 to a matching 〈l′, i′〉 is an inclusion
j : l→ l′ in L such that i = i′ ◦ LT j.

2. Local rule application: in order to get the r.h.s. corresponding to each match-
ing, we first use the projection functor ProjLT /K : LT /K → LT defined
on matchings as ProjLT /K = 〈l, i〉 7→ l, and on matching inclusions as
ProjLT /K = j 7→ j. The functor RT then maps each l.h.s. to the correspond-
ing r.h.s., and each l.h.s. inclusion to the corresponding r.h.s. inclusion. So
the result of this step is the compound functor RT ◦ ProjLT /K.

3. Reconstruction: all the r.h.s. instances are finally glued together w.r.t. RT ◦
ProjLT /K. The resulting cell complex TK could be obtained as the colimit

of this functor. However, colimits are only guaranteed5 in AccM since the
universality may require a non-inclusion morphism to hold. So we use the
forgetful functor U to pass from AccI to AccM.

4 Only a subset of the inclusion rules is drawn but all other rules can be retrieved
using composition of inclusion.

5 A way to show that all the colimits exist consists in exhibiting an initial object and
all pushouts. Here, the initial object is simply the empty cell complex. The pushout
of a span of cell complexes can be obtained from the pushout in Set of their cells sets
by adding the unique possible dimension function and the smallest possible strict
partial order relation, which happens to necessarily exist thanks to the dimensions.
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A global transformation application is summarized as follows:

Definition 2 (Application of Global Transformation). Given a cell com-
plex K and a global transformation T , the result TK of the application of T on
K is the cell complex TK = Colim(U ◦ RT ◦ ProjLT /K).

Note that since we consider all the inclusions between the l.h.s. graphs, we
also consider their automorphisms, i.e., their symmetries. This means that, in
our previous examples, each matching is really matched as many times as it
has symmetries. The final result remains correct because all the results of these
symmetric matchings are glued together appropriately due to the functorial na-
ture of LT and RT . Considering these automorphisms is in fact meaningful as
they allow to prevent incoherent specifications that intuitively lead to symmetry
breaking. Unfortunately, the size of this paper does not allow us to enter into a
more detailed discussion about these features.

5.2 Double-Pushouts and Global Transformations

One of the consequences of our construction of the transformation result is that
all parts of the original cell complex which are not matched are not conserved
by any means. This is why we do not consider any morphism relating l.h.s. and
r.h.s. If something has to be kept, this must be specified explicitly as we did for
the not-refined triangles in Section 4. This is in plain contrast with the DPO
approach where the default behavior is to conserve unmatched parts of the graph
and deletion has to be specified explicitly.

However, if a global transformation states that some patterns have to be
conserved, then it is possible to see the elements of the DPO occurring in a
different light. This relation appears because conservation rules have identical
l.h.s. and r.h.s. So despite the fact that all considered inclusions are either strictly
between l.h.s. or strictly between r.h.s., these conservation rule allows to think
inclusions linking both l.h.s. and r.h.s. worlds. To express this a bit more visually,
let us consider a derivation G⇒ G′ via a production p = L← K → R based on
an inclusion i : L→ G and try to lay it out in a global transformation application
way. The elements of the derivation are given in the following diagram.

L K R

G G− G′

l r

l′ r′

i k o

In the global transformation framework, G− is a compound of many conservation
rules, K is a compound of many small conservation rules included in both the
conserved and the modified parts, and L and R are all the l.h.s. and r.h.s. of the
transformation rules. The result G′ is obtained as the colimit of K, G− and R,
which is precisely a pushout. This gives the following layout:
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rules
K K

G− G−

L R

k

l

k

r

matchings

K

G−

L

G

i ◦ l

l′

i

k

l

r.h.s. and colimit
K

G−

R

G′

o ◦ r

r′

o

k

r

Notice that no notion of pushout complement is required in our construction.
The existence of a pushout complement for a production L ← K → R based
on a morphism m : L → K imposes that the parts of L which are not in K
should not be incident to any cell outside of m for a derivation to be feasible.
Contrary to DPOs, all matchings are necessarily applicable in our setting. This
gives more flexibility in the design of transformation rules and allows to work
exclusively with inclusions. All of this are consequences of the fact that we are
in the restricted case where nothing from an input cell complex is considered as
conserved.

5.3 Amalgamation and Global Transformations

There is a strong relation between the proposed formalism and the amalgama-
tion of productions available in the DPO approach. Indeed, both consider rules
and a notion of inclusions between rules. Moreover, amalgamation of two pro-
ductions via a sub-production is a pushout of productions and it is well-known
that a colimit can be viewed as being mainly a compound of pushouts. If we
consider all the matchings of a set of productions and if we have enough sub-
productions to handle all possible overlaps, it is clearly possible to synchronize
all the productions into one production that operates in a single step as required.

However there are some differences. We have already discussed the default
behavior on the unmatched part for both approaches: amalgamation conserves
it while global transformation drops it. Assuming that there is no unmatched
part, a strong difference remains because of applicability. Indeed, in the DPO
approach the amalgamation theorem states that anytime an amalgamation of
productions can be applied, each production can be applied individually, with the
restriction imposed by the existence of a pushout complement explained earlier.
Let us consider the following production that is a straightforward translation of
rule ρ1 of Fig 3a:

Since the three 1-cells in L are not part of K, the rule can only be used on
triangles whose edges are incident to no other 0-cells nor 2-cells, which is not
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the common case in a triangular mesh. Indeed, in mesh refinement, every cells
(except the 0-cells) have to be transformed and the main part of them are inci-
dent to each other. This makes impossible in general the design of productions
isolating the cells to be transformed, except by considering the whole black re-
gion in one global production. As a consequence, there is no simple way to use
amalgamation alone to build a single global production from many local ones.

Again, an important property of our approach is that there is no applicability
condition over the cell complex to transform. The only constraint comes from
the completeness and the consistency of the set of inclusion rules which ensure
to get a well defined and unique result.

6 Conclusion and Future Work

In this article, we have presented the Global Graph Transformations, an original
categorical framework to deal with deterministic graph transformation with a
maximal application strategy. Global transformations are based on the notion
of mutual agreement (as opposed to mutual exclusion) which allows overlap-
ping matchings to agree on the transformation of the shared part. Analogously
to amalgamation of productions, mutual agreement is realized by considering
additional rules specifying the behavior of the intersection parts. Global trans-
formations are useful for expressing the global rewriting of a graph where no
interface is explicitly conserved between the l.h.s. and the r.h.s. Taking a point
of view different from substitution processes, a global transformation is a way
to construct a set of constraints: local transformation constraints imply that for
each l.h.s. matching the corresponding r.h.s. has to appear in the result; inclusion
constraints state how r.h.s. have to be glued from l.h.s. inclusions. The resulting
graph corresponds to the solution of these constraints.

In this paper, the formalization of global transformations relies on the cell
complexes category. We made this choice for bridging with other related works.
Firstly, our running example about mesh refinement is definitively more clear
without any encoding in usual graphs. Secondly, this approach is in line with
the MGS programming language based on the rewriting of topological collec-
tions [20]. In this context, labeled cell complexes are reminiscent of the MGS
topological collections and global transformations correspond to a new rule ap-
plication strategy. We plan to integrate this strategy in the current implementa-
tion of the language. Finally, causal graphs dynamics proposed in [1] have been
recently extended to combinatorial manifolds [2], a specific class of cell com-
plexes. Similarly to these works, we are interested in understanding the notion
of locality and causality in global transformations and to relate these notions
to a kind of topological continuity of the transformation. In this context, using
cell complexes seems more natural since they have been the subject of many
developments in algebraic and digital topology.

From a pure algebraic point of view, the use of cell complexes is a detail. For
example, the global transformation framework can be moved seamlessly from
cell complexes to graphs. One can then ask what kind of general theory supports
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global transformations in the same way that the essential properties of graphs
regarding DPOs have been identified leading to several axiomatic frameworks
(e.g., adhesive [9] and High-Level Replacement [13] categories). There also seems
to be interesting possibilities in integrating the notion of nested application
condition in the context of global transformations too, to specify for example
that a sub-rule is only considered as the intersection of some super-rules and not
others. All these issues are part of future work.
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14. Paszyńska, A., Grabska, E., Paszyński, M.: A graph grammar model of the hp

adaptive three dimensional finite element method. part i. Fundamenta Informaticae
114(2), 149–182 (2012)

48



15. Paun, G.: Computing with membranes. Journal of Computer and System Sciences
1(61), 108–143 (2000)

16. Prusinkiewicz, P., Lindenmayer, A., Hanan, J.S., et al.: The Algorithmic Beauty
of Plants. Springer-Verlag (1990)

17. Raoult, J.C., Voisin, F.: Set-theoretic graph rewriting. Tech. Rep. RR-1665, INRIA
(April 1992)

18. Rozenberg, G., Ehrig, H.: Handbook of graph grammars and computing by graph
transformation, vol. 1. World scientific Singapore (1999)

19. Rozenberg, G., Salomaa, A.: Lindenmayer Systems. Springer, Berlin (1992)
20. Spicher, A., Michel, O., Giavitto, J.L.: Declarative mesh subdivision using topo-

logical rewriting in MGS. In: ICGT 2010. LNCS, vol. 6372, pp. 298–313 (2010)

49



Parallel evaluation of interaction nets:
some observations and examples

(Work-in-progress)

Ian Mackie and Shinya Sato

Abstract. Interaction nets are a particular kind of graph rewriting sys-
tem that have many properties that make them useful for capturing
sharing and parallelism. There have been a number of research efforts
towards implementing interaction nets in parallel, and these have focused
on the implementation technologies. In this paper we investigate a re-
lated question: when is an interaction net system suitable for parallel
evaluation? We observe that some nets are cannot benefit from paral-
lelism (they are sequential) and some have the potential to be evaluated
in a highly parallel way. This first investigation aims to highlight a num-
ber of issues, by presenting experimental evidence for a number of case
studies. We hope this can be used to help pave the way to a wider use
of this technology for parallel evaluation.

1 Introduction

Interaction nets are a model of computation based on a restricted form of graph
rewriting: the rewrite rules must be between two nodes on the left-hand side, be
local (not change any part of graph other than the two nodes), and there must
be at most one rule for each pair of nodes. These constraints have no impact on
the expressive power of interaction nets (they are Turing complete), but they
offer a very useful feature: they are confluent by construction. Taken with the
locality constraint they lend themselves to parallel evaluation: all rewrite rules
that can apply can be rewritten in one parallel step.

The question that we propose in this paper is: when is a particular interaction
net system well suited for parallel evaluation. More precisely, are some interaction
nets “more parallel” than others? A question that naturally follows from this is
can we transform a net so that it is more suited for parallel evaluation. Once
we have understood this, we can also ask the reverse question: can a net be
made sequential? The purpose of this paper is to make a start to investigate
these questions, and we begin with an empirical study of interaction systems to
identify when they are suitable for parallel evaluation or not.

We take a number of typical examples (some common ones from the liter-
ature together with some new ones we made up for this paper) to see if they
benefit from parallel evaluation. In addition, we make some observations about
how programs can be transformed so that parallelism is more useful. Using these
examples, we give some heuristics for getting more parallelism out of an inter-
action net system.
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Related work. There have been a number of studies for the parallel implemen-
tation of interaction nets: Pinto [6] and Jiresch [3] are two examples. In these
works it is the implementation of a given net that has been the focus. Here we
are interested in knowing if a net is well suited for parallel evaluation or not.

Structure. In the next section we recall the definition of interaction nets, and
describe the notion of parallel evaluation that we are interested in. Through
examples we motivate the ideas behind this work. In Section 3 we give a few
small case studies to show how parallelism can have a significant impact on the
evaluation of a net. In Section 4 we give a short discussion and conclude in
Section 5.

2 Background and Motivation

In the graphical rewriting system of interaction nets [4], we have a set Σ of
symbols, which are names of the nodes in our diagrams. Each symbol has an arity
ar that determines the number of auxiliary ports that the node has. If ar(α) = n
for α ∈ Σ, then α has n + 1 ports: n auxiliary ports and a distinguished one
called the principal port.

α

· · ·x1 xn

Nodes are drawn variably as circles, triangles or squares. A net built on Σ is
an undirected graph with nodes at the vertices. The edges of the net connect
nodes together at the ports such that there is only one edge at every port. A
port which is not connected is called a free port.

Two nodes (α, β) ∈ Σ×Σ connected via their principal ports form an active
pair, which is the interaction nets analogue of a redex. A rule ((α, β) =⇒ N)
replaces the pair (α, β) by the net N . All the free ports are preserved during
reduction, and there is at most one rule for each pair of agents. The following
diagram illustrates the idea, where N is any net built from Σ.

α β
...

...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

The most powerful property of this system is that it is one-step confluent:
the order of rewriting is not important, and all sequences of rewrites are of the
same length (in fact they are permutations). This has practical consequences: the
diagrammatic transformations can be applied in any order, or even in parallel,
to give the correct answer. It is the latter feature that we develop in this paper.

We define some notions of nets and evaluation. A net is called sequential if
there is at most one active pair that can be reduced at each step. We say that a
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net is evaluated sequentially if one active pair is reduced at each step. For our
notion of parallel evaluation, we require that all active pairs in a net are reduced
simultaneously, and then any redexes that were created are evaluated at the
next step. We do not bound the number of active pairs that can be reduced in
parallel. We remark that the number of parallel steps will always be less than
or equal to the number of sequential steps (for a sequential net, the number of
steps is the same for sequential and parallel evaluation).

As an example, consider unary numbers with addition. We represent the
following term rewriting system

add(Z,y) = y

add(S(x),y) = add(x,S(y))

as a system of nets with agents Z, S, +:

Z S +

together with two rewrite rules:

Z

+

S

+

S

+

=⇒ =⇒

We observe that addition of two numbers is sequential: at any time there is just
one active pair, and reducing this active pair creates one more active pair, and
so on. In terms of cost, reducing add(n,m) requires n + 1 interactions. If we
consider the net corresponding to the term add(add(m,n), p), then the system is
sequential, and the costs are now 2m+n+2. Using associativity of addition, the
situation changes significantly. The net corresponding to add(m, add(n, p)) has
sequential cost m+1+n+1 = m+n+2, and parallel cost max(m+1, n+1). This
is significantly more efficient sequentially, and moreover is able to benefit from
parallel evaluation. The example becomes even more interesting if we change the
system to an alternative version of addition:

add(Z,y) = y

add(S(x),y) = S(add(x,y))

The two interaction rules are now:

Z

+

S

+

+

S

=⇒ =⇒
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Unlike the previous system, the term add(add(m,n), p) already has scope
for parallelism. The sequential cost is now 2m + n + 2 and the parallel cost is
m + n + 2. But again, if we use associativity then we can do even better and
achieve sequential cost m + n + 2 and parallel cost max(m + 1, n + 1) for the
term add(m, add(n, p)).

These examples illustrate that some nets are sequential; some nets can use
properties of the system (in this case associativity of addition) to get better
sequential and parallel behaviours; and some systems can have modified rules
that are more efficient, and also more appropriate to exploit parallelism. The
next section gives examples where there is scope for parallelism in nets.

3 Case studies

The previous arithmetic example demonstrates that some systems are more use-
ful than others for parallel evaluation. In this section we give some empirical
case studies for a number of different systems to show that when a suitable sys-
tem can be found, the parallel evaluation gives significantly better results than
sequential evaluation.

Fibonacci. The Fibonacci function is a good example where many recursive calls
generate a lot of possibilities for parallel evaluation. We build the interaction net
system that corresponds to the term rewriting system:

fib 0 = fib 1 = 1

fib n = fib(n-1) + fib(n-2)

Using a direct encoding of this system together with addition defined previ-
ously, we can obtain an interaction system:

Fib Fib2Z
⇒

S

Z

Fib
⇒

S

Fib2 Z
⇒

S

Z

Fib S

Fib

Dup

+

Fib2
⇒

S
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SDup ⇒

S S

Dup Dup ⇒Z
Z Z

The following is an example of rewriting:

Fib

Fib S

Fib

Dup

+

S

Z

S

S

Fib2

S

Z

�→ �→

Fib S
Fib

+

S

Z

S

Z

S

S

Z

�→
�

fib 3 fib 1 + fib 2

With respect to the two versions of the addition operation introduced in Sec-
tion 2, we call the former a batch operation, which returns the computational
result after finishing processing all of the given data, and the latter a streaming
operation, which computes one (or a small number of) elements of the given data
and returns partial parts of the computational result immediately. The graphs in
Figure 1 show the number of interactions in each version, where we plot sequen-
tial steps against parallel steps to indicate the rate of growth of each one. Both
graphs demonstrate that the sequential computation is exponential, while the
parallel one is quadratic. We remark that, in the parallel execution, the numbers
of steps with the streaming operation are less than a half of the numbers with
the batch operation. This result is illustrated in the third graph in the figure.

