
Global Graph Transformations

Luidnel Maignan and Antoine Spicher

University Paris-Est Créteil, LACL
61 avenue du Général de Gaulle
F-94015 Créteil Cedex, France

{luidnel.maignan,antoine.spicher}@u-pec.fr

Abstract. In this paper, we consider Global Graph Transformations
where all occurrences of a set of predefined local rules are applied al-
together synchronously so that each part of the original graph gives rise
to a part of the result graph, without any reference to the original one.
The particularity here is that our framework is deterministic. This is
achieved by incorporating a notion of mutual agreement between its lo-
cal rules. Our proposition is first motivated and illustrated on existing
problems coming from different domains. It is then formalized as a cat-
egorical construction which is finally compared to more usual algebraic
constructions, in particular to the strongly related Amalgamation The-
orem. Applications of this work include the generalization of cellular
automata and the clarification of some frameworks of complex systems
modeling where the usual mutual exclusion of rule applications can be
replaced by a concept of mutual agreement.

1 Introduction

The framework proposed herein has been designed with the need to model de-
terministic dynamical systems by graph transformations. The state of such a
system is represented by a graph and its global dynamics is specified through a
set of local evolution rules.

One such example is the simple framework of cellular automata (CA). The
state of a CA is usually represented by a labeled regular graph where the nodes
are the cells, the labels encode the cell states, and the edges represent the neigh-
borhood relation between cells. A global evolution step consists of a synchronous
update of all the labels relying on a local evolution function, the structure of the
graph remaining unchanged. From another point of view, each patch of neighbor
cells (e.g. triple of consecutive cells in 1D CA with radius 1, square of 9 cells in
2D Moore CA) gives rise to a new node with the updated label. All these new
nodes are then connected together to form the next state graph representation
which is independent from the current one. Recently, different formalizations
based on this point of view have been proposed to generalize CA to arbitrary
graphs with dynamic structures [1,2]. This paper is an attempt to show that an
algebraic approach can provide an interesting alternative to those formalisms.

Other work was already devoted to the simulation of the so called Dynamical
Systems with Dynamical Structure [5,20]. In these approaches, a rewriting of cell



complexes (an extension of graphs to higher dimensions, see Section 3) has been
developed to simulate concurrent interaction rules. The resulting programming
language, called MGS, has been shown as a unification of many computation
models including CA, Lindenmayer systems, membrane computing systems, etc.
So far, MGS parallel rule application strategies rely on a maximal-parallel prop-
erty: only mutually exclusive matchings can be applied simultaneously. This
leads to some non-determinism since there might be different maximal sets of
mutually exclusive matchings. This paper arises as an attempt to model systems
where the natural mutual agreement between the local rules applications can be
used to overcome the difficulties introduced by the concept of mutual exclusion.

As a result of these two motivations, the transition mechanism of the modeled
system is described in our setting by a set of rules that do not send rooted
graphs to nodes as in CA, nor nodes to graphs as it is often the case in graph
transformation [7], but that send graphs to graphs. Moreover, the reconstruction
of the resulting global state from the local applications of these rules on the
current state, relies on the following coherence property of the rules: when two
rule matchings overlap on an input graph, the local behavior of the common part
has to be shared by the two rules. This intuition can be seen as a compound
of two instances of a simpler situation: any time a first matching includes a
second matching, the result of the first matching has to include the result of
the second matching. Because the proposed formalism is a direct expression of
the coherence property, we believe that this framework allows to model very
intuitively any desired deterministic system, and can be easily adapted to any
particular need (e.g., non-determinism, presence of terminals/non-terminals). Of
course, as for any modeling framework, it certainly asks for some getting-used-to
to users already accustomed with other modes of thinking.