By allowing attributes as labels of agents, we can include integer numbers in
agents. In addition, we can use conditional rewritings, preserving the one-step
confluence, when these conditions on attributes are disjoint. In this case, the
system of the Fibonacci function is written as follows:

n ⇒Fib

n=0

1

n ⇒Fib

n=1

1

n ⇒Fib

not(n=0) and 

not(n=1)

Fib n-1

Fib n-2

Add

n ⇒ Addn

(n)

m n+m⇒

Add

Addn

(n)

There is very little difference between the load balances of fib (n− 1) and
fib (n− 2), and thus this system gives the following graph, demonstrating that
the growth rate for parallel computation is linear, while the sequential rate is
exponential:
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Fig. 1. Comparing batch and streaming operations
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Ackermann. The Ackermann function is defined by three cases: ack 0 n = n+1,
ack m 0 = ack (m-1) 1, and ack m n = ack (m-1) (ack m (n-1)). We can
build the interaction net system on the unary natural numbers that corresponds
to the term rewriting system as follows:

SA
⇒

A2A
⇒

Z

y r xy r

S

y r

r y

S

x
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A2 ⇒Z

r

A

rx

x

S

Z

Pred SA2 ⇒

yrx

A

r

A

y

Pred

Dup

x

where the agent Dup duplicates S and Z agents. The following is an example of
rewriting:

SA

Z

�→

A2

�→

A

A

Pred

Dup

ack 1 2

�→
�

S

S

Z

S

S

Z

S

Z

S

Z

S

Z

AS

Z

A

S

Z

Z

ack 0 (ack 1 1)

When we use numbers as attributes, the system can be written as:

1

⇒

m=0
m

A

A2(m)⇒

not(m=0)
m

A

n ⇒

n=0

m-1
A

n ⇒

not(n=0)
m-1

A

m

n-1

A

Addn
(1)

A2(m)

A2(m)

Figure 2 shows the number of interactions in the cases of (a) unary natural
numbers and (b) integer numbers, where we plot sequential steps against parallel
steps to indicate the rate of growth of each one. Unfortunately, in Figure 2 (b),
there is no significant difference in the sequential and the parallel execution, and
thus there is no possibility of the improvement by the parallel execution. This
is because the Addn agent works as the batch operation, thus it waits for part
of the result. For instance, after the last step in the following the computation
step ack 2 1, the Addn(1) agent, which is the result of ack 0 (ack 1 0), waits the
computational result of ack 1 0. However, the computation of A2 should proceed
because the result of the Addn(1) will be more than 0.

A
2

1

�→
�

A2(1) A

A

0

1

0

�→ A2(1) A
1

0

Addn
(1)
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Fig. 2. Benchmarks of the execution of Ackermann function in sequential and parallel

On the other hand, in the case of the computation on unary natural numbers,
the A2 interacts with the streaming result of ack 0 (ack 1 0):

SA

Z

S
S

Z

�→
�

AA S

Z
Z

Z

A2

S

Z

�→

A S

Z
Z

A2

S

Z

S

Here, borrowing the S agent to denote numbers greater than 0, we change the
rules, especially in the case of ack 0 n, Addn into S as follows:

1

A2(m)⇒

not(m=0)
m

A

n ⇒

n=0

m-1
A

n ⇒

not(n=0)
m-1

A

m

n-1

A

A2(m)

A2(m)

A2(m) ⇒
m-1

A

m
A

⇒

m=0
m

A S

Sum

(n)
m ⇒ n+m

Sum

(n)
⇒

Sum

(n+1)
S S

Thanks to the introduction of the S agent, A2 can be processed without waiting
for the result of ack 1 0. This therefore gives a streaming operation:
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A
2

1

�→
�

Sum
(0) A2(1) A

A

0

1

0

�→ A2(1) A
1

0

S

Sum
(0)

Sum
(0)

In addition, the benchmark graph shows that the improved system is more effi-
cient and more appropriate to exploit parallelism:
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To summarise this section, a system can exploit parallelism by changing
some batch operations into streaming ones. We leave as future work the criteria
to determine when this transformation can benefit from parallelism.

Sorting. Bubble sort is a very simple sorting algorithm that can benefit from
parallel evaluation in interaction nets. One version of this algorithm, written in
Standard ML [5], is as follows:

fun bsortsub (x::x2::xs) =

if x > x2 then x2::(bsortsub (x::xs)) else x::(bsortsub(x2::xs))

| bsortsub x = x

fun bsort t =

let val s = bsortsub t

in if t=s then s else bsort s

end;

Using a direct encoding of this program, we obtain the interaction system:

⇒

B(x)
BS x

B(x) xBS Nil ⇒

⇒

Nil

⇒

⇒B(x)

B(x) y x B(y)

y B(x)

Nil Nil

x

�

y

not

(x

�

y)

EQn(x) �

y
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EQn(x)
y

x = y

⇒
EQ

y

EQn(x)
y

not(x = y)

⇒

BS y

�

EQ
Nil ⇒ N

i
l

�

EQ
x ⇒ EQn(x)

where the δ and ε agents are defined as a duplicator and an eraser:

�

�

n

n

�

⇒

⇒

Nil

n

Nil

Nil

� ⇒Nil

� n ⇒ �

For instance, a list [3, 4, 2] is sorted as follows:

BS 3 4 2 Nil �→

B(3)
EQn(3) � 4 2 Nil

3

�→
�

B(3)
EQn(3)

4 2 Nil

4 2 Nil

�→

B(4)

EQn(3)
4 2 Nil

2 Nil

23

�→
EQn(3)

4 2 Nil

4 Nil

3

2

�→
4 2 Nil

4 Nil

EQ

3 2

�→
� 2 Nil

4 NilBS

�

B(3)
EQn(3)

2 4 Nil

2 4 Nil

�→
�

32

�→
�

2 4 Nil

4 Nil

�

BS

�→
�

B(2)
EQn(2)

3 4 Nil

3 4 Nil

2 3

�→
�

Nil

4

Nil

EQ 2 3�→
� 4 Nil

This system shows that parallel bubble sorting is linear, whereas sequential eval-
uation is quadratic, as indicated in the graph below.

59



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10  20  30  40  50  60  70

s
te

p
s

n

BS n (direct translation)

sequential
parallel

However, it contains the equality test operation by EQ and EQn to check whether
the sorted list is the same as the given list. In comparison to the typical functional
programming languages, interaction nets require copying and erasing of lists for
the test that can cause inefficient computation. Moreover, the sorting process
is applied to the sorted list by B again and again. Taking into account that the
B moves the maximum number in the given unsorted list into the head of the
sorted list, we can obtain a more efficient system:

⇒

⇒B(x)BS x

B(x) x

x

BS Nil ⇒

⇒

Nil

BS B(x)

BS M ⇒

⇒

⇒B(x)

B(x) y x B(y)

y B(x)

Nil M Nil

M M

x

�

y

not

(x

�

y)

y

For instance, a list [3, 4, 2] is sorted as follows:

BS 3 4 2 Nil �→ BS B(3) 4 2 Nil

�→ BS B(4)3 2 Nil �→ BS B(4)3 2 Nil

�→ BS 3 2 M Nil4 �→ 2 M Nil4BS B(3)

�→ 2 M Nil4BS B(3) �→ 2 M Nil4BS 3

M Nil43�→ BS B(2) �→ M Nil43BS 2

Nil43�→ 2

The system reduces the number of computational steps significantly, and gives
the best expected behaviour as follows:
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Summary/discussion. All these examples show the scope for harnessing paral-
lelism from an empirical study: some systems do not benefit, whereas others
allow quadratic computations be executed in linear parallel complexity. How-
ever, these results give a flavour of the potential, and do not necessarily mean
that they can be implemented like this in practice.

4 Discussion

In this section we examine the potential of parallelism illustrated by the graphs
in Section 3, by using a multi-threaded parallel interpreter of interaction nets,
called Inpla, implemented with gcc 4.6.3 and the Posix-thread library.

We compare the execution time of Inpla with other evaluators and inter-
preters. The programs were run on a Linux PC (2.4GHz, Core i7, 16GB) and
the execution time was measured using the UNIX time command as the average
of five executions.

First, in executions of the pure interaction nets, we take INET [1] and amine-
Light [2] and compare Inpla with those by using programs – Fibonacci function
(streaming additive operation) and Ackermann function. Table 1 shows execu-
tion time in seconds among interaction nets evaluators. We see that Inpla runs
faster than INET since Inpla is a refined version of amineLight, which is the
fastest interaction nets evaluator [2]. In the table the subscript of Inpla gives
the number of threads in the thread pool, for instance Inpla2 means that it was
executed by using two threads. Generally, since Core i7 processor has four cores,
it tends to reach the peak with four execution threads.

Next, we compare Inpla with Standard ML of New Jersey (SML v110.74) [5]
and Python (2.7.3) [7] in the extended framework of interaction nets which in-
cludes integer numbers and lists. SML is a functional programming language
and it has the eager evaluation strategy that is similar to the execution method
in interaction nets. Python is a widely-used interpreter, and thus the compari-
son with Python gives a good indication on efficiency. Here we benchmark the
Fibonacci function and the streaming operation versions of Ackermann and the
improved version of Bubble Sort algorithm for randomly generated list elements.
Table 2 shows that SML computes those arithmetic functions fastest. Inpla uses
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agents to represent the functions and integer numbers, and those agents are con-
sumed and reproduced repeatedly during computation. Thus the execution time
becomes slower eventually, compared to the execution in SML that performs
computation by function calls and managing stacked arguments. In comparison
with Python, Inpla computes those functions faster. The sort algorithm is a
special case in that interaction nets are efficient to implement these algorithms.

INET amLight Inpla Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

fib 29 2.31 2.05 1.29 1.31 1.00 0.93 0.90 0.92

fib 30 3.82 3.40 1.74 1.74 1.24 1.13 1.08 1.12

ack 3 10 18.26 11.40 4.24 4.42 2.33 1.66 1.36 1.44

ack 3 11 66.79 46.30 17.53 18.13 9.47 6.67 5.86 5.83

Table 1. The execution time in seconds on interaction nets evaluators

SML Python Inpla Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

fib 34 0.12 2.09 1.67 1.50 0.80 0.70 0.68 0.82

fib 38 0.66 16.32 11.39 10.22 5.68 4.47 4.40 4.75

ack 3 6 0.03 0.05 0.02 0.03 0.02 0.02 0.02 0.02

ack 3 9 0.06 -1 0.69 0.72 0.38 0.27 0.24 0.24

BS 10000 1.64 6.71 2.11 2.25 1.17 0.87 0.76 0.68

BS 20000 8.38 30.35 8.38 8.93 4.57 3.64 2.98 2.49
1 RuntimeError: maximum recursion depth exceeded

Table 2. The execution time in seconds on interpreters

Next we analyse the results of the parallel execution in Inpla by using graphs
in Section 3, which show the trends of steps in parallel execution on the assump-
tion of the unbounded resources. We may write “parallel(n)” in the following
graphs to make explicit that Inplan is used for the experiment.

Fibonacci function. Figure 3 shows the execution time of each program for Fi-
bonacci function by using Inpla. We see that each the sequential execution is
exponential as shown in the graphs on the assumption of the unbounded re-
sources. The increase rate of execution time in the parallel execution by Inpla
gradually becomes close to, according to increasing the number of threads, the
trends of the parallel computation in the graphs on the assumption.

We note that, in the computation of unary natural numbers, the execution
of the streaming version is slower than the batch version as shown in the graph
on the left side in Figure 4. The graph on the right side shows the ratio of steps
in the streaming version to steps in the batch version on the assumption of the
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Fig. 3. The execution time of Fibonacci function by Inpla

unbounded resources. The ratio becomes around 0.4 according to increasing n
in ack 3 n. This means that there is a limited benefit of the parallelism, even
if we assume unbounded resources. In the real computation, the cost of parallel
execution more affects the execution time in comparison to the benefit of the
parallelism, and thus the streaming version becomes slower.

Ackermann function. Figure 5 shows the execution time of each program for
Ackermann function by using Inpla. We see that, except for the batch operation
version, the parallel computation follows well the trends on the assumption of
the unbounded resources. On the other hand, the parallel execution of the batch
operation version takes quite a long time compared to the streaming version.
This is because, in the unbounded resources, not only that there is no signifi-
cant difference in sequential and parallel execution, but also that there is a cost
of parallel execution such as scheduling of threads execution uselessly. These
are some of the reasons why the parallel execution does not always have good
performance, but are improved in the streaming version.

Bubble sort. Figure 6 shows the execution time of the two programs for Bubble
sort using Inpla. As anticipated by the graphs on the assumption of the un-
bounded resources, we see that the improved version performs best as expected.
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Fig. 5. The execution time of Ackermann function by Inpla
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Fig. 6. The execution time of Bubble sort by Inpla

5 Conclusion

Although discussed for many years, we believe that parallel implementations of
interaction nets is still a very new area and much needs to be done. In this work
we have assumed unbounded resources in terms of the number of processing
elements available. This is a reasonable assumption with GPU when many thou-
sands of processing elements are available. We analysed the execution result of
the multi-threaded execution by using the investigation result on the assump-
tion, and also showed that, on the one hand, these perform as the best expected,
and on the other hand, some of execution results take something away from the
investigation results due to an overhead of using parallel technologies as antici-
pated by the investigation. We hope the ideas in this paper may help in moving
this work forward.
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Attribution of Graphs by Composition
of M,N -adhesive Categories
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Abstract. This paper continues the work onM,N -adhesive categories
and shows some important constructions on these categories. We use
these constructions for an alternative, short proof for theM,N -adhesive-
ness of partially labelled graphs. We further present a new concept of
attributed graphs and show that the corresponding category is M,N -
adhesive. As a consequence, we inherit all nice properties for M,N -
adhesive systems such as the Local Church-Rosser Theorem, the Paral-
lelism Theorem, and the Concurrency Theorem for this type of attributed
graphs.

Keywords: Graph transformation, attributed graphs, composition, adhesive cat-
egories, adhesive systems

1 Introduction

The double-pushout approach to graph transformation, which was invented in
the early 1970’s, is the best studied framework for graph transformation [Roz97],
[EEKR99, EKMR99, EEPT06b]. As applications of graph transformation come
with a large variety of graphs and graph-like structures, the double-pushout ap-
proach has been generalized to the abstract settings of high-level replacement
systems [EHKP91], adhesive categories [LS05],M-adhesive categories [EGH10],
M,N -adhesive categories [HP12], and W-adhesive categories [Gol12]. This pa-
per continues the work of Habel and Plump [HP12] onM,N -adhesive categories.

In the literature, there are several variants of attribution concepts, e.g. typed
attributed graphs in the sense of Ehrig et al. [EEPT06b], attributed graphs in the
sense of Plump [Plu09], attributed graphs as a graph with a marked sub-graph in
the sense of Kastenberg and Rensink [KR12], separation of the graph structure
and their attribution and data in the sense of Golas [Gol12], and attributed
structures in the sense of Duval et al. [DEPR14].

Our main aim is to introduce a simple, alternative concept for attributed graphs
and attributed graph transformation. Our approach is to define a category

? This work is supported by the German Research Foundation through the Research
Training Group (DFG GRK 1765) SCARE (www.scare.uni-oldenburg.de).
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AttGraphs of attributed graphs from the well-known category Graphs of unla-
belled graphs and a category Att of attribute collections by a multiset construc-
tion and the comma category construction. By closure results forM,N -adhesive
categories, we obtain that the category AttGraphs is M,N -adhesive. By the
results in [HP12], the Local Church-Rosser Theorem, the Parallelism Theorem
and the Concurrency Theorem hold for the new type of attributed graphs pro-
vided that the HLR+-properties are satisfied.

The paper is structured as follows. In Section 2, we recall the definition ofM,N -
adhesive categories. In Section 3, we prove some basic composition results and
show that constructions for a string and a multiset category areM,N -adhesive
for suitable classesM and N provided that the underlying category is. As a con-
sequence, the category of partially labelled graphs is M,N -adhesive, as shown
in Section 4. In Section 5, we introduce a new concept of attributed graphs -
similar to partially labelled graphs - and show that the corresponding category
of attributed graphs is M,N -adhesive. In Section 6, we present a precise rela-
tionship between M,N -adhesive and W-adhesive categories, in Section 7 some
related work, and in Section 8 some concluding remarks.

Note that this paper comes with a long version [PH15] containing the proofs and
additional examples.

2 M,N -adhesive Categories

In this section, we recall the definition of M,N -adhesive categories, introduced
in [HP12], generalizing the one of M-adhesive categories [EGH10]. We assume
that the reader is familiar with the basic concepts of category theory; standard
references are [EEPT06b, Awo10].

Definition 1 (M,N -adhesive). A category C isM,N -adhesive, whereM is
a class of monomorphisms andN a class of morphisms, if the following properties
are satisfied:

1. M and N contain all isomorphisms and are closed under composition and
decomposition. Moreover,N is closed underM-decomposition, that is, f ; g ∈
N , g ∈M implies f ∈ N .

2. C has M,N -pushouts and M-pullbacks. Also, M and N are stable under
pushouts and pullbacks.

3. M,N -pushouts are M,N -van Kampen squares.

Remark. C hasM,N -pushouts, if there is a pushout whenever one of the given
morphisms is inM and the other morphism is in N . C hasM-pullbacks, if there
exists a pullback whenever at least one of the given morphisms is inM. A class
X ∈ {M,N} is stable under M,N -pushouts if, given the M,N -pushout (1) in
the diagram below, m ∈ X implies n ∈ X and stable underM-pullbacks if, given
the M-pullback (1) in the diagram below, n ∈ X implies m ∈ X . An M,N -
pushout is an M,N -van Kampen square if for the commutative cube (2) in the
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diagram below with the pushout (1) as bottom square, b, c, d,m ∈ M, f ∈ N ,
and the back faces being pullbacks, we have that the top square is a pushout if
and only if the front faces are pullbacks.

A

C

B

D

f g

m

n

(1) A

A′

B

B′

C

C ′

D

D′

b

c

d

f
m

n
g(2)

In [HP12], it is shown that all M-adhesive categories are M,N -adhesive.

Lemma 1 (M-adhesive ⇒ M,N -adhesive). Let C be any category and N
be the class of all morphisms in C. Then C isM,N -adhesive if and only if C is
M-adhesive.

In the following, we give some examples of categories that are M,N -adhesive.

Lemma 2 (Basic M,N -adhesive Categories). The following categories are
M-adhesive [EEPT06b] and, by Lemma 1,M,N -adhesive where N is the class
of all morphisms in C:

1. The category Sets of sets and functions isM-adhesive whereM is the class
of all injective functions.

2. The category Graphs of graphs and graph morphisms isM-adhesive where
M is the class of all injective graph morphisms.

3. The category LGraphs of labelled graphs and graph morphisms is M-
adhesive where M is the class of all injective graph morphisms.

The following category is M,N -adhesive, but not M-adhesive [HP12]:

4. The category PLGraphs of partially labelled graphs and graph morphisms
is M,N -adhesive where M and N are the classes of all injective and all
(injective) undefinedness-preserving1 graph morphisms, respectively.

3 Construction of Categories

There are various ways to construct new categories from given ones. Beside
the standard constructions (product, slice and coslice, functor and comma cat-
egory) we consider the constructions of a string category and a multiset cat-
egory. For each of these constructions, we prove a composition result, saying

1 A morphism f : G→ H preserves undefinedness, if it maps unlabelled items in G to
unlabelled items in H.
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more or less, whenever we start with Mi,Ni-adhesive categories, then the new
constructed category is M,N -adhesive for some M,N . For the definitions of
category-theoretic notions refer to [EEPT06b, Awo10].

First, we consider the standard constructions: product, slice and coslice, functor,
and comma category. For the definitions we refer to [EEPT06b] A2 and A6. Our
composition result generalizes the result fromM- toM,N -adhesive categories.

Theorem 1 (Standard Constructions). M,N -adhesive categories can be
constructed as follows:

1. If Ci is Mi,Ni-adhesive (i = 1, 2), then the product category C1 × C2 is
M,N - adhesive where M =M1 ×M2 and N = N1 ×N2.

2. If C is M,N -adhesive and X is an object of C, then the slice category
C\X and the coslice category X\C over X are M′,N ′-adhesive where the
morphism classesM′,N ′ are restricted to the slice and coslice category, i.e.,
for X ∈ {M,N}, X ′ = X ∩C\X and X ′ = X ∩X\C, respectively.

3. If C isM,N -adhesive, then for every category X, the functor category [X,C]
is Mft,Nft-adhesive with functor transformations Mft and Nft.

2

4. If Ci areMi,Ni-adhesive and Fi : Ci → C functors (i = 1, 2), where F1 pre-
serves M1,N1-pushouts and F2 preserves M2-pullbacks, then the comma
category ComCat(F1, F2, I) isMc,N c-adhesive whereMc = (M1×M2)∩
Mor, N c = (N1 × N2) ∩Mor, and Mor is the set of all morphisms of the
comma category. We will use A ↓ B as a shorthand for the comma category
ComCat(A,B, I), with |I| = 1 and both functors A,B pointing into Sets.

Proof. The proof is a slight generalization of the corresponding one for M-
adhesive categories (see Theorem 4.15 in [EEPT06b]). In most cases the relevant
constructions can be done componentwise from objects or morphisms in the
original category. For the full proof see the long version [PH15]. 2

Second, we consider the constructions of a string and a multiset category and
prove that M,N -adhesive categories are closed under these constructions.

Construction (String Category). Given a category C, we construct a string
category C∗ as follows:

The objects are lists (finite sequences) A1 . . . Am of objects of C, including the
empty list λ. The morphisms between two objects A1 . . . Am and B1 . . . Bn (given
m ≤ n) are lists (finite sequences) of morphisms f1 : A1 → Bi . . . fm : Am →
Bi+m−1 in C, with B1 . . . Bi . . . Bi+m−1 . . . Bn for some 1 ≤ i ≤ m−n (i.e. A1 . . .
Am is embedded in B1 . . . Bn). The empty list λ is an initial element for C∗.

Our construction for a string category above is close to that of a free monoidal
category. Allowing for the existence of a morphism even if m < n, however

2 For a class X , Xft denotes the class of natural transformations t : F → G, where all
morphisms tX : F (X)→ G(X) are in X .
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contradicts these definitions and further prevents us from giving a workable
definition of a tensor product. We need these morphisms, especially in the case
of the multiset category below, to allow for the addition or removal of elements
in transformation systems based on these categories.

Construction (Multiset Category). Given a category C, we construct a
multiset category C⊕ as follows:

The object are lists (finite sequences) A1 . . . Am of objects of C, including an
empty list ∅. The morphisms between two objects A1 . . . Am and B1 . . . Bn (given
m ≤ n) are lists (finite sequences) of morphisms fi : Ai → Bji in C, where ji = jk
implies i = k, i ∈ {1, . . . ,m}.In contrast to the above construction for a string
category, we ignore the order of elements.

We will use {|a, a, b|} to denote a multiset with elements a, a and b.

Theorem 2 (C M,N -adh ⇒ C∗ M∗,N ∗-adh, C⊕ M⊕,N⊕-adh).

1. If C is M,N -adhesive, then the string category C∗ over C is M∗,N ∗-
adhesive where M∗ and N ∗ contain those morphisms which are lists of
morphisms inM and N , respectively. N ∗ is further restricted to morphisms
that perserve length, i.e. where domain and codomain are of equal length.

2. If C is M,N -adhesive, then the multiset category C⊕ over C is M⊕,N⊕-
adhesive withM⊕ and N⊕ contain those morphisms which are lists of mor-
phisms in M and N , respectively.

Proof. In both cases the relevant constructions can be done componentwise
from objects or morphisms in the original category and the composition and
decomposition properties can be inherited from morphisms in the underlying
category. The restriction of N ∗ to morphisms that preserve length ensures the
existence of pushouts. See the long version [PH15] for the full proof. 2

4 Partially Labelled Graphs

Let us reconsider the category PLGraphs of partially labelled graphs, investi-
gated e.g. in [HP02, HP12], where the labelling functions for nodes and edges are
allowed to be partial. In [HP12], it is shown that PLGraphs is notM-adhesive,
butM,N -adhesive if we chooseM andN as the classes of all injective and all in-
jective, undefinedness-preserving graph morphisms, respectively. In this section,
we present an alternative proof of the statement: We show that the category
PLGraphs can be constructed from the category Graphs and a category PL
of labels by a multiset construction and the comma category construction.

First, we consider a label set L together with the symbol ⊥ indicating unde-
finedness. As morphisms we use all identities as well as all morphisms from ⊥
to a label in L.
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Lemma 3 (PL is a Category). For each alphabet L, the class of all elements
in L ∪ {⊥}3 as objects and all morphisms of the form ⊥ → x and x → x
(x ∈ L ∪ {⊥}) forms the category PL where the composition of x → y and
y → z is x→ z and the identity on x is x→ x.

a b . . . z

⊥

Proof. Follows directly from the definiton. 2

It can be shown that the category PL is M,N -adhesive.

Lemma 4 (PL isM,N -adhesive). The category PL isM,N -adhesive where
M and N are the classes of all morphisms and all identities, respectively.

Proof. We show the properties required in Definition 1, for pushouts and van
Kampen squares we can list the small number of cases exhaustively. See the long
version [PH15] for the full proof. 2

Partially labelled graphs generalize labelled graphs [Ehr79].

Definition 2 (PLGraphs). A partially labelled graph is a system G = (V,E, s,
t, l) consisting of finite sets V and E of nodes and edges, source and target
functions s, t : E → V , and a partial labelling function l : E+V → L 4, where L
is a fixed set of labels.

A morphism g : G → H between graphs G and H consists of two functions
gV : VG → VH and gE : EG → EH that preserve sources, targets and labels, that
is, gE ; sH = sG; gV , gE ; tH = tG; gV , and lH(g(x)) = lG(x) for all x in Dom(lG).

Fact 1. The class of partially labelled graphs and its morphisms constitute a
category PLGraphs, where morphism composition is function composition and
the identity is the identity function.

As an alternative to the existing proof we prove that the comma category of the
two functors Graphs : Graphs→ Sets and PL : PL⊕ → Sets defined below is
M,N -adhesive. We further prove the category PLGraphs is isomorphic to this
comma category, thus PLGraphs is also M,N -adhesive. The isomorphism of
categories is defined as in Ehrig et. al. [EEPT06b].

3 We assume that ⊥ is not an element of L.
4 + denotes the disjoint union of sets.
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Definition 3 (Graphs : Graphs → Sets). The functor Graphs : Graphs →
Sets maps graphs to their underlying set of nodes and edges and is given as
follows: For a graph G′ = (V ′, E′, s′, t′), let Graphs(G′) = V ′ + E′ and for a
graph morphism fG′ : A → B, let Graphs(fG′) be a natural transformation,
defined by Graphs(f)(x) = fV ′(x) if x ∈ V ′ and fE′(x) otherwise.

Lemma 5. The functor Graphs : Graphs → Sets preserves M,N -pushouts,
where M is the class of injective graph morphisms, N is the class of all mor-
phisms.

Proof. See the long version [PH15]. 2

Definition 4 (PL : PL⊕ → Sets). The functor PL : PL⊕ → Sets maps
a multiset of labels to a set with distinct elements and is given as follows:
For a multiset of labels m′ : L′ → N let PL(m) =

⋃
l′∈L′ m̄(l′), where for

l′ ∈ L′, m̄(l′) = {l′1, ..., l′k} iff m(l′) = k. For a morphism f : m1 → m2 let
PL(f) = PL(m1)→ PL(m2) be a morphism in Sets, such that PL(f)(l′1) = l′2
iff PL(l1) = l′1, PL(l2) = l′2 and f(l1) = l2 with l1, l2 ∈ m1,m2 respectively.

Lemma 6. The functor PL : PL⊕ → Sets preserves I-pullbacks, where I is
the class of all morphisms.

Proof. See the long version [PH15]. 2

For an object (G′,m′, op) of the comma category Graphs ↓ PL the morphism
op: Graphs(G′) → PL(m′) determines which node or edge is associated with
which label, i.e. op(e′) = l′i with e′ ∈ E′, l′ ∈ L′ and i ∈ N means the edge e′ is
labelled with l′.

Lemma 7 (PLGraphs ∼= Graphs ↓s PL). The category PLGraphs of par-
tially labelled graphs is isomorphic to the comma category Graphs ↓s PL, where
↓s indicates a restriction to surjective morphisms op in the comma category.

We restrict ourselves to those objects of the comma category where op is surjec-
tive, since there could otherwise be labels that are not associated with an object
in the graph.

Proof. The graph components of both categories are trivially isomorphic. It
remains to show that changes to a partial labelling function and a total labelling
function along with changes to the labels themselves can be employed towards
the same effect. For the proof see the long version [PH15]. 2

Now we are able to present an alternative proof of the fact that the category
PLGraphs of partially labelled graphs is M,N -adhesive. It is based on fact
that the categories Graphs of graphs and PL of labels are M,N -adhesive and
the constructions of a commutative monoidal category and the comma category
preserve M,N -adhesiveness.
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Theorem 3 (PLGraphs is M,N -adhesive). The category PLGraphs of
partially labelled graphs isM,N -adhesive whereM and N are the classes of all
injective and all injective, undefinedness-preserving graph morphisms, respec-
tively.

Proof. The new proof of Theorem 3 is illustrated in Figure 1.

1. By Lemmata 2 and 4, Graphs and PL areMG,NG andML,NL-adhesive,
respectively. MG,NG are monomorphisms in Graphs and ML,NL are the
classes of all morphisms and all identity morphisms in PL, respectively.

2. By Theorem 2, PL⊕ is M⊕,N⊕-adhesive.
3. By Theorem 1 and Lemmata 5 and 6, Graphs ↓s PL is Mc,N c-adhesive.

Note that Theorem 1 still holds for the restriction to a surjective op, since the
componentwise constructions can be still be done just as in the unrestricted
case.

4. By Lemma 7, PLGraphs is M,N -adhesive. Moreover M = F (Mc) since
both of these classes include all monomorphisms and N = F (N c) since the
perservation of undefinedness in N is analogous to the restriction to identity
morphisms in NL, which determines the treatment of labels in N c.

Graphs Lem 2 PL Lem 4

PL⊕

Graphs ↓s PL

PLGraphs

Thm 2

Thm 1

∼= Lem 7

Fig. 1. Proof of “PLGraphs is M,N -adhesive”.

2

Example 1. Figure 2 shows a transformation rule for a partially labelled graph
consisting of a single node which is relabelled from a to b. Below the rule we
show objects of Graphs ↓ PL and their individual components. Note that, in
contrast to partially labelled graphs, we do not change the assigment of items
to labels but instead change the label itself.
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a ⊥ b

G = ({n1}, ∅, s, t) {n1}

L = {|a|} {a1}

Graphs

PL
op

... {n1}

L = {|⊥|} {⊥1}PL
op

... {n1}

L = {|b|} {b1}PL
op

Fig. 2. Example transformation of an object of Graphs ↓s PL

5 Attributed Graphs

Similiar to the construction for partially labelled graphs we construct attributed
graphs, where the attributes can be changed analogously to relabelling.

We start with defining a category where the objects collect all the attributes of
a node or an edge. These attribute collections consist of a set of names, each
of which is associated with a value. We use the category PL from section 4 to
represent these values.

Definition 5 (Att = IDSets ↓ PL). The category Att of attribute collections is
defined as the comma category IDSets ↓ PL where IDSets denotes the identity
functor over Sets.

Lemma 8 (Att is Mc,N c-adhesive). The category Att of attribute collec-
tions is Mc,N c-adhesive where Mc,N c are the classes of morphisms induced
by the comma category construction.

Proof. The proof is illustrated in Figure 3. IDSets ↓ PL is Mc,N c-adhesive,
since Sets and PL are M,N -adhesive and a multiset and comma category
construction preserve M,N -adhesiveness. 2

To construct attributed graphs we define a functor from multisets of these at-
tribute collections to sets for later use in the comma category construction (com-
pare with the construction for partially labelled graphs in section 4). We also
prove that this functor preserves pullbacks, since this is required for the comma
category to preserve M,N -adhesiveness.

Definition 6 (Att : Att⊕ → Sets). The functor Att : Att⊕ → Sets that maps
attribute collections to sets with distinct values is given by the following: A
triple (IDSets(S), PL(m), op)⊕ is mapped to the set S⊕ + PL(m)⊕ where ⊕
is flattened analogously to the way PL does (see Definition 4). A morphism
f : A→ B in Att⊕ is mapped to a morphism Att(f) : Att(A)→ Att(B), where
elements in Att(A) are mapped to elements in Att(B) based on the original
mappings in Att⊕.
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Sets Lem 2 PL Lem 4

PL⊕

IDSets ↓ PL

Att

Thm 2

Thm 1

= Def 5

Fig. 3. Proof of “Att is Mc,N c-adhesive”.

Lemma 9 (Att preserves I-pullbacks). The functor Att : Att⊕ → Sets
preserves I-pullbacks where I is the class of all morphisms.

Proof. See the long version [PH15]. 2

Example 2. Figure 4 shows a transformation rule in Att. The attribute col-
lection consists of a single attribute a, which has its value changed from 5 to
9 by the rule. Below the rule we show the objects of Att with their individual
components.

a = 5 a = ⊥ a = 9

N = {a} {a}

V = {|5|} {51}

IDSets

PL
op

... {a}

V = {|⊥|} {⊥1}PL
op

... {a}

V = {|9|} {91}PL
op

Fig. 4. Example transformation rule for objects of Att

Definition 7 (AttGraphs = Graphs ↓ Att)). The category AttGraphs of
attributed graphs is defined as the comma category Graphs ↓ Att.

Now we are able to show that the category AttGraphs of attributed graphs is
M,N -adhesive. It is based on the fact that the categories Graphs of graphs
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and Att of attribute collections are M,N -adhesive and the constructions of a
multiset category and a comma category preserve M,N -adhesiveness.

Theorem 4 (AttGraphs isM,N -adhesive). The category AttGraphs of at-
tributed graphs isMc,N c-adhesive whereMc,N c are the classes of morphisms
induced by the comma category construction.

Proof. The proof is illustrated in Figure 5.

1. By Lemmata 2 and 8, Graphs and Att areMG,NG andMA,NA-adhesive,
respectively.MG,NG are monomorphisms in Graphs andMA,NA are the
classes of morphisms induced by the comma category construction of Att.