The proposed framework reminds some existing ones. The statement of the
coherence above is the same leading to the concept of sub-rule and amalgamation
in the double-pushout approach [3]. It is also reminiscent of the connecting or
gluing mechanisms used in node or edge based parallel graph grammars (see
Sect. 2). This very simple inclusion intuition can be applied in various settings,
as cell complexes in the following. In section 5, it is expressed categorically; this
allows a short and intrinsic formalization with possible instantiations to different
kinds of objects. Finally the evolution described by a total function in the CA
setting simply becomes functors on a full subcategory in our setting.

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 provides some comparison with existing approaches of parallel graph
transformation. Section 3 gives some formal preliminaries. Section 4 considers the
example of triangular mesh refinement in order to expose the idea of the proposed
framework informally. This example has been chosen because it encompasses
many considerations about the proposed framework. Section 5 formalizes the
concept of global transformation. It is then compared with the double-pushout
approach and the strongly related concept of amalgamation of productions. Sec-
tion 6 discusses the remaining aspect of the work and concludes.



2 Related Work

In this section, we describe briefly existing approaches of parallel rewriting sys-
tems with a final comparison to global transformations.

One of the first parallel rewriting systems are Lindenmayer Systems (LS),
which are parallel string rewriting in contrast with sequential Chomsky gram-
mars. A 〈k, l〉 LS (k, l ∈ N) is a context-sensitive system gathering productions
in a transition table, so that each sub-word of length k + 1 + l (i.e., a letter
with a left context of length k and a right context of length l1) is associated
with (possibly many) words. The parallel rewriting of a word is done as follows:
each letter is substituted accordingly to its left and right contexts by one of its
associated words in the transition table. Obviously, the LS is deterministic if the
transition table is a function (i.e., associates a unique word with each entry).
LS have been extensively studied for their expressive powers and compared to
the classic Chomsky hierarchy of formal languages [19]. They have also been
used in the modeling of unidimensional and tree-like dynamical systems [16].
LS can be seen as a special case of parallel graph transformation, restricted to
linear/sequential graphs. Other special cases of graphs can be addressed. For
example, Paŭn Systems (roughly speaking, nested parallel multiset rewriting
systems [15]) can be considered as complete graph transformations. Such sys-
tems derive naturally from LS by considering rewriting modulo associativity and
commutativity: any two symbols of a string representing a multiset can be made
neighbors by permuting the letters of the word. In this setting, a production is
a metaphor of a chemical reaction. The left hand side (l.h.s.) of a production
designates a sub-multiset which is entirely replaced by its associated right hand
side (r.h.s.) (in contrast with LS where each letter is replaced independently).
To avoid the consumption of the same symbol by two different reactions, the
maximal-parallel strategy is considered leading to non-determinism.

Extension of LS to arbitrary graph transformation is not an easy task [7]. A
first idea consists in encoding the graph using sets, multisets, sequences or terms,
and their associated well-known and rich techniques. As an example, [17] bridges
graph rewriting to set rewriting by considering a graph as a set of (hyper-)edges,
an hyper-edge being a sequence of vertices. On the other hand, some works ad-
dress the issue of a direct rewriting of graphs. Classical work in graph grammars
includes node-rewriting and hyperedge-rewriting graph grammars [18]. These
works have some interesting relation with our framework when they are used in
a parallel setting, that is, when each node (resp. edge) chooses a production rule
to apply. In this case, all of them provide a resulting graph and these graphs are
connected (resp. glued) together in some way or another by an embedding mech-
anism. In the node setting, edges are used to specify the connection between
the graphs while, in the hyperedge setting, the nodes specify the gluing between
the graphs. In fact, any deterministic instances of these systems can easily be
represented in our framework.

1 An extra dummy symbol, the marker, is used to deal with boundaries.



f

c3c1c2

e2 e3e1

c2c3

f

e1

c1

e3

e2

Fig. 1. On the left, a cell complex composed of three 0-cells (c1, c2, c3), of three 1-cells
(e1, e2, e3) and of a single 2-cells (f). On the right, the Hasse diagram of its incident
relationship.