2. By Theorem 2, Att⊕ is M⊕,N⊕-adhesive.
3. By Theorem 1 and Lemmata 5 and 9, Graphs ↓ Att is Mc,N c-adhesive.
4. By Defintion 7, AttGraphs is Mc,N c-adhesive.

Graphs Lem 2 Att Lem 8

Att⊕

Graphs ↓ Att

AttGraphs

Thm 2

Thm 1

= Def 7

Fig. 5. Proof of “AttGraphs is Mc,N c-adhesive”.

2

In the following we briefly compare these attributed graphs to some existing
attribution concepts. In contrast to the typed attributed graphs in [EEPT06b]
these attributed graphs can have at most one value for an attribute. We con-
structed untyped graphs and even the attributes themselves have no types. Using
the construction for the slice category from Theorem 1 we can build graphs where
typing is done at either level, which allows us to have typed attributes on an
untyped graphs, such that attribute values are constrained by the type but what
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attributes a node or edge has is not. In contrast typed attributed graphs require
that the graph is typed and thus do not allow e.g. the addition of attributes
to a node or edge. Compared to the attribution concepts used in [Plu09] we do
not require a seperate instantiation of a rule schema and it is possible to find a
match without fully specifying other, pontentially uninteresting, attributes. We
do not, however base our attributes on an algebra that would allow us to per-
form some computations on the attributes, this would require additional work
to proveM,N -adhesiveness for a suitable category. Fortunately we only need to
provide this proof for such attributes once, enabling us to construct many differ-
ent attributed structures without concerning ourselves with e.g. the underlying
graphs.

6 W-adhesive Categories

The concept of M,N -adhesive categories [HP12] was introduced as a frame-
work for partially labeled graphs. More or less at the same time, the concept
of W-adhesive categories was introduced by Golas [Gol12] as a framework for
attributed graphs. In this section, we present a precise relationship between
M,N -adhesive and W-adhesive categories.

We obtain the following relationship betweenM,N - andW-adhesive categories.

Theorem 5 (M,N -adhesive ⇒ W-adhesive). If the category C is M,N -
adhesive, then the tuple (C,M,M,M × N ) is a W-adhesive category. Vice
versa, if the tuple (C,R,M,W) is W-adhesive, then C is R,Ran(W)-adhesive
provided that the range Ran(W) ofW is stable under pushout and pullback and
contains all isomorphisms.

Proof. We can directly derive the properties ofW-adhesive categories from the
definition ofM,N -adhesive categories and vice versa, except for the stability of
the morphism classes M,N over pushouts and pullbacks. Due to the required
properties ofW-adhesive categories, the class ofW-spans used necessarily equals
the spans defined by R×N thus allowing us to bridge the different definitions.
For the proof see the long version [PH15]. 2

Remark. The situation may be summarized as follows:

– The requirements for an M,N -adhesive category are slightly more strict
than those for W-adhesive categories.

– For M,N -adhesive systems, the Local Church-Rosser Theorem, the Paral-
lelism Theorem, and the Concurrency Theorem are proven. For W-adhesive
systems, up to our knowledge, there has only been a proof of (part of) the
Local Church-Rosser Theorem.

– The W-adhesive categories of attributed objects in [Gol12] are M,N -ad-
hesive: N is the class of ⊥-preserving morphisms, contains all isomorphisms
and is stable under pushout and pullbacks.
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7 Related Concepts

Throughout the literature, various versions of adhesive and quasiadhesive [LS05],
weak adhesive HLR [EHPP06], partial map adhesive [Hei10], and M-adhesive
[EGH10] exist. In [EGH10], all these categories are shown to be alsoM-adhesive
ones. The categories of labelled graphs, typed graphs, and typed attributed
graphs in [EEPT06b], are known to be M-adhesive categories if one chooses
M to be the class of injective graph morphisms [EGH10]. Each such category
induces a class of M-adhesive systems for which several classical results of the
double-pushout approach hold.

Unfortunately, the framework ofM-adhesive systems does not cover graph trans-
formation with relabelling. In [HP12], the authors generalize M-adhesive cate-
gories toM,N -adhesive categories, where N is a class of morphisms containing
the vertical morphisms in double-pushouts, and show that the category of par-
tially labelled graphs isM,N -adhesive, whereM and N are the classes of injec-
tive and injective, undefinedness-preserving graph morphisms, respectively. In-
dependently, Golas [Gol12] provided a general framework for attributed objects,
so-called W-adhesive systems which allows undefined attributes in the interface
of a rule to change attributes, which is similar to relabelling. By Lemma 1 and
Theorem 5, the hierarchy of adhesive categories in [EGH10] can be extended in
the following way:

adhesive adhesive HLR M-adhesive M,N -adhesive W-adhesive
⇒
6⇐

⇒
6⇐

⇒
6⇐

⇒
6⇐

In the literature, there are several variants of attribution concepts, e.g., Löwe
et al. [LKW93] view graphs as a special case of algebras. These algebras can
then additionally specify types for attributes. Ehrig et al. [EEPT06a] — intro-
duce typed attributed graphs, expanding the graph by including an algebra for
attribute values. To facilitate attribution, typed attributed graphs extend graphs
by attribution nodes and attribution edges. All possible data values of the al-
gebra are assumed to be part of the graph. Nodes and edges are attributed by
adding an attribution edge that leads to an attribution node. Kastenberg and
Rensink [KR12] take a similar approach, but instead of only encoding the data
values, operations and constants are also included in the graph. Plump et al
[Plu09] use a different approach to attribution. Here labels are replaced by se-
quences of attributes. Rules are complemented by rule schemata in which terms
over the attributes are specified. These variables are substituted with attribute
values and evaluated during rule application. Instead of modifying the definition
of graphs and graph transformations to include attributes, Golas [Gol12] defines
an attribution concept over arbitrary categories. Duval et al. [DEPR14] allow
attributed graphs and allow rules to change attributes.

In [Peu13], Peuser compares the approaches of Ehrig et al. [EEPT06a] and Plump
[Plu09] and introduces a useful new concept of attribution which is the basis of
this work.
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The idea of composition of adhesive categories is not new: For M-adhesive cat-
egories, the standard constructions of product, slice and coslice, functor, and
comma categories are given in [EEPT06b].

8 Conclusion

In this paper, we have continued the work onM,N -adhesive categories and have
presented several examples (see Table 1).

category structures adhesiveness reference

Sets sets M-adh [EEPT06b]
PL sets of labels M,N -adh Lemma 4
Att attribute collections M,N -adh Lemma 8

Graphs unlabelled graphs M-adh [EEPT06b]
LGraphs labelled graphs M-adh [Ehr79]
PLGraphs partially labelled graphsM,N -adh [HP12], Thm 3
AttGraphs attributed graphs M,N -adh Theorem 4

Table 1. Examples of M,N -adhesive categories

The main contributions of the paper are the following:

(1) Closure results for M,N -adhesive categories.
(2) A new, shorter proof of the result in [HP12] that the category of partially

labeled graphs is M,N -adhesive.
(3) A new concept of attributed graphs together with a proof that the category

of these attributed graphs isM,N -adhesive and an application to transfor-
mation systems saying that for these attributed graphs, the Local Church-
Rosser Theorem, the Parallelism Theorem and the Concurrency Theorem
hold provided that the HLR+-properties are satisfied.

Further topics might be:

(1) Investigate the relationship to the approach of Parisi-Presicce et al. [PEM87]
considering graphs with a structured alphabet.

(2) Proof of the HLR+-properties for the category AttGraphs to obtain the Lo-
cal Church-Rosser Theorem, the Parallelism Theorem and the Concurrency
Theorem for this type of attributed graphs.

(3) Generalization of the approach to systems with so-called left-linear rules,
i.e., rules where only the left morphism of the rule is required to be in M
as, e.g., in [BGS11].

Acknowledgements. We would like to thank the anonymous referees and
Wolfram Kahl for helpful feedback on an early version of this paper.
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Abstract We introduce Single-Pushout Rewriting for arbitrary partial
algebras. Thus, we give up the usual restriction to graph structures,
which are algebraic categories with unary operators only. By this general-
isation, we obtain an integrated and straightforward treatment of graph-
ical structures (objects) and attributes (data). We lose co-completeness
of the underlying category. Therefore, a rule is no longer applicable at
any match. We characterise the new application condition and make con-
structive use of it in some practical examples.

1 Introduction

The current frameworks for the (algebraic) transformation of typed graphs are
not completely satisfactory from the software engineering perspective. For ex-
ample, it is hardly possible to specify and handle associations with “at-most-one”-
multiplicity, since most frameworks are based on some (adhesive) categories of
graphs which allow multiple edges between the same pair of vertices.1

Another example is the handling of attributes. The standard approaches to
the transformation of attributed graphs, compare for example [5,13], explicitly
distinguish two parts, i. e. the structure part (objects and links) which can be
changed by transformations and the base-type and -operation part (data) which
is immutable. Typically, objects can be attributed with data via some special
edges the source of which is in the structure part and the target of which is data.
This set-up either leads to set-valued or immutable attribute structures. Both is
not satisfactory from the software engineering point of view.2

Another problem in current frameworks for attributed graphs is the infinite-
ness of rules stipulated by the infiniteness of the term algebra which is typic-
ally used in the rules. Even if the algebra for the objects which are subject to
transformation is finite (for example integers modulo some maximum), the term
algebra tends to contain infinitely many terms.

All these problems are more or less caused by the usage of total algeb-
ras. In this paper, we use partial algebras instead as the underlying category
for single-pushout rewriting. In partial algebras, operation definitions can be
1 Typically, some negative application conditions [8] are employed to handle these

requirements making the framework more complicated.
2 In object-oriented programming languages, for example, attributes have the standard

multiplicity 0..1.
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changed without deleting and adding an object (edge). Thus, we get a straight-
forward model for “at-most-one” associations. We also give up the distinction
between structure and data, i. e. we allow arbitrary signatures which are able to
integrate both parts. We lose co-completeness of the base category and import
some application conditions into single-pushout rewriting. But we gain a seam-
less integration of structure and data. Finally, partial term algebras in the rules
help to keep rules finite.

The paper is a short version of [15], where many more examples and de-
tails can be found. Section 2 introduces our concept of partial algebra. We show
explicitly the similarities between partial algebras and hypergraphs. Section 3
provides sufficient and necessary conditions for the existence of pushouts in cat-
egories of partial algebras and partial morphisms. It contains our main results.
Section 4 defines the new single-pushout approach and shows similarities and
differences to the sesqui-pushout approach [3]. Section 5 demonstrates by some
example that the new application conditions are useful in many situations. Fi-
nally, Section 6 discusses related work and provides some conclusions.

2 Graphs and Partial Algebras

In this section, we introduce the basic notions and constructions for partial algeb-
ras. We use a rather unusual approach in order to emphasise the close connection
of categories of partial algebras to categories of hypergraphs. We employ a kind
of objectification for partial mappings. A partial map f : A ! B is not just a
subset of A⇥B satisfying the uniqueness condition (⇤) (a, b1) , (a, b2) 2 f implies
b1 = b2. Instead, a partial map f : A! B is a triple (f, df : f ! A, cf : f ! B)
consisting of a set f of map entries together with two total maps df : f ! A
and cf : f ! B which provide the argument and the return value for every
entry respectively. The uniqueness condition (⇤) above translates to 8e1, e2 2 f :
df (e1) = df (e2) =) e1 = e2 in this set-up.

A signature ⌃ = (S, O) consists of a set of sort names S and a domain- and
co-domain-indexed family of operation names O = (Ow,v)w,v2S⇤ .3 A graph G

wrt. a signature consists of a carrier set Gs (of vertices) for every sort name
s 2 S and a set of hyperedges

⇣
fG, dG

f : fG ! Gw, cG
f : fG ! Gv

⌘
for every

operation name f 2 Ow,v and w, v 2 S⇤ where the total mappings dG
f and cG

f

provide the “arguments” and “return values”.4 A graph morphism h : G ! H
between to graphs G and H wrt. the same signature ⌃ = (S, O) consists of a
family of vertex mappings h = (hs : Gs ! Hs)s2S and a family of edge mappings
hO =

⇣
hO

f : fG ! fH
⌘

f2O
such that for all operation names f 2 Ow,v and for

3 Note that we generalise the usual notion of signature which allows single sorts as
co-domain specification for operation names only. Operation names in Ow,✏ will be
interpreted as predicates, operation names in Ow,v with |v| > 1 will be interpreted
as operations which deliver several results simultaneously.

4 For w 2 S⇤ and a family (Gs)s2S of sets, Gw is recursively defined by (i) G✏ = {⇤},
(ii) Gw = Gs if w = s 2 S and (iii) Gw = Gv ⇥ Gu if w = vu.
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all edges e 2 fG the following homomorphism condition holds:5

(h) dH
f

�
hO

f (e)
�

= hw
�
dG

f (e)
�

and cH
f

�
hO

f (e)
�

= hv
�
cG
f (e)

�
.

The category of all graphs and graph morphisms wrt. a signature ⌃ is denoted
by G⌃ in the following.6 G⌃ is complete and co-complete. All limits and co-limits
can be constructed component-wise on the underlying sets. The pullback for a
co-span B

m! A
n

C is given by the partial product B ⇥(m,n) C with the two
projection morphisms ⇡B⇥C

B : B ⇥(m,n) C ! B and ⇡B⇥C
C : B ⇥(m,n) C ! C:

8s 2 S :
�
B ⇥(m,n) C

�
s

= {(x, y) :: ms(x) = ns(y)}
8f 2 Ow,v : f(B⇥(m,n)C) =

�
(x, y) :: mO

f (x) = nO
f (y)

8f 2 Ow,v : d
(B⇥(m,n)C)
f ::= (x, y) 7! dB

f (x) ||w dC
f (y)

8f 2 Ow,v : c
(B⇥(m,n)C)
f ::= (x, y) 7! cB

f (x) ||v cC
f (y),

where the operator ||w : Bw⇥Cw ! (B ⇥ C)
w transforms pairs of w-tuples into

w-tuples of pairs:
��

x1, . . . , x|w|
�
,
�
y1, . . . , y|w|

��
7!

�
(x1, y1) , . . .

�
x|w|, y|w|

��
.

A graph G 2 G⌃=(S,O) is a partial algebra, if it satisfies the following condition
for all f 2 O:

(u) 8e1, e2 2 fG : dG
f (e1) = dG

f (e2) =) e1 = e2.

The full sub-category of G⌃ consisting of all partial algebras7 is denoted by
A⌃ in the following. In a partial algebra A, operation names f 2 O✏,v with
|v| > 0 are interpreted as (partial) constants, i. e. fA : A✏ ! Av is a partial map
from the standard one-element set A✏ = {⇤} into Av. Symmetrically, operation
names p 2 Ow,✏ with |w| > 0 are interpreted as predicates, since pA : Aw ! {⇤}
is a partial map into the standard one-element set, i. e. it determines a subset on
Aw only, namely the part of Aw where it is defined. Finally for operation names
f 2 O✏,✏, there is only two possible interpretations in A, namely fA = ; (false)
or fA = {(⇤, ⇤)} (true). Thus, fA is just a boolean flag in this case.

Due to (u) being a set of Horn-axioms, A⌃ is an epireflective sub-category
of G⌃ , i. e. there is a reflection ⌘ : G⌃ ! A⌃ that maps a graph G 2 G⌃ to
5 Given a sort indexed family of mappings (fs : Gs ! Hs)s2S , fw : Gw ! Hw is

recursively defined for every w 2 S⇤ by (i) f ✏ = {(⇤, ⇤)}, (ii) fw = fs if w = s 2 S,
and (iii) fw = fv ⇥ fu, if w = vu.

6 The identity morphisms in G⌃ are given by families of identity mappings and com-
position of morphisms is provided by component-wise composition of the underlying
mappings.

7 Note that the interpretation of an operation name f 2 Ow,v in a partial algebra A
is indeed a partial mapping: due to the uniqueness condition (u), the assignment�
fA, dA

f : fA ! Aw, cA
f : fA ! Av

�
7!

��
dA

f (e), cA
f (e)

�
:: e 2 fA

 
provides a partial

map from Aw to Av. And, for a partial map f : Aw ! Av, there is the inverse
mapping f 7!

�
f, dA

f ::= (d, c) 7! d, cA
f ::= (d, c) 7! c

�
up to renaming of the elements

in fA.

84



a pair
�
GA 2 A⌃ , ⌘G : G! GA� such that any graph morphism h : G ! A

with A 2 A⌃ has a unique extension h⇤ : GA ! A with h⇤ � ⌘G = h. Since
epireflective subcategories are closed wrt. products and sub-objects defined by
regular monomorphisms (equalisers), the limits in A⌃ coincide with the limits
constructed in G⌃ . A⌃ has also all co-limits, since epireflections map co-limits to
co-limits. In general, however, the co-limits in A⌃ do not coincide with the co-
limits constructed in G⌃ . The reflection provides the necessary correction. If, for
example, (b : A! B, c : A! C) is a span in A⌃ and (c⇤ : B ! D, b⇤ : C ! D)
is its pushout constructed in G⌃ ,

�
⌘D � c⇤ : B ! DA, ⌘D � b⇤ : C ! DA� is the

pushout in A⌃ .
Besides being complete and co-complete, the most important property of

A⌃ for the rest of the paper is the existence of right adjoints to all inverse
image functors. If we fix an algebra A 2 A⌃ , A⌃ #M A denotes the category
of all sub-algebras of A. The objects in A⌃ #MA are all monomorphisms m :
M ⇢ A and a morphism in A⌃ #M A from m : M ⇢ A to n : N ⇢ A is
a (mono)morphism h : M ⇢ N in A⌃ such that n � h = m. For every A⌃-
morphism g : A ! B, the inverse image functor g⇤ : A⌃ #M B ! A⌃ #M
A maps an object m : M ! B 2 A⌃ #M B to ⇡A⇥M

A : A ⇥(g,m) M ! A
and a morphism h : (m : M ! B) ! (n : N ! B) to the uniquely determined
morphism g⇤(h) : A ⇥(g,m) M ! A ⇥(g,n) N such that ⇡A⇥N

A � g⇤(h) = ⇡A⇥M
A

and ⇡A⇥N
N � g⇤(h) = h � ⇡A⇥M

M .

Fact 1. In a category A⌃ of partial algebras, every inverse image functor g⇤ :
A⌃ #MB ! A⌃ #MA has a right adjoint called g⇤ : A⌃ #MA! A⌃ #MB.

Proof. Given a sub-algebra m : M ⇢ A, we construct the sub-algebra g⇤(M) ✓
B and the inclusion morphism g⇤(m) : g⇤(M) ,! B as follows:

8s 2 S : g⇤(M)s =
�
b 2 Bs :: 8 a 2 g�1

s (b) 9x 2M : ms(x) = a and

8f 2 Ow,v : fg⇤(M) =
n

e 2 fB :: 8 ea 2 gO
f

�1
(e) 9 ex 2M : mO

f (ex) = ea

o
,

such that d
g⇤(M)

f = dB
f |fg⇤(M)

and c
g⇤(M)

f = cB
f |fg⇤(M)

for every operation symbol.
The co-unit " : g⇤ (g⇤ (m : M ⇢ A))! (m : M ⇢ A) can be defined on every

element (a, b) 2 A⇥(g,g⇤(m)) g⇤(M) by "(a, b) = c such that m(c) = a. Note that
" is completely defined, since, by definition of g⇤(m), a must have a pre-image
wrt. m for every pair (a, b) 2 A⇥(g,g⇤(m)) g⇤(M). It is uniquely defined, since m

is monic. By definition of ", m � " = g⇤(g⇤(m)) = ⇡
A⇥(g,g⇤(m))g⇤(M)

A which means
that " is a morphism in A⌃ #MA.

Now, let an object x : X ⇢ B 2 A⌃ #MB and a morphism k : g⇤(x) !
m 2 A⌃ #MA, i. e. m � k = ⇡

A⇥(g,x)X

A be given. We construct k⇤ : x ! g⇤(m)
by e 7! x(e) for every e 2 X. The mappings of k⇤ are completely defined: (i) if
x(e) /2 g(A), x(e) 2 g⇤(M) because |g�1(x(e))| = | (g �m)

�1
(x(e))| = 0, and,

otherwise, the existence of k with m � k = ⇡
A⇥(g,x)X

A enforces that every g-pre-
image of x(e) has a pre-image under m. By definition, g⇤(m)�k⇤ = x. By defini-
tion of the inverse image functor, g⇤(k⇤) :

�
A⇥(g,x) X

�
!

�
A⇥(g,g⇤(m)) g⇤(M)

�
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maps (a, e) to (a, k⇤(e)). Thus, " (g⇤(k⇤)(a, e)) = "(a, k⇤(e)) = c with m(c) = a

and k(a, e) = c0 with m(c0) = ⇡
A⇥(g,x)X

A (a, e) = a. Since m is monic, c = c0. The
morphism k⇤ is uniquely determined, since g⇤(M) ✓ B and g⇤(m) is monic. ut

3 Partial Morphisms on Partial Algebras

In order to obtain a framework for single-pushout rewriting, we proceed from
the category A⌃ of partial algebras with total morphisms to the category AP

⌃

of partial algebras and partial morphisms. In this section, we investigate the
conditions under which pushouts can be constructed in AP

⌃ .
A concrete partial morphism over an arbitrary complete category C is a span

of C-morphisms (p : K ⇢ P, q : K ! Q) such that p is monic. Two concrete
partial morphisms (p1, q1) and (p2, q2) are equivalent and denote the same ab-
stract partial morphism if there is an isomorphism i such that p1 � i = p2 and
q1 � i = q2; in this case we write (p1, q1) ⌘ (p2, q2) and [(p, q)]⌘ for the class of
spans that are equivalent to (p, q). The category of partial morphisms CP over C
has the same objects as C and abstract partial morphisms as arrows. The iden-
tities are defined by idCP

A = [(idA, idA)]⌘ and composition of partial morphisms
[(p : K ⇢ P, q : K ! Q)]⌘ and [(r : J ⇢ Q, s : J ! R)]⌘ is given by

[(r, s)]⌘ �CP [(p, q)]⌘ = [(p � r0 : M ⇢ P, s � q0 : M ! R)]⌘

where (M, r0 : M ⇢ K, q0 : M ! J) is an arbitrarily chosen but fixed pullback of
q and r. Note that there is the faithful embedding functor ◆ : C ! CP defined by
identity on objects and (f : A! B) 7! [idA : A ⇢ A, f : A! B] on morphisms.
We call [d : A0 ⇢ A, f : A0 ! B] a total morphism and, by a slight abuse of
notation, write [d, f ] 2 C, if d is an isomorphism. From now on, we mean the
abstract partial morphism [f, g]⌘ if we write (f : B ⇢ A, g : B ! C).

The single-pushout approach defines direct derivations by a single pushout
in a category of partial morphisms. There is a general result for the existence of
pushouts in a category CP of partial morphisms based on the notions final triple
and hereditary pushout in the underlying category C of total morphisms.

Definition 2. (Final triple) A triple for a pair ((l, r) , (p, q)) of CP-morphisms
with common domain is given by a collection

�
p, p⇤, r, l, l⇤, q

�
of C-morphisms

such that p⇤, p, l⇤, and l are monic and (i) (r, p) is pullback of (r, p⇤), (ii) (q, l)
is pullback of (q, l⇤), and (iii) l�p = p�l. A triple

�
p, p⇤, r, l, l⇤, q

�
for ((l, r) , (p, q))

is final, if, for any other triple
�
p0, p0 ⇤ , r0, l0, l0 ⇤ , q0

�
, there is a unique collection

(u1, u2, u3) of C-morphisms such that (iv) p�u1 = p0, (v) l�u1 = l0, (vi) p⇤ �u2 =
p0 ⇤, (vii) u2 � r0 = r � u1, (viii) l⇤ � u3 = l0 ⇤, and (ix) u3 � q0 = q � u1, compare
left part of Fig. 1.

Definition 3. (Hereditary pushout) A pushout (q0, p0) of (p, q) in C is heredit-
ary if for each commutative cube as in the right part of Fig. 1, which has pullback
squares (pi, i0) and (qi, i0) of (i2, p) and (i1, q) resp. as back faces such that i1
and i2 are monomorphisms, in the top square, (q0i, p

0
i) is pushout of (pi, qi), if
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L K R A0 C0

P D P ⇤ B0 D0

D0 P 0 A C

Q K⇤ B D

K0

l r qi

pi

i0 p0
i

i1
p

q

l

q

p

r

p⇤

q0
i

i2 i3

p0

r0

q0

l0
u1

p0⇤

u2

q

p

p0
l⇤

q0

l0⇤
u3

Figure 1. Final Triple and Hereditary Pushout

and only if, in the front faces, (p0i, i1) and (q0i, i2) are pullbacks of (i3, p
0) and

(i3, q
0) resp. and i3 is monic.8

Fact 4. (Pushout in CP) Two partial morphisms (l : K ⇢ L, r : K ! R) and
(p : P ⇢ L, q : P ! Q) have a pushout ((l⇤, r⇤) , (p⇤, q⇤)) in CP, if and only if
there is (i) a final triple l : D ! P , p : D ! K, r : D ! P ⇤, q : D ! K⇤,
p⇤ : P ⇤ ! R, l⇤ : K⇤ ! Q for ((l, r) , (p, q)) and (ii) a hereditary pushout
(r⇤ : K⇤ ! H, q⇤ : P ⇤ ! H) for (q, r) in C, compare sub-diagrams (1) – (3) and
(4) resp. in Figure 2.

L K R

P D P ⇤

Q K⇤ H

(1)

l r

(2)p

q

l

q

p

r

p⇤

q⇤
(3)

l⇤ r⇤

(4)

Figure 2. Pushout in GP

The proof can be found in [14]. A version of the proof that does not pre-
suppose a choice of pullbacks that is compatible with pullback composition and
decomposition is contained in [15].

Since A⌃ is complete, we can construct the category AP
⌃ of partial algebras

and partial morphisms. We use the partial product as the chosen pullback for
morphism composition, compare above. The general results about pushouts of
partial morphisms carry over to AP

⌃ as follows:
8 For details on hereditary pushouts see [10,11]
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Proposition 5. (Final triple) Every pair ((l, r) , (p, q)) of AP
⌃-morphisms with

common domain has a final triple.

Proof. (Sketch) The existence of final triples follows from AP
⌃ being co-complete

and having right adjoints for all inverse image functors, compare Fact 1. A de-
tailed proof can be found in [15].

Corollary 6. (Pushout in AP
⌃) A pair of morphisms (l : K ⇢ L, r : K ! R)

and (p : P ⇢ L, q : P ! Q) has a pushout in AP
⌃, if and only if the A⌃-pushout

of (q, r) is hereditary, where l : D ! P , p : D ! K, r : D ! P ⇤, q : D ! K⇤,
p⇤ : P ⇤ ! R, l⇤ : K⇤ ! Q is final triple of ((l, r) , (p, q)), see Figure 2.

Proof. Direct consequence of Fact 4 and Proposition 5.

It is well-known that all pushouts in the category of sets and mappings and
in arbitrary categories G⌃ of graphs over a given signature are hereditary. This
provides the following sufficient criterion for hereditary pushouts in A⌃ .

Proposition 7. (Sufficient condition) If a pushout in A⌃ is also pushout in the
larger category G⌃ of graphs, then it is hereditary in A⌃.

Proof. Let an arbitrary commutative cube as in the right part of Fig. 1 in A⌃

be given such that the back faces are pullbacks. Then this is also a situation in
G⌃ and the back faces are also pullbacks in G⌃ , due to A⌃ being an epireflection
of G⌃ .

Let the front faces be pullbacks in A⌃ and i3 be a monomorphism. Then the
front faces are also pullbacks in G⌃ . Since all pushouts in G⌃ are hereditary, D0

together with p0i and q0i is pushout in G⌃ . Since (i) A⌃ is closed wrt. sub-algebras,
(ii) D is in A⌃ , and (iii) i3 is monic, D0 is also in A⌃ and its reflector ⌘D0 is an
isomorphism. Thus, D0 together with p0i and q0i is pushout in A⌃ .

Let (D0, q0i, p
0
i) be pushout of (pi, qi) in A⌃ . Construct (D00, q00i , p00i ) as pushout

of (pi, qi) in G⌃ . We obtain the epic reflector ⌘D00 : D00 ⇣ D0 with p0i = ⌘D00 � p00i
and q0i = ⌘D00 � q00i . Since D00 is pushout, we also get i03 : D00 ⇢ D with i03 � p00i =
p0 � i1 and i03 � q00i = q0 � i2. Since i3 � ⌘D00 � p00i = i3 � p0i = p0 � i1 = i03 � p00i
and i3 � ⌘D00 � q00i = i3 � q0i = q0 � i2 = i03 � q00i , we can conclude i3 � ⌘D00 = i03.
Since all pushouts in G⌃ are hereditary, i03 is monic implying that ⌘D00 is monic
as well. Thus, ⌘D00 is an isomorphism and D0 is also the pushout in G⌃ . This
immediately provides monic i3 and pullbacks in the front faces of the cube in
the right part ofFig. 1. ut

But not all pushouts in A⌃ are hereditary. Here is a typical example:

Example 8. Consider the signature ⌃c = (Sc, O
c) with

Sc = {s}

Oc
w,v =

(
{f} w = ✏, v = s

; otherwise,
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a c L99 fC

b d L99 fD

a c L99 fC

b L99 fB d L99 fD

qi = q

pi

i0 = idA
p0

i = p0 i1 = idC

q0
is

= q0
s

i2s = idBs i3 = idD

q

p

p0

q0

Figure 3. Simple Non-Hereditary Pushout in A⌃

the three algebras

A ::= As = {a}, fA = ;,
B ::= Bs = {b}, fB =

�
{fB}, dB

f (fB) = ⇤, cB
f (fB) = b

�
,

C ::= Cs = {c}, fC =
�
{fC}, dC

f (fC) = ⇤, cC
f (fC) = c

�
,

and the two morphisms p : A! B ::= a 7! b and q : A! C ::= a 7! c.
The pushout of (p, q) in AP

⌃c consists of the algebra

D ::= Ds = {d}, fD =
�
{fD}, dD

f (fD) = ⇤, cD
f (fD) = d

�

and the two morphisms

p0 : C ! D ::= c 7! d, fC 7! fD

q0 : B ! D ::= b 7! d, fB 7! fD.

This pushout is depicted at the bottom of Fig. 3 and is not hereditary. We
construct the following cube of morphisms, compare Fig. 3: A0 = A, i0 = idA, B0

is defined by B0
s = Bs and fB0

= ;, i2 maps b in B0
s to b in Bs, C 0 = C, i1 = idC ,

qi = q, and pi maps a to b. Note that (i0, qi) is pullback of (q, i1) and (i0, pi) is
pullback of (p, i2). Constructing (D0 = D, p0i = p0, q0i ::= b 7! d) as the pushout
of (p0, q0), we obtain i3 = idD. But (i2, q

0
i) is not pullback of (q0, i3): B⇥(q0,i3) D0

contains a defined constant for f , since i3(f
D) = q0(fB), and B0 does not. ut

Note that the A⌃-pushout of the morphisms p and q in Example 8 does not
coincide with the pushout of p and q constructed in the larger category G⌃ of
graphs. The pushout in G⌃ is the graph

G ::= Gs = {g}, fG =
�
{fG

C , fG
B }, dG

f (fG
C ) = dG

f (fG
B ) = ⇤, cG

f (fG
C ) = cG

f (fG
B ) = g

�

together with the morphisms

p00 : C ! G ::= c 7! g, fC 7! fG
C

q00 : B ! G ::= b 7! g, fB 7! fG
B .
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The partial algebra D is the epireflection of the graph G and the reflector
⌘G : G! D maps as follows: g 7! d, fG

C 7! fD, and fG
B 7! fD. The identification

⌘G(fG
C ) = ⌘G(fG

B ) = fD of the reflector provided the possibility to construct the
cube in Example 8 that disproves hereditariness of the pushout of (p, q). The
following proposition shows that this construction of a counterexample is always
possible if the pushouts in A⌃ and G⌃ are different.

Proposition 9. (Necessary condition) If a pushout in A⌃ is hereditary, it is
also pushout in the larger category G⌃ of graphs.

Proof. Let (p : A ! B, q : A ! C) be a span of morphisms in A⌃ , let (E, q00 :
B ! E, p00 : C ! E) be its pushout in G⌃ , and let (q0 : B ! D, p0 : C ! D) be
its pushout in A⌃ . Since A⌃ is epireflective sub-category of G⌃ , we know that
D = EA, q0 = ⌘E � q00 and p0 = ⌘E � p00 where ⌘E : E ! EA is the reflector for
the graph E. Suppose D and E are not isomorphic, then there are e1 6= e2 with
⌘E(e1) = ⌘E(e2). We distinguish two cases: e1, e2 2 Es for some sort s 2 S and
e1, e2 2 fE for some operation name f 2 Ow,v and w, v 2 S⇤.

In the first case, construct the following commutative cube, compare right
part of Fig. 1: A0, B0, and C 0 have the same carrier sets as A, B, and C respect-
ively, their operations, however, are completely undefined. The embeddings i0,
i1, and i2 are identities on the carriers and empty mappings on the operations.
The morphisms qi and pi coincide with q and p respectively on the carriers and
are empty for all operations. Note that (qi, i0) and (pi, i0) are pullbacks of (q, i1)
and (p, i2) respectively. Construct (q0i : B0 ! D0, p0i : C 0 ! D0) as the pushout of
(pi, qi) in G⌃ . Since all operations are undefined, it is also pushout in A⌃ . And
we know, that D0

s = Es for all sorts s 2 S. Thus, e1 6= e2 in D0 and i3 is not
monic.

In the second case, we can, without loss of generality, suppose Es = Ds

for all sorts s 2 S. Since p0 and q0 are jointly epic, both e1 and e2 have pre-
images under p0 and/or q0. Let e01, e

0
2 2 fB ] fC be those pre-images and sup-

pose, without loss of generality, e01 2 fB . Since e1 6= e2, we conclude [e01]⌘f 6=
[e02]⌘f , where the equivalence ⌘f ✓

�
fB ] fC

�
⇥
�
fB ] fC

�
is generated byn⇣

pO
f (e), qO

f (e)
⌘

:: e 2 fA
o

. Construct the following cube à la Fig. 1(right part):
The algebras A0, B0, and C 0 coincide in all carriers and operations except f with
A, B, and C respectively. For f , we let

fB0
= fB � {e 2 [e01]⌘f :: e 2 fB}

fC0
= fC � {e 2 [e01]⌘f :: e 2 fC}

fA0
= fA � {e 2 fA :: qO

f (e) 2 [e01]⌘f _ pO
f (e) 2 [e01]⌘f }.