The previous examples are set-theoretic approaches: graph transformations
are expressed in terms of sets and set operations. Graph transformations can also
be represented algebraically using the double-pushout and the simple-pushout
approaches which formalize the idea of local replacement in a categorical man-
ner [18]. The double-pushout approach is inherently local so that it needs to
be extended to deal with parallel applications leading to the concepts of par-
allelism [4] and amalgamation [3]. Roughly speaking, parallelism allows to ap-
ply many mutually exclusive matchings simultaneously. Amalgamation provides
a more general setting where the set of productions is augmented with sub-
productions that handle some kind of overlaps. Therefore, many matchings can
be applied together as long as sub-productions are chosen to deal with the over-
lapping sub-parts which is reminiscent of the coherence property stated above.
Multi-amalgamation [6] is an extension of amalgamation to consider maximal
matchings. However, the amalgamation theorem makes clear that a compound
production can be applied only when each of its parts can be applied. This
constraint makes (multi-)amalgamation unusable straightforwardly in the cases
where the transformation of matchings only makes sense when taken altogether.

3 Formal Preliminaries and Notations

Since the present article follows naturally work introduced in [20], we consider
cell complexes, a more general setting than graphs. Like a graph, a cell complex
is a formal construction that builds a space in a combinatorial way through more
basic objects called topological cells. Each topological cell abstractly represents
a part of the whole and is characterized by a natural integer called dimension. A
topological cell of dimension d is called d-cell. The structure of the whole space,
corresponding to the partition into topological cells, is considered through the
incidence relationships, relating two “neighbor” cells in the partition. A graph
can then be seen as a cell complex composed of 0-cells and 1-cells, respectively
the nodes and the edges, so that the incidence relationship of the complex coin-
cides with the usual notion of incidence in graphs. More generally, a cell complex
using only two dimensions is an undirected multi- and hyper-graph. There exist
many possible formal definitions of cell complexes coming from different fields



(algebraic topology [12], digital topology [8], geometric modeling, etc.). We con-
sider here the definition of [20].

Let L be an arbitrary set of symbols. A labeled abstract cell complex K with
labels in L is given by a tuple 〈CK,≺K,dimK, lK〉 where CK is the set of abstract
topological cells, ≺K is a locally finite2 strict partial order relation over CK,
dimK : 〈CK,≺K〉 → 〈N, <〉 is a strictly monotonic map assigning the dimension
to each cell, and lK : CK → L is a map assigning a label to each cell. An
example of an abstract cell complex is shown on Fig. 1. We denote Acc the set
of abstract cell complexes. In the following, we use the term cell complex (resp.
cell) for abstract cell complex (resp. topological cell) since there is no possible
ambiguity.

A cell complex morphism h : K → K′ from a cell complex K to a cell complex
K′ is given by a strictly monotonic map Ch : 〈CK,≺K〉 → 〈CK′ ,≺K′〉 such that
lK = lK′ ◦Ch, and dimK = dimK′ ◦Ch. A cell complex inclusion i : K → K′ from
a cell complex K to a cell complex K′ is a cell complex morphism from K to K′
such that Ch is injective.

We consider the category AccML of cell complexes and cell complex mor-
phisms between them on one hand, and the sub-category AccIL of cell complexes
and cell complex inclusions between them on the other hand, together with the
associated inclusion functor UL : AccIL → AccML. In the following, the sub-
script L is omitted, the set of labels is clear from the context and we never
consider different sets of labels simultaneously. For the categorical discussion,
we use the concepts of categories, functors, natural transformations, pushouts,
colimits and comma categories. For formal definitions of these concepts, we refer
to [10].

4 Specification of a Triangular Mesh Refinement

Mesh refinement is an approach used in geometrical modeling to generate smooth
surfaces from an initial set of control points. Mesh refinement algorithms con-
sist generally in iteratively generating new control points from current ones by
applying a set of creation rules. Such procedures are commonly used in numeri-
cal resolution schemes and can be specified through graph transformations [14].
In [20], the declarative expression and implementation of these algorithms as a
maximal-parallel cell complex rewriting are discussed.