By this construction, we erase the whole structure that generated [e01]⌘f

from A, B, and C. Note that, due to [e01]⌘f 6= [e02]⌘f , e02 is kept in fB or fC .
Let i0, i1, and i2 be the natural inclusions. And let qi and pi be the restrictions
of q and p to A0. Since we erased the whole equivalence class [e01]⌘f , (qi, i0)
and (pi, i0) are pullbacks of (q, i1) and (p, i2) respectively. Let (D0, q0i, p

0
i) be

the pushout of (qi, pi). Then, (i2, q
0
i) is not pullback of (i3, q

0): By assumption,
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q0(e01) = e1 = i3(x) where x = q0i(e
0
2) or x = p0i(e

0
2). The function entry e01,

however, does not possess a pre-image under i2. ut

Theorem 10. A pushout in A⌃ is hereditary, if and only if it is pushout in G⌃.

Proof. Direct consequence of Propositions 7 and 9.

Corollary 11. Morphisms (l : K ⇢ L, r : K ! R) and (p : P ⇢ L, q : P ! Q)
have a pushout in AP

⌃, if and only if the A⌃-pushout of (q, r) is pushout in G⌃,
where

�
l, p, r, q, p⇤, l⇤

�
is final triple for ((l, r) , (p, q)), compare Figure 2.

4 Single-Pushout Rewriting of Partial Algebras

In this section, we introduce single-pushout rewriting of partial algebras. We
restrict rules to partial morphisms (l : K ⇢ L, r : K ⇢ R) that do not identify
items, i. e. the right-hand side of which are injective. Furthermore, we only allow
matches that produce total co-matches. For this set-up, we can characterise the
application conditions stipulated by the absence of some pushouts in categories
of partial algebras with partial morphisms. And we can show a close connec-
tion of single-pushout and sesqui-pushout rewriting. In the following, let AP

⌃ be
a category of partial algebras and partial morphisms with respect to a given
signature ⌃ =

⇣
S, (Ow,v)w,v2S⇤

⌘
.

Definition 12. (Rule, match, and transformation) A transformation rule t is
a partial morphism t = (l : K ⇢ L, r : K ⇢ R) the right-hand side r of which
is injective. A match for a rule t : L ! R in a host algebra G is a total
morphism m : L! G. A direct transformation with a rule t : L! R at a match
m : L ! G from algebra G to algebra t@m exists if there is a total co-match
m hti : R ! t@m and a partial trace t hmi : G ! t@m, such that (t hmi , m hti)
is pushout of t and m in AP

⌃.

There are two reasons why a transformation with a rule r at a match m
cannot be performed: (i) There is no pushout of t and m in AP

⌃ and (ii) the co-
match in the pushout of t and m is not total. Therefore, we have some application
conditions as in the double-pushout approach [5]. Since we restricted the rules
to right-hand sides which do not identify any items, the application conditions
can easily be characterised.9

Proposition 13. (Application conditions) A transformation with a rule t : L!
R at a match m : L! G exists, if and only if

1. the match does not identify items that are preserved with items that are
deleted by the rule, i. e. for all x 6= y 2 L : m(x) = m(y) and t defined for x
implies that t is also defined for y,

9 Note that Definition 12 can be generalised to arbitrary right-hand sides in rules. In
the general case, however, the application condition introduced by the requirement
that participating pushouts are hereditary is more complex.
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Figure 4. Single- versus Sesqui-Pushout Transformation

2. the rule does not add operation definitions that are already present in the
host graph G, i. e. for all w, v 2 S⇤, f 2 Ow,v, x 2 Lw, eR 2 fR, eG 2 fG :

dR
f (eR) = tw(x) ^ dG

f (eG) = mw(x) =) 9eL 2 fL : m(eL) = eG,

3. and the match does not identify domains of different added operation defin-
itions, i. e. for all w, v 2 S⇤, f 2 Ow,v, e1 6= e2 2 fR :

m htiw
�
dR

f (e1)
�

= m htiw
�
dR

f (e2)
�

=) 9e01 2 fL : e1 = tOf (e01).

Note that the second clause above also implies t(eL) = eR and the third
clause also implies 9e02 : e2 = tOf (e02).

Proof. The first condition is the well-known condition which is called conflict-
free in [12] that characterises matches that produce pushouts in G⌃ with total
co-match. Conditions 2 and 3 translate the result of Corollary 11 to the concrete
situation where r is monic and p, p, and p⇤ are isomorphisms. ut

Since we restricted transformations to total co-matches, we obtain a close
connection of our transformations to Sesqui-Pushout Rewritings in the sense of
[3], which are composed of final pullback complements and pushouts.

Definition 14. (Final Pullback Complement) In a pullback (s⇤, m⇤) of (m, s),
compare left part of Fig. 4, the pair (s, m⇤) constitutes a final pullback comple-
ment of (m, s⇤), if for any other pullback (x, y) of (m, z) and morphism w such
that s⇤�w = x there is a unique morphism w⇤ with s�w⇤ = z and w⇤�y = m⇤�w.

Theorem 15. (Single- and Sesqui-Pushout Transformation) Given a rule t =
(l : K ⇢ L, r : K ⇢ R), a match m : L ! G, and a direct transformation
(m hti , t hmi = (l⇤ : K⇤ ⇢ G, r⇤ : K⇤ ⇢ t@m)), then there is a total morphism
m hli : K ! K⇤ such that (l⇤, m hli) and (r⇤, m hli) are final pullback comple-
ments of (m, l) and (m hti , r) resp., compare (3) and (4) in Fig. 4.

Proof. That (l⇤, m hli) is final pullback complement of (m, l) is a direct con-
sequence of the construction of final triples in [15] and the fact that the co-match
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Figure 5. Hereditary Pushout and Final Pullback Complement

is total. It remains to show that hereditary pushouts along monomorphisms are
final pullback complements as well: Let (k⇤, n⇤) be hereditary pushout of n and
monic k. We construct the commutative cube in Fig. 5, in which the morphisms
k, idC , and idA are monic, the top and left face are pullbacks and the back
face is pushout. By (k⇤, n⇤) being hereditary, the bottom and the right face are
pullbacks and k⇤ is monic. Moreover in the left face, (idC , n) is final pullback
complement of (n, idA) and the back face is hereditary. Thus, the left and the
back face constitute a pushout in the category of partial morphisms. The front
face is hereditary and, therefore, pushout in the category of partial morphisms.
Since (idA, idA) = (k, idA) � (idA, k) and (idC , idC) = (k⇤, idC) � (idC , k⇤), the
right face must be pushout in the category of partial morphisms and (k⇤, n) must
be final pullback complement of (n⇤, k). ut

Thus, single-pushout rewriting with right-linear rules and total co-matches is
almost Sesqui-Pushout Rewriting. This analysis provides good chances to rees-
tablish most of the theory known for the single- and the sesqui-pushout approach,
for example with respect to parallel and sequential independence, concurrency,
and amalgamation. And it shows that our approach is closely connected to some
other current research lines, for example [4]. But the application conditions for
transformations in AP

⌃ in Proposition 13 also produce some new and unfamiliar
behaviour, for example if decomposition of rules is concerned.
Example 16. (Transformation Decomposition) In the standard single-pushout
approach at injective matches, rule decomposition carries over to transforma-
tions: If a rule t can be decomposed into two rules t1 and t2, i. e. t = t2 � t1,
every transformation with rule t at an injective match m can be decomposed
into a transformation with t1 followed by a transformation with t2, such that
t hmi = t2 hm ht1ii � t1 hmi and m hti = (m ht1i) ht2i. This is no longer true in
the new set-up. Consider again the signature of Example 8, the partial algebras

L ::= Ls = {l}, fL = ;,
E ::= Es = {e}, fE =

�
{fE}, dE

f (fE) = ⇤, cE
f (fE) = e

�
,

R ::= Rs = {r}, fR = ;, and

G ::= Gs = {g}, fG =
�
{fG}, dG

f (fG) = ⇤, cG
f (fG) = g

�
,
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the rules t1 : L ! E ::= l 7! e and t2 : E ! R ::= e 7! r, and the match
m : L! G ::= l 7! g. Note that t2 is partial, since it does not map the operation
definition in E. Since t2 � t1 : L! R is a rule without new operation definitions
in R, there is the transformation (t2 � t1) @m. The rule t1, however, cannot be
applied at m due to a violation of the second condition in Proposition 13. ut

The careful analysis of these new features is left to future research.

5 Examples

The new behaviour discovered in Example 16, can be usefully exploited in many
practical applications as a condition that prevents rule application. Our first

sorts O, Int

opns  i:O --> Int (    )

+:Int,Int --> Int

o i o isetset o
i

i'
ochangechange

i

i'

Figure 6. Setting and Changing an Attribute

example is a simple integer attribute i that can be set or changed for objects of
type O. Figure 6 shows the underlying signature10 and the two rules. Note that
the set-rule can only be applied in a situation where the i-attribute of o has
not been set yet, compare the second condition in Proposition 13. If there is an
old value, the change-rule must be applied.

sorts O

opns  ≤:O,O (    ) o o    reflexivereflexive   transitivetransitive
o  o  oo  o  o

Figure 7. Reflexive/Transitive Closure

The next example handles the reflexive and transitive closure of a relation
on the set O. We just apply the two rules reflexive and transitive as long as
there are matches. Note that the algorithm terminates, since the rule reflexive
cannot add loops to objects that possess a loop already, compare the second con-
dition in Proposition 13. If all abbreviations are added, also the rule transitive
is not applicable any more.

The last example shows a typical copying process, here for a tree structure,
compare Figure 8. The partial dyadic operation t builds up trees, the unary
predicate r marks the root for the copy process, the start and the three copy
rules perform the copy process, and the operation c keeps track of already built
copies. Again, the application conditions of single pushout rewriting for partial
10 In the signature, we declare the visualisations for the operations in brackets.
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sorts N ( )

opns  t:N,N --> N ( )

c:N   --> N ( )

r:N ( )

startstart

 

copycopy11copycopy11

copycopy11copycopy22 copycopy11copycopy33

Figure 8. Copying

algebras guarantee that exactly one copy is made. Note that this copy mechanism
also works if t builds up arbitrary hierarchical or even cyclic structures.

This last example describes a typical software engineering situation in the
area of model transformation: some structured model, for example a class model,
has to be transformed into another structured system, for example a relational
database. In this context, keeping track of already finished transformations is
essential for the control flow of the transformation process and to avoid that
some parts are performed twice.

More detailed examples in this area can be found in [15].

6 Related Work and Conclusions

We have introduced single-pushout rewriting of arbitrary partial algebras. As
usual, transformations are defined by a single pushout of partial morphisms.
Thus, general composition and decomposition properties of pushouts can be
exploited for a rich theory. The new approach is built on a category of partial
morphisms that does not have all pushouts. We provided a good characterisation
of the situations which admit pushouts by hereditariness of underlying pushouts
of total morphisms, compare Theorem 10. Informally, pushouts can be built if the
applied rule does not try to define operations where they are defined already. This
application condition can easily be checked in every concrete situation. By some
examples, we showed the practical relevance of the application conditions for sys-
tem design and the termination of derivation sequences. (More examples can be
found in [15].) Within our approach, we do not have to distinguish between graph
structures (objects and links) and data structures (base-types and -operations).
We can easily model associations and attributes with at-most-one-multiplicity.

There are only a few articles in the literature that address rewriting of partial
algebras, for example [2] and [1] for the double- and single-pushout approach
resp. But both papers stay in the framework of signatures with unary operation
symbols only and aim at an underlying category that is co-complete.

Aspects of partial algebras occur in all papers that are concerned with re-
labelling of nodes and edges, for example [9], or that invent mechanisms for
exchanging the attribute value without deleting and adding an object, for ex-
ample [7]. Most of these approaches avoid “real” partial algebras by completing
them to total ones by some undefined-values.
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Thus, our approach is new, shows some application potentials, and seems
promising wrt. theoretical results.
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On Correctness of Graph Programs

Relative to Recursively Nested Conditions

Nils Erik Flick⋆

Carl von Ossietzky Universität, 26111 Oldenburg, Germany,
flick@informatik.uni-oldenburg.de

Abstract. We propose a new specification language for the proof-based
approach to verification of graph programs by introducing µ-conditions
as an alternative to existing formalisms which can express path proper-
ties. The contributions of this paper are the lifting of constructions from
nested conditions to the new, more expressive conditions, and a proof
calculus for partial correctness relative to µ-conditions.

1 Introduction

Graph transformations provide a formal way to model the graph-based behaviour
of a wide range of systems by way of diagrams. Such systems can be formally
verified. One approach to verification proceeds via model checking of abstrac-
tions, notably Gadducci et al., Baldan et al., König et al., Rensink et al. [4, 1, 10,
18]. This can be contrasted with the proof-based approaches of Habel, Penne-
mann and Rensink [7, 6] and Poskitt and Plump [15]. Here, state properties are
expressed by nested graph conditions, and a program can be proved correct with
respect to a precondition c and a postcondition d. The following figure presents
a schematic overview of the approach, which is also our starting point:

precondition
calculus

p
ro

v
er

graph program weakest precondition

c (precondition)

d (postcondition)
yes, correct
no
unknown

The correctness proof is done in the style of Dijkstra’s [2] predicate trans-
former approach in Pennemann’s thesis [12], while Poskitt’s thesis [14] features
a Hoare [8] logic for partial and total correctness. Both works are based on
nested conditions, which cannot express non-local properties of graphs, such as
connectivity. In this paper, we consider non-local properties, and we present an
extension to the proof calculus from [12].

⋆ This work is supported by the German Research Foundation (DFG), grant GRK
1765 (Research Training Group – System Correctness under Adverse Conditions)
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Our formalism is an extension of nested conditions by recursive definitions. While
several extensions of nested graph conditions to non-local conditions already
exist (Radke [17], Poskitt and Plump [16]), we argue that as opposed to the
former, ours already offers a weakest precondition calculus that can handle any
condition expressible in it; as compared to the latter, which relies more heavily
on expressing properties directly in (monadic second-order) logic, ours is more
closely related to nested conditions and shares the same basic methodology.
Therefore µ-conditions, albeit still work in progress, offer a new viewpoint that
may be sufficiently different from existing ones to be worth investigating.

The outline of the paper is as follows: Section 2 recalls graph programs and
conditions. Sections 3 and 4 introduce µ-conditions and correctness under µ-
conditions, respectively, together with an exemplary application of the method,
Section 5 provides context by listing related work and Section 6 concludes with
an outlook. After the main text, there is an appendix with the proofs.

2 Graph Conditions and Programs

In this section, we introduce graph conditions and graph programs. We assume
familiarity with graph transformation systems in the sense of Ehrig et al. [3], and
the basic notions of category theory. For standard definitions and more details,
we refer the reader to Ehrig et al. [3]. For an in-depth introduction to nested con-
ditions and graph programs and practical approaches to semi-automatic theorem
proving in this context, we refer the reader to Pennemann [12].

Notation. The domain and codomain of a morphism f : G → H are denoted
by dom(f) = G and cod(f) = H. Injective morphisms (monomorphisms) are
distinguished typographically by a curly arrow f : G →֒ H while double-tailed
arrows f : G ։ H denote surjective ones (epimorphisms). We use the symbol
M to denote the class of all graph monomorphisms. A partial morphism is a pair
of monomorphisms with the same domain. The empty graph is denoted by ∅.

All graphs in this paper are assumed to be finite.

A brief review of nested conditions follows. Nested graph conditions were pro-
posed by Habel and Pennemann. Finite nested conditions were later shown to
be equally expressive as graph-interpreted first-order predicate logic. Graph con-
ditions can be used as constraints to specify state properties, or as application
conditions to restrict the applicability of a rule.

Definition 1 (Nested Graph Conditions). Let Cond be the class of nested
conditions, defined inductively as follows (where P, C ′, C are graphs):

– If J is a countable set and for all j ∈ J , cj is a condition (over P ), then∨
j∈J cj is a condition (over P ). This includes the case J = ∅ (for any P ).

– If c is a condition (over P ), then ¬c is also a condition (over P ).
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– If a : P →֒ C ′ is a monomorphism, ι : C →֒ C ′ is a monomorphism and c′ is
a condition (over C), then ∃(a, ι, c′) is a condition (over P ).

We call c′ a direct subcondition of ∃(α, ι, c′), ¬c′ and c′∨c′′ and use subcondition

for the reflexive and transitive closure of this syntactically defined relation.

Notation. If c is a condition over P , then P is its type1 and we write c : P ,
and CondP is the class of all conditions over P . We may write ∃(a, c) instead of
∃(a, idcod(a), c). The usual abbreviations define the other standard operators:

∧

is ¬∨¬, ∀ is ¬∃¬. No morphism satisfies the disjunction over the empty index
set. We introduce false as a notation for it, and true for ¬false. We may omit
the subcondition true (together with ι), writing ∃(a) for ∃(a, ι, true).