Although mesh algorithms are intuitively described by local graphical schemes,
they operate on the whole mesh and then turn out to be global and synchronous.
Let us illustrate this issue by considering the Loop subdivision procedure [11]
which is one of the simplest algorithms for refining triangular meshes (cell com-
plexes where all 2-cells respect the incidence given in Fig. 1). It relies on the
polyhedral subdivision where each triangle of the original mesh is substituted
by four triangles as shown on Fig. 2a. This rule is quite informal. In particular,
notice the dashed edges: they are definitively not part of the local transformation

2 For any elements x, y ∈ CK, the interval [x, y] = { z | x ≺K z ≺K y } is finite.



(a) Inner Rule (b) Boundary Rule

Fig. 2. Polyhedral Subdivision Scheme

of the triangle but express how the new pattern has to be merged with the hypo-
thetical applications of the same rule on some neighbor triangles. However, this
detail —in the sense that the primary role of the rule is to specify the refinement
of one triangle— has serious consequences on the algorithm since it forbids to
consider the application of the rule on only one triangle and worse it only allows
the transformation of the whole mesh. The reason of such a constraint comes
from the considered class of cell complexes, i.e., the mesh must remain triangu-
lar. This particularity makes mesh refinement an excellent candidate to illustrate
our approach. In this section, we first specify a set of transformation rules for
polyhedral subdivision, and then we detail how these rules are applied in the
context of a global transformation.

4.1 Rules Specification

For the sake of illustration, let us consider that the refinement is restricted
to a sub-part of the mesh. The region is specified by white or black labeled
nodes so that the subdivision only occurs on triangles incident to three black
nodes. Solutions exist to stop the natural propagation of the procedure over the
whole mesh. Here, we consider an additional rule (see Fig. 2b) which deals with
triangles located on the boundary of the region to be refined, i.e., incident to
exactly two black nodes. Other triangles are left unchanged.

The use of dashed contexts in Fig 2 is not accurate. Let us design a complete
set of rules allowing the refinement of a triangular mesh in one global step. As a
starting point, we specify the transformation of any single triangle of the mesh
by considering two subdivision rules, ρ1 and ρ2 (corresponding to Fig. 2 with-
out dashed context), and two more additional rules, ρ3 and ρ4, for unmodified
triangles. These rules are shown on top of Fig. 3a.

Obviously, there is a lack of specification since connections between triangles
are not taken into account. For instance, let us consider two triangles with only
black nodes connected by a common edge as shown on the left of Fig. 4. Two
matchings of the l.h.s. of rule ρ1 are clearly identified. Therefore, the resulting cell
complex should be composed of two instances of the r.h.s. of rule ρ1. However,
nothing specifies the way to built it. Forgetting mesh refinement for a moment,
many possible constructions are conceivable: leaving the r.h.s. instances isolated,



ρ1 ρ2

ρ4

ρ8

ρ9

ρ7

ρ6

ρ5

ρ3

(a) Local Transformation Rules

(b) Inclusion between Rules

Fig. 3. Polyhedral Subdivision Rules



Fig. 4. Overlapping between two triangles

or merging them by a vertex or an edge, or even identifying them in only one
instance, and so on and so forth.

In the case of mesh refinement, when two triangles share an edge, the two cor-
responding edges on the r.h.s. should also be shared on the resulting cell complex.
There are two ways to specify such a behavior: one union-based method where a
super-rule is designed for pairs of triangles, and another dual intersection-based
method where an agreement is given about the transformation of the common
edge. Here, we choose the latter method focusing on the evolution of an edge
incident to two black nodes. Two things are required: firstly rule ρ5 of Fig. 3a
specifies the subdivision of that edge; secondly for each edge found on the l.h.s.
of rule ρ1, the associated divided edge is identified in the r.h.s. of ρ1 as shown
on Fig. 3b.

With this information at hand, the previous example of two side-by-side
triangles is clarified: there are two matchings of ρ1 and one matching of ρ5
included in the two former matchings. The result cell complex is the unique cell
complex where we can see two instances of the r.h.s. of ρ1 and one instance of
the r.h.s. of ρ5 with inclusions between them being exactly the ones dictated by
the inclusion rule. This can be observed in Fig. 4 where the inclusions between
the l.h.s. matchings and the correspondence with the associated r.h.s. inclusions
between the corresponding r.h.s. instances are depicted.

Iterating this design process for all possible intersections between rules, we
obtain all the rules of Fig. 3a and all the inclusions given in Fig. 3b. Rules
ρ6 and ρ7 describe the conservation of edges incident to a white node and the
conservation of nodes is specified in ρ8 and ρ9. The latter are necessary for
triangles sharing only one node. After transformation, their r.h.s. must also be
connected by a node3.

3 As a byproduct of this intersection-based methodology, rules ρ5-ρ9 are used to man-
age isolated edges and nodes, which seems coherent with the refinement process. If
these effects are not desired then the union-based methodology is applicable, leading
to more transformation rules, namely 32 pair-rules since there are 4 types of trian-
gles and two triangles are either incident by an edge or a node. This allows to stay
strictly concerned with triangles.



(a) (b) (c) (d)

Fig. 5. Application Steps

As for the rule ρ5, all inclusions between the l.h.s.’s of these new rules are
found and the associated r.h.s.’s are identified. This association of inclusion has
to be seen as a set of rules too, that we call inclusion rules: for each inclusion
of one l.h.s. in another l.h.s., an inclusion rule specifies an associated inclusion
between the two corresponding r.h.s. Put in another way, theses inclusion rules
express a kind of mutual agreement between the rules. When a rule indicates a
transformation on a l.h.s., and this l.h.s. includes the l.h.s. of another rule, the
former rule must achieve the transformation required by the latter rule, and this
is materialized by an inclusion rule indicating where this required transformation
can be found. So no mutual exclusion is necessary. This is reminiscent of the
notion of sub-production in amalgamation. The comparison with this concept is
delayed to Sect. 5.3.

4.2 Rules Application

The construction procedure described above about the transformation of two
side-by-side triangles can be generalized to any mesh as follows:

1. Pattern matching (Fig. 5a ⇒ 5b): the original mesh is split into all the
matchings of the local rules l.h.s. together with all the inclusion information
between these matchings. Any unmatched part of the mesh is lost.

2. Local rule application (Fig. 5b ⇒ 5c): each l.h.s. instance is locally replaced
by its corresponding r.h.s. The inclusion information is also updated: each
l.h.s. inclusion is replaced by its corresponding r.h.s. inclusion.

3. Reconstruction (Fig. 5c ⇒ 5d): the inclusion information are finally used to
merge the different r.h.s. giving rise to the transformed mesh.

Fig. 5 illustrates the computation of a global transformation step on a mesh
composed of four triangles. Note that Figs. 5b and 5c only show more explicitly
for the four-triangles case the inclusion structures already described in Fig. 4 for



the two-triangles case.

This construction of the polyhedral subdivision based on mutual agreement
has to be compared with the equivalent construction in [20] using mutual ex-
clusion. Mutual exclusion prevents the computation of refinement in one global
step. The solution of [20] consists of a two-step procedure: a first transformation
focuses on the subdivision of all edges and a second transformation splits the
obtained hexagons and squares into triangles. Exclusion holds since the l.h.s. of
each rule consists of only one element (a 1-cell for the first step, a 2-cell for the
second step). Obviously the results of both approaches are the same. However
the exclusion based approach suffers from two main drawbacks:

1. A marking is required in the facets subdivision step to identify the nodes
generated by the edge subdivision step. For example, in the substitution of
an hexagon by four triangles, the three newly created edges surrounding the
central triangle are incident to new nodes.