When all the index sets are finite, one obtains the finite nested conditions. The
morphism ι serves to unselect2 a part of C ′, which will become necessary later.

Definition 2 (Satisfaction). A monomorphism f : P →֒ G satisfies a condi-
tion c : P , denoted f |= c, iff c = true, c = ¬c′ and f 6|= c′, or c =

∨
j∈J cj and

there is a j ∈ J such that f |= cj , or c = ∃(a, ι, c′) (a : P →֒ C ′, ι : C →֒ C ′,
c′ : C) and there exists a monomorphism q : C ′ →֒ G such that f = q ◦ a and
q ◦ ι |= c′.

∃(P C ′ C, )

G

a ι

qf q ◦ ι

c′

|=

A graph G satisfies a condition c : ∅ iff the unique morphism ∅ →֒ G satisfies c.

In the diagram of Def. 2, the triangle indicates that C is the type of the subcon-
dition c′ which appears nested inside ∃(α, ι, c′).

Remark 1 (No Added Expressivity). Our conditions with ι are equally expres-
sive as the nested conditions defined in [12]. The proof, which we omit here,
relies on the transformation A from [12].

Definition 3. ≡ denotes logical equivalence, i.e. for conditions c, c′ : P , c ≡ c′

iff for all monomorphisms m with domain P , ⇒ m |= c⇔ m |= c′.

Notation. As one can see in Fig. 1, the notation for graph conditions custom-
arily only depicts source or target graphs of morphisms. The tiny blue numbers

1 when we mention “type graphs” in the text, we just mean graphs used as types.
2 We will use the term “unselection” anytime a morphism is used in the inverse direc-

tion: in Def. 1, the morphism ι is used to base subconditions on a smaller subgraph,
in effect reducing the selected subgraph; it will also appear in our definition of graph
programs as the name of an operation that reduces the current selection, i.e. the
subgraph the program is currently working on – similarly for “selection”.
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|= ∃
(

1 2 ←֓ 2

,¬∃
(

2

))

Fig. 1. A nested graph condition (stating the existence of two nodes linked by an edge,
where the second node does not have a self-loop) and a graph satisfying it.

show the morphisms’ node mappings. We also adopt the convention of not explic-
itly representing the morphism ι in a situation ∃(a, ι, xi); we prefer to annotate
the variable’s type graph with the images of items under ι in parentheses.

Next, we introduce graph transformations. We follow the double pushout ap-
proach with injective rules and injective matches. For technical reasons, we de-
fine graph transformations in terms of four elementary steps, namely selection,
deletion, addition and unselection. Deletion and addition always apply to a se-
lected subgraph, and selection and unselection allow the selection to be changed.
skip is a no-op used in the definition of sequential composition. The definition
below allows for somewhat more general combinations of the basic steps, which
cannot be expressed by sets of graph transformation rules.

The semantics of a graph program is a triple of two monomorphisms and one
partial morphism. The two monomorphisms represent the selected subgraphs
before and after the execution of the program respectively, and the partial mor-
phism records the changes effected by the program. Our programs are a proper
subset of those in Pennemann [12], and use the same semantics.

Definition 4 (Graph Programs).

In the following table, x, l, r, y, min and mout are monomorphisms, with x, l, r
and y arbitrarily chosen to define a program step, while min and mout are called
interfaces and universally quantified in the set comprehensions that appear in
the definitions below.

Name Program P Semantics JP K
selection Sel(x) {(min, mout, x) | mout ◦ x = min}
deletion Del(l) {(min, mout, l

−1) | ∃l′, (mout, l, min, l′) pushout}
addition Add(r) {(min, mout, r) | ∃r′, (min, r, mout, r

′) pushout}
unselection Uns(y) {(min, mout, y

−1) | mout = min ◦ y}
skip skip {(m, m, iddom(m)) | m ∈M}
If P and Q are graph programs, then so are their disjunctive {P, Q} and sequen-
tial (P ; Q) composition. The semantics of disjunction is a set union JP K ∪ JQK
and the semantics of sequence is JP ; QK = {(m, m′, p) | ∃(m, m′′, p′) ∈ JP K,
(m′′, m′, p′′) ∈ JQK, p = p′; p′′}, where composition p′; p′′ of partial morphisms

p′ = G1
l1←֓ D1

r1→֒ H1, p′′ = H1
l2←֓ D′

2

r2→֒ H2 is defined as G
l1◦l′2←֓ D′′ r2◦r′

1→֒ H2

using the pullback (r′
1, l

′
2) of (r1, l2). If P is a graph program, then so is its

iteration P ∗; JP ∗K =
⋃

j∈NJP jK where P j = P ; P j−1 for j ≥ 1 and P 0 = skip.

Remark 2. The definitions generalise the state transitions in plain graph trans-

formation, a rule ̺ = (L
l←֓ K

r→֒ R) being precisely simulated by the program
Sel(∅ →֒ L); Del(l); Add(r); Uns(∅ →֒ R).
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3 µ-Conditions

In this section, we define µ-conditions on the basis of nested graph conditions.
These are capable of expressing path and connectivity properties, which fre-
quently arise in the study of the correctness of programs with recursive data
structures, or in the modelling of networks. We then define and prove the cor-
rectness of some basic constructions. An example is provided at the end of this
section to illustrate the constructions step by step.

3.1 Defining µ-Conditions

Nested conditions are a very successful approach to the specification of graph
properties for verification. However, they are unable to express non-local prop-
erties such as connectedness. Our idea is to generalise nested conditions to cap-
ture certain non-local properties by adding recursion. The resulting formalism
will be similar to first order fixed point logics, see e.g. Kreutzer [9]. The reader
might want to compare our µ-conditions to a distinct formalism towards ex-
pressing non-local properties, the very powerful grammar-based HR∗ conditions
of Radke [17]. We argue that µ-conditions are worth looking into despite the
availability of strong contenders for the extension of nested conditions to non-
local properties, such as MSO-conditions [16] because µ-conditions provide a
new and different generalisation of nested conditions, and neither is it immedi-
ately clear how the respective expressivities compare. The related work section,
Sec. 5, contains a summary on different non-local graph condition formalisms.
Specifically, we will show in this section that the weakest liberal precondition
transformation, core of the Dijkstra-style approach, can be adapted.

Notation. Sequences (of graphs, placeholders, morphisms) are written as bold
letters P , x, f , and their components are numbered starting from 1. The length
of a sequence P is denoted by ‖P‖. Indexed typewriter letters x1 stand for
placeholders, i.e. variables. The notation c : P indicating that c has type P is
also extended to sequences: c : P (provided ‖c‖= ‖P‖).

To define fixed point conditions, we need something to take fixed points of, and
to ascertain that the fixed point exists. Choosing a partial order on CondP , one
can define monotonic operators on CondP . The semantics of satisfaction already
defines a pre-order: c ≤ c′ iff every morphism that satisfies c also satisfies c′,
which is obviously transitive and reflexive. As in every pre-order, ≤ ∩ ≤−1 is
an equivalence relation compatible with ≤ and comparing representants via ≤
partially orders its equivalence classes. We introduce variables as placeholders
where further conditions can be substituted3.

3 Note that in our approach variables stand only for subconditions, not for attributes
or parts of graphs. Wherever confusion with similarly named concepts from the
literature could arise, we will use the word “placeholder” meaning “variable”.
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To represent systems of simultaneous equations, we work on tuples of conditions.
If P = P1, . . . , P‖P‖ is a sequence of graphs, then CondP is the set of all ‖P‖-
tuples c of conditions, whose i-th element is a condition over the i-th graph of
P . Satisfaction is defined component-wise: f |= c iff ∀k ∈ {1, . . . , ‖P‖} fk |= ck.

By definition,
∧

and
∨

of countable sets of CondP conditions exist for any P ,
and they are easily seen to be least upper and greatest lower bounds of the
sets. This makes Cond≡P a complete lattice. Let CondP be ordered with the
product order by defining f |= c to be true when the conjunction holds. This
again induces a partial order on the set of equivalence classes, Cond≡P . Thus,
Cond≡P is also a complete lattice, and monotonic operators have least fixed
points by the Knaster-Tarski theorem [20], given by the limit of Fn(false) for
all n ∈ N . This ensures that systems of equations as defined below yield least
fixed point solutions, which is crucial in the definition of a µ-condition. We
extend the inductive definition from Def. 1 as follows:

Definition 5 (Graph Conditions with Placeholders). Given a graph P
and a finite sequence P of graphs or morphisms, a condition with placeholders

from P over P is a (graph) condition with placeholders is either ∃(a, ι, c), or ¬c,
or

∨
j∈J cj , or xi, 1 ≤ i ≤ ‖P ‖ where xi is a variable of type Pi.

A condition can be substituted for a variable of same type:

Definition 6 (Substitution). If P is a list of graphs and F is a condition
with placeholders x over P , then if c ∈ CondP , then F [x/c] is obtained by
substituting each occurrence of xi by ci for all i ∈ {1, ..., ‖P‖}.

Satisfaction of conditions with placeholders by a morphism f is defined in the
obvious way relative to a valuation, which is an assignment of true or false to
each monomorphism of the type graph of the variable into cod(f).

As discussed above, a least fixed point will be sought only up to logical equiv-
alence. To guarantee existence of the least fixed point, the operator must be
monotonic (c ≤ d⇒ F(c) ≤ F(d) for any c,d ∈ CondP ). Monotonicity can be
enforced syntactically for substitutions by never placing a variable under an odd
number of negations, which is proved by structural induction as in fixed point
logics or the modal µ calculus.

Definition 7 (µ-Condition). Given a finite list P , if {Fi}i∈{1,...,‖P‖} are con-
ditions with placeholders from P , over the graphs of P respectively, then µ[P ]F
denotes the least fixed point of the operator c 7→ F [x/c].

A µ-condition is a pair (b, l) consisting of a condition with placeholders b, and a
finite list of pairs l = (xi,Fi(x)) of a variable xi : Pi and a condition Fi(x) : Pi,
with placeholders from x, for some graph Pi, such that F is monotonic.

Notation. we write the list of pairs l = (xi,Fi(x)) as a system of equations
x = F(x). We call b the main body and l the recursive specification of (b, l), and
F(c) is understood as substitution of conditions c for the variables x.
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Thus each condition with placeholders typed over P defines a unary operator
on CondP .

Remark 3 (First Example: µ-Conditions are More General than Nested).

1. µ-conditions generalise nested conditions, consequently all examples for nest-
ed conditions are examples for µ-conditions (with no variables or equations).

2. µ-conditions are strictly more general than nested conditions: the following
expresses the existence of a path of unknown length between two given nodes.

x1[
1 2

] where x1[
1 2

] = ∃(
1 2

) ∨ ∃(
1 2

3

, x1[
1(3) 2(2)

])

It is read as follows: the word “where” separates the main body from the equa-
tions. Here, x1 is the only variable, and its type graph is indicated in square
brackets. The second existential quantifier uses a morphism to unselect node 1
and the sole edge: its source is the type graph of x1, which is indeed syntacti-
cally required for using the variable in that place. The unselection morphism ι
is implicit in the notation, and is only expressed by adding small blue numbers
in parentheses to the node numbers in its source graph to specify the mapping.
This compact notation for ι is why the second existential quantifier in the ex-
ample has only two fields. To ease reading and writing, we adopt the convention
to always use precisely the same layout for the type graph of a given variable.

The following statement is not needed in the proofs that will follow, but it helps
motivate the use of the “unselection” morphisms. We therefore view it as justified
to leave the proof as an exercise:

Remark 4 (Why ι). A µ-condition where ι is the identity in all subconditions of
the main body and of the components Fi(x) is equivalent to a nested condition.

The following fact is well-known:

Remark 5. The least fixed point of F is equivalent to
∨

n∈N Fn(false).

Definition 8 (Satisfaction). The µ-condition b | x = F(x) with x : P is
satisfied by a morphism f iff f |= b[x/µ[P]F ].

Remark 6 (No Infinite Nesting). By the characterisation of the least fixed point
as an infinite disjunction, every µ-condition is equivalent to an infinite nested
condition. Infinitely deep nesting does not arise, because the characterisation in
Remark 5 yields a countable disjunction of finitely deeply nested conditions.

A morphism satisfies a given µ-condition iff it satisfies the finite nested condition
obtained by unrolling the recursive specification up to some finite depth and
substituting the resulting nested conditions into the main body:

Proposition 1 (Satisfaction at Finite Recursion Depth). f |= b | x =
F(x) iff ∃n ∈ N, f |= b[x/Fn(false)].

Theorem 1 (Deciding Satisfaction of µ-conditions). Given a morphism
f : P →֒ G and a µ-condition c, it is decidable whether f |= c.
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3.2 Weakest Liberal Preconditions of µ-conditions

In this subsection, we present a construction to compute the weakest liberal
precondition of any given µ-condition with respect to any graph program P that
does not use iteration (“liberal” means that termination of P is not implied, and is
redundant in the absence of iteration, as only iteration causes non-termination).

Definition 9 (Weakest Liberal Precondition). The weakest liberal precon-
dition (wlp) of c with respect to the program P , wlp(P, c), is the least condition
with respect to implication such that f ′ |= c⇒ f |= wlp(P, c) if (f, f ′, p) ∈ JP K
for some partial morphism p.

We will show that under this assumption there is a µ-condition that expresses
precisely the weakest liberal precondition of a given µ-condition with respect to
a rule, and it can be computed. The result is similar to the situation for nested
conditions. To derive it, we use the shift transformation Am(c) from [12] whose
fundamental property is to transform any nested condition c into another nested
condition such that m′′ |= Am(c) iff m′′ ◦m |= c for all composable pairs m′′, m
of monomorphisms (Lemma 5.4 from [12]). Since this and similar constructions
play an important role in this section, we recall here the case c = ∃(a, c′): if
(m′, a′) is the pushout of (m, a), let Epi be the set of all epimorphisms e with
domain cod(m′) that compose to monomorphisms b := e ◦ a′ and r := e ◦m′.
Then Am(∃(a, c′)) =

∨
e∈Epi ∃(b, Ar(c

′)).

With help of the unselection ι in ∃(a, ι, c), it is at first glance trivial to exhibit
a weakest liberal precondition with respect to Uns(y). However, to handle the
addition and deletion steps, a construction becomes necessary that makes the
affected subgraph explicit again. This information is crucial to obtain the weakest
liberal precondition with respect to Add(r) and Del(l) and must not be forgotten
at any nesting level in order to obtain the correct result. To that aim, we define
a partial shift construction which makes sure that the type graph of the main
body is never unselected in the µ-condition but is instead mapped in a consistent
way as a subgraph of the type graph of each variable. The following serves to
obtain the new type graphs containing the type of the main body:

Construction 1 (New type graphs for partial shift).

We assume that an arbitrary total order on all graph morphisms is fixed. If
c = b | µ[K]F is a µ-condition, then for a variable xi of K, XR,c(xi) is defined
as the sequence of morphisms f obtained as below, in ascending order.

The morphisms f are obtained from P ′ by collecting all epimorphisms that
compose to monomorphisms with the pushout morphisms in the diagram:

∅ Pi

R X P ′
j

f
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Construction 2 (Partial shift).

Given monomorphisms x : G →֒ H and y : R →֒ H,

Px,y(b | µ[K]F) := Px,y(b) | µ[K′]F ′, where the new list of variables K′ and
their respective types P ′ are obtained by concatenating all XR,c(xi) of the vari-
ables of K in order. where the new variables and equations are obtained by
applying Pf,y to the variables of the left hand sides with all possible morphisms
f from R, as below, and accordingly to the right hand sides.

Px,y(xi) = x
y
i if xi : G, where x

y
i : H is a new variable, H = cod(y).

Px,y(∃(P a→֒ C ′ ι←֓ C, c′)) is constructed as follows: Let Epi be the set of all
epimorphisms e with domain H ′ that compose to monomorphisms r = e◦x′ and
b = e ◦ h with the pushout morphisms. Px,y(∃(P →֒ C ′ ←֓ C, c′) =

∨
Epi ∃(H →֒

E ←֓ J,Pi,y′(c′)): for each member of the disjunction, form the pullback of r ◦ ι
and b ◦ y, then pushout the obtained morphisms to (y′, i) as in the diagram:

P C ′ C

H H ′ J

R E

B

y
h

x x′

ι

e

i

y′

ι′

c′

Boolean combinations of conditions are transformed to the corresponding com-
binations of the transformed members.

Remark 7 (Ambiguous Variable Contexts). Note that in a µ-condition it is
not necessarily true that in all contexts where xi is used, it appears with the
same morphism R →֒ Pi (where R is the type of b). It is however possible to
equivalently transform every µ-condition into a “normal form” that has that
property. Applying PidR,idR

will by construction result in a µ-condition with
unambiguous inclusions R →֒ Pi for all variables (namely the morphisms from
the sequences XR,c), and this property is also preserved by the constructions
introduced later in this section. Unreachable variables created by X and P can
be pruned to obtain an equivalent, but sometimes smaller µ-condition.

Equivalence of conditions with placeholders (unlike µ-conditions) is only defined
for conditions using the same sets of variables, as equivalence in the sense of
nested conditions for each valuation. We extend A to conditions with placehold-
ers by defining Am(x) to be ∃(idcod(m), m, x) if x : P .

One can show that Px,y is equivalent to Ax. The reason for introducing Px,y is
that it allows precise control over the types of the variables in the transformed
condition, which should include the type of the main body. Intuitively, as this
corresponds to the currently selected subgraph of a graph program, additions
and deletions are applied to that subgraph and one must make sure that the
changes apply to the whole µ-condition to obtain the correct result.
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Lemma 1. The conditions Px,y(c) and Ax(c) are equivalent.

We introduce the transformations δ′
m(c), α′

m(c) (based on auxiliary transfor-
mations δm,y(c) and αm,y(c), repsectively), which are used in the computation
of the weakest liberal precondition (with respect to addition and deletion, re-
spectively4), of a µ-condition that has already undergone partial shift:

Definition 10 (Transformations δ′ and α′).

Let c : G be a condition with placeholders. If r : K →֒R and y : R →֒G (resp.
l : K →֒L and y : K →֒G) are monomorphisms, then δr,y(c) (αl,y(c)) is defined
as follows: δr,y(¬c) = ¬δr,y(c) and δr,y(

∨
j∈J cj) =

∨
j∈J δr,y(cj) (respectively:

αl,y(¬c) = ¬αl,y(c) and αl,y(
∨

j∈J cj) =
∨

j∈J αl.y(cj)).

For c = ∃(a, ι, c′), the following constructions are used:

P C ′ C

R

W X V

K a ι
y

y′r

h

a′ ι′

r′′ r′ r′′′

c′

δr,y′′(c′)

P C ′ C

K

W X V

L a ι
y

y′l

h

a′ ι′

l′ l′′ l′′′

c′

δr,y′′(c′)

Case of δm,y(c′): If the pushout complement of r and a ◦ y does not exist, then
δm,y(c) = false. Otherwise, obtain it as x′ and r′ and pullback (a, r′) to (a′, r′′)
with source W ; this yields a morphism h from K to W to make the diagram
commute and the special PO-PB lemma [3] applicable. Pullback (ι, r′) to (ι′, r′′′),
(x′ = a′ ◦ h) and let δm,y(c) = ∃(a′, ι′, δm,y′′(c′)) (the pullback property yields
existence and uniqueness of y′′ between K and V to make it commute).

Case of αl,y(c): pushout (y, l) to (l′, h); pushout (l′, a) to (l′′, a′); pullback (a′ ◦
h, l′′◦ι) and pushout to (y′′, l′′′) over the pullback (not drawn in the figure except
for the morphism l′′′′). The commuting morphism from the pushout object V to
X fills in to yield ∃(a′, ι′, αl,y(c′)). The commuting morphism from L to V is y′′.

For variables, δm,y(xi) = x′
i is a new variable of type K, likewise αm(xi) has type

L (see Rem. 7). Finally, δ′
m(c) = δm,id(Pid,id(c)) and α′

m(c) = αm,id(Pid,id(c)).

In contrast to P, the transformations α′ and δ′ leave the number of variables
unchanged. Only the types of the variables are modified. We recall that for any
l : K →֒ L, there is a condition ∆(l) that expresses the possibility of effecting
Del(l), i.e. ∆(l) is satisfied exactly by the first components of tuples in JDel(l)K.
We describe ∆(l) only informally: f |= ∆(l) states the non-existence of edges
that are in im(f) but incident to a node in im(f)− im(f ◦ l).

Theorem 2 (Weakest Liberal Precondition for µ-conditions). For each
rule ̺, there is a transformation Wlp̺ that transforms µ-conditions to µ-condi-
tions and assigns to each condition c such that m′ |= c another condition Wlp̺(c)

4 The letters were chosen so as to indicate the effect of the transformation: to compute
the weakest precondition with respect to addition, δ′ needs to delete portions of the
morphisms in the condition, and vice versa.
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with the property that m |= Wlp̺(c) whenever (m′, m, p) ∈ J̺K and Wlp̺(c) is
the least condition with respect to implication having this property.

3.3 A Weakest Liberal Precondition Example

In this subsection, we construct a weakest liberal precondition of a µ-condition
step by step. Figure 2 shows a single-rule graph program which matches a node
with exactly one incoming and one outgoing edge and replaces this by a single
edge. The effect of the rule is to contract paths, and it can be applied as long as
no other edges are attached to the middle node.

Sel
(
∅ →֒

)
; Del

(
1

3

2
←֓

1 2

)
; Add

(
→֒

)
; Uns

(
←֓ ∅

)

Fig. 2. A path-contracting rule ̺contract = Selc; Delc; Addc; Unsc.

Figure 3 shows a µ-condition whose weakest liberal precondition we wish to
compute. It is a typical example of a µ-condition, which evaluates to true on
those graphs that contain some node which has a path to every other node.

∃(
1

, ∀(
1 2

, x1)) where x1[
1 2

] = ∃(
1 2

) ∨ ∃(
1 2

3

, x1[
1(3) 2(2)

])

Fig. 3. A µ-condition c3 = (b, l) expressing the existence of a node from which there
exists a path to every other node.

∃(
1 2

←֓ ∅, ∀(
1 2

, x1)) where x1[
1 2

] = ∃(
1 2

) ∨ ∃(
1 2

3

, x1[
1(3) 2(2)

])

Fig. 4. Wlp(Unsc, c3). Note that the nodes under the universal quantifier are not the
same as those of the outer existential quantifier, as these have been unselected: the
type of the subcondition ∀(...) is ∅.

In Figures 5 and 6, a partial shift has been applied to the condition of Fig-
ure 4 (Wlp(Unsc, c3)), and the modifications the condition undergoes in the
computation of the weakest precondition with respect to Addc and Delc are
highlighted in various colours (see Figure 7 for a legend). Construction 1 has
yielded a new list of variables5, x1, ..., x7, the corresponding equations are shown
in 6. Note that the representation is somewhat further abbreviated: type graphs
of variables are suppressed in the notation in subconditions ∃(a, ι, xi), when the
mapping ι from the type graph to the target of a is the identity. No other sim-
plifications were applied. We have highlighted in yellow and red the type of the
main body of Wlp(Unsc, c3) throughout Figure 5; edges that are highlighted in
red are deleted to compute Wlp(Addc, Wlp(Unsc, c3)) as per Def. 10; the edges
and nodes highlighted in red are not present initially, but added to compute
Wlp(Delc, Wlp(Addc, Wlp(Unsc, c3))) as per Def. 10, which is obtained by con-
joining ∆(l) to the main body (which we have not represented, as it is easy
to compute and would only encumber the illustration). In the end, a universal

5 Although the original µ-condition needed only one variable, the partial shift yields
a µ-condition with multiple variables in general.
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∃
(

1 2

5

, ∀
(

1 2

3 4

5

, x7

)
∧ ∀

(
1 2

3

5

, x6

)
∧ ∀

(
1 2

3

5

, x4

)
∧ ∀

(
1 2

3

5

, x5

)
∧ ∀

(
1 2

5

3

, x3

)

∧ ∀
(

1 2

5

, x1

)
∧ ∀

(
1 2

5

, x2

))

Fig. 5. Construction of Wlp(Delc; Addc; Unsc, ̺c): main body (variables: see below).

x1

[
1 2

5

]
= ∃

(
1 2

5

)
∨ ∃

(
1 2

5

)
∨ ∃

(
1 2

5

3

, x6

[
1(1) 2(2)

3(3)

5(5)

])

x2

[
1 2

5

]
= ∃

(
1 2

5

)
∨ ∃

(
1 2

5

3

, x5

[
1(1) 2(2)

5(5)

3(3)
])

x3

[
1 2

3

5

]
= ∃

(
1 2

3

5

)
∨ ∃

(
1 2

3
4

5

, x7

[
1(1) 2(2)

5(5)

2(3) 3(4)
])
∨ ∃

(
1 2

5

3(3)

, x4

[
1(1) 2(2)

5(5)

3(3) ])
∨

∃
(

1 2

5

3(3)

, x4

[
1(1) 2(2)

5(5)

3(3) ])

x4

[
1 2

5

3
]

= ∃
(

1 2

5

3
)
∨ ∃

(
1 2

3
4

5

, x7

[
1(1) 2(2)

5(5)

3(4) 2(3)
])
∨ ∃

(
1 2

5

3(3)

, x3

[
1(1) 2(2)

5(5)

3(3) ])

x5

[
1 2

3

5

]
= ∃

(
1 2

3

5

)
∨ ∃

(
1 2

5

3 4

, x5

[
1(1) 2(2)

5(5)

3(4)
])
∨ ∃

(
1 2

5

3

, x2

[
1(1) 2(2)

5(5)

])

x6

[
1 2

5

3
]

= ∃
(

1 2

5

3
)
∨ ∃

(
1 2

5

3 4

, x6

[
1 2

5

3(4) ])
∨ ∃

(
1 2

5

3

, x1

[
1(1) 2(2)

5(5)

])

x7

[
1 2

5

2 3
]

= ∃
(

1 2

5

3 4
)
∨ ∃

(
1 2

5

3
4 5

, x7

[
1(1) 2(2)

5(5)

2(3) 3(5)
])
∨ ∃

(
1 2

5

3 4

, x4

[
1(1) 2(2)

5(5)

3(4) ])
∨

∃
(

1 2

5

3
4

, x3

[
1(1) 2(2)

5(5)

3(4) ])

Fig. 6. Construction of Wlp(Delc; Addc; Unsc, ̺c): equations for the variables.

node/edge decoration meaning
items (nodes and edges) selected for Wlp(Uns(y), c)
items to be deleted to obtain Wlp(Add(r), c)
items to be added to obtain Wlp(Del(l), c)

Fig. 7. Legend for Figure 5.

quantification with morphism ∅ →֒ L completes the weakest precondition with
respect to the rule, as in the construction for nested conditions [12].

The outer existential quantifier in Fig. 5, where the unselection morphism is not
shown in the abbreviated representation, is really as in Fig. 8:

∃
(

1 2
5

←֓
1 2

5

, ...
)

Fig. 8. Outer nesting level of the conditions in Fig. 5
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When following the construction through the nesting levels, please keep in mind
that one may sometimes choose among isomorphic pushout objects and the
numbers of new nodes are arbitrary, but the nodes 1, 2 and (as created by
the transformation α′) 5 are never “unselected” and therefore present in every
type graph occurring in the weakest preconditions, similarly for the edges (not
numbered because their mapping is unambiguous in the example).

4 Correctness Relative to µ-conditions

In the previous section, we have shown how the weakest liberal precondition
construction for nested conditions carries over to µ-conditions. The next task is
to develop methods for deducing correctness relative to µ-conditions and extend
the proof calculus, for which we offer a partial solution in this section.

The soundness of Pennemann’s calculus K has been established in the publica-
tions introducing them, and recently a tableaux based completeness proof of K
was published [11]. The proof rules of K are easily seen to be sound for µ-condi-
tions as well, however the recursive definitions requires an extension.

For our calculus Kµ, we adopt the resolution-style rules of K and add an induc-
tion principle to deal with certain situations involving fixed points. This proved
to be sufficient to handle all the situations encountered in the examples.

We employ a sequent notation: the inference rules manipulate objects Ctx : Γ ⊢
∆, with the intended meaning that the disjunction of ∆ can be deduced from
the conjunction of Γ in the context Ctx. The context Ctx is a pair of a left
hand side of a sequent and an operator on µ-conditions. Γ and ∆ are sets of
expressions, which differ from conditions in that identifiers can be used for the
main bodies of µ-conditions and both these and variables can be annotated with

their recursion depth, an implicitly universally quantified natural number. x
(n)
i

then stands for F (n)
i (false) and an auxiliary rule permits to unroll it to the i-th

component of F applied to x(n−1).

The induction rule announced above is (where Hi,j for each i ∈ {1, ..., ‖I‖},
j ∈ {1, ..., ‖J‖} is any condition with placeholders):

∀i,j︷ ︸︸ ︷
x
(m)
i ∧ ¬y(n)

j ⊢
Hi,j(x

(m−1)
1 ∧¬y(n)

1 , ..., x
(m−1)
‖I‖ ∧¬y(n)

‖J‖)
⊢
∀i, j Hi,j(false) = false

∨
xi ∧ ¬yi ⊢ false

(IndMuEmpty)

Theorem 3. Kµ := K ∪ {IndMuEmpty} is sound.

There are a number of details hidden in the discussion above: Boolean operations
must be lifted to µ-conditions, which entails variable renaming and union of the
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systems of equations; rules for exploiting logical equivalences between different
Boolean combinations are necessary to equivalently transform conditions into a
form suitable for the application of the rules of K; in [12], each Boolean combi-
nation appearing inside a nested condition is put into conjunctive normal form
prior to the application of rules. Proof trees in the sequent-style calculus Kµ start
with instances of the axiom (A ⊢ A is derivable by a rule with no antecedents),
and make use of all the classical sequent rules [5] not involving quantifiers.

Our handling of nested contexts relies on substitutions: a context is a pair of a
left hand side of a sequent, and a graph condition with a special variable. The
rule for manipulating the context is usable both ways:

⊢ Ctx(x)

Ctx ⊢ x
(Ctx)

5 Related Work

Recently, Poskitt and Plump [16] have presented a weakest precondition calculus
for a different extension of nested conditions (monadic second-order conditions)
and demonstrated how to use it in a Hoare logic. The method is arguably closer
to reasoning directly in a logic and less graph condition like, but seems successful
at solving some of the same problems in a different way. HR∗ conditions [17] are
another approach towards the same goal; they have already been mentioned in
the main text and recently there has been an effort at extending the weakest
precondition calculus to a subclass including path expressions. Verification of
graph transformation system has also been performed within general-purpose
theorem proving environments by Strecker et al. [19, 13], with positive path
conditions. Verification of graph transformation systems via model checking of
abstractions, as opposed to the prover-based approach pursued here, can be
found in Gadducci et al., Baldan et al., König et al., Rensink et al. [4, 1, 10, 18].

A summary overview of graph conditions for non-local properties is attempted
below (a proof calculus is presented in [16] but completeness of a proof calculus
has only recently been obtained by Lambers and Orejas [11] for nested conditions
and remains to be researched for the other approaches). Note that while HR∗

conditions are known to properly contain the monadic second-order definable
properties [17] and nested conditions are a special case of each of the other
three, we have not yet been able to separate µ-conditions from MSO or HR∗:

reference [12] (here) [17] [16]

conditions Nested µ- HR∗ MSO-
wlp yes yes incomplete6 yes
complete proof calculus yes future work
theorem prover yes future work

6 Radke, personal communication.
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6 Conclusion and Outlook

We have introduced µ-conditions and achieved several results, mainly a weakest
liberal precondition transformation (Theorem 2), soundness of a proof calculus
(Theorem 3), and discussed correctness relative to µ-conditions, which appears
to be a fruitful ground for further investigations.

In analogy to the equivalence between first-order predicate graph logic and nested
graph conditions, we are investigating whether µ-conditions have the same ex-
pressivity as fixed point extensions to classical first-order logic for finite graphs.

Also, the expressivity of HR∗ conditions [17] or even MSO likely surpasses that
of µ-conditions, but the precise relationship remains to be examined. As the
examples show, the weakest precondition calculus (which is still a research ques-
tion for HR∗ conditions [17] but readily available by logical means in the MSO-
conditions formalism [16]) produces quite unwieldy expressions due to partial
shift. The blowup is exponential in the size of the interface graphs used in the
rule, and seems unavoidable because of the need to use a fixed set of type graphs
for the finitely many variables (and a blowup is also inherited from the weak-
est precondition calculus of [12]). Rule IndMuEmpty also contributes because
it involves a Cartesian product between variable sets. We have devised heuris-
tics to simplify the expressions, but even if many of the cases can be resolved
automatically, this issue still raises concerns as to the practical applicability.

Future work will also include tool support with special attention to semi-auto-
mated reasoning, based on the reasoning engine Enforce implemented in [12].
To extend the weakest liberal precondition construction to programs with it-
eration, one would have to provide, or have the prover attempt to determine,
an invariant, as in the original work of Pennemann; to obtain termination, one
could proceed as in [14] and prove a termination variant. We plan a further
generalisation to correctness under adverse conditions, i.e. systems subject to
environmental interference, also modelled as a graph program. Furthermore, it
appears that µ-conditions might readily generalise to temporal properties, even
with the option to nest temporal operators inside quantifiers, which would al-
low properties such as the preservation of a specific node to be expressed (but
require further proof rules). This could be achieved by introducing a temporal
next operator parameterised on atomic subprograms (the basic steps of Def. 4)
and since in the semantics of these program steps the relationship between the
interfaces is deterministic, this would again confer an unambiguous type to such
an expression and make it suitable for use as a subcondition. Whether this offers
any new insights remains to be seen. Eventually, we would also like to deal with
algebraic operations on attributes and extend our work to a practical verification
method that separates the graph specific concerns from other aspects and allows
proofs of properties that depend on both, for example involving data structures
whose elements should remain ordered. Finally, the limitations imposed by un-
decidability prompt the search for of restricted decidable classes.
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