2. The intermediate cell complex contains hexagons and squares and then is
not a regular triangular mesh. An implementation of this approach requires
the use of a data structure allowing the representation of such a complex.
This is beyond the ability of data structures classically used in geometric
modeling which strongly rely on the triangular nature of the meshes.

5 Global Transformations

In this section, we begin by formalizing the constructions described in the ex-
ample using categorical concepts. Then, we compare the double-pushout (DPO)
approach and global transformations, showing in particular some correspondence
in the particular case where some conservation rules are specified. We also com-
pare global transformations to the Amalgamation Theorem. The similarity is
explained, and some differences are identified.

5.1 Categorical Characterization

Here, we want to give a formal specification of the objects and constructions
presented in Section 4. A transformation rule ρ is a pair of two cell complexes,
the l.h.s. and the r.h.s. A set of transformation rules gives rise to a function
R0 : L0 → Acc, where L0 ⊂ Acc denotes the set of l.h.s., that maps each l.h.s. to
its corresponding r.h.s. An inclusion rule between two transformation rules ρ and
ρ′ associates an inclusion of the l.h.s. of ρ′ in the l.h.s. of ρ with an inclusion of
the r.h.s. of ρ′ in the r.h.s. of ρ. Let us denote L1 the set of all inclusions between
any pair of l.h.s. of L0, the set of inclusion rules can be interpreted as a function
R1 mapping any element of L1 to its corresponding inclusion in Acc. A set of
inclusion rules is said to be complete if the associated function is total. A set of
inclusion rules is said to be consistent if all the inclusions agree on composition.
In that sense, the set of inclusion rule given in Fig. 3b for the mesh refinement



example is complete and consistent4. It is trivial to see that these two properties
induce the determinism of a global transformation since any case that could be
encountered is taken into account by a mutual agreement (completeness) and
there is no contradiction between these agreements (consistency).

This situation can be nicely summarized in terms of categorical concepts.
Considering that L0 and L1 form a sub-category L of the category AccI, R0

and R1 form a functor R from L to AccI. While consistency holds since R, as
a functor, respects the morphism composition in AccI, completeness is grabbed
when L is a full sub-category where all possible inclusions are considered. This
leads to the following definition:

Definition 1 (Global Transformation). A global transformation T is given
by a tuple 〈LT ,LT ,RT 〉 where LT is a full subcategory of AccI corresponding to
the l.h.s. with LT : LT → AccI its associated inclusion functor and RT : LT →
AccI is a functor from LT to AccI.

We now formalize how a global transformation T is applied on a cell complex
K to build the associated result TK. Following the decomposition presented in
Section 4.2, we get:

1. Pattern matching : all the matchings of the l.h.s. of T in K and the way
they are included one in each other exactly correspond to the objects and
morphisms of the comma category LT /K. Objects of LT /K are pairs 〈l ∈
LT , i : LT l → K〉 where l is a l.h.s. and i an inclusion of this l.h.s. in K.
Morphisms of the comma category are inclusions between the matchings,
i.e., a morphism from a matching 〈l, i〉 to a matching 〈l′, i′〉 is an inclusion
j : l→ l′ in L such that i = i′ ◦ LT j.

2. Local rule application: in order to get the r.h.s. corresponding to each match-
ing, we first use the projection functor ProjLT /K : LT /K → LT defined
on matchings as ProjLT /K = 〈l, i〉 7→ l, and on matching inclusions as
ProjLT /K = j 7→ j. The functor RT then maps each l.h.s. to the correspond-
ing r.h.s., and each l.h.s. inclusion to the corresponding r.h.s. inclusion. So
the result of this step is the compound functor RT ◦ ProjLT /K.

3. Reconstruction: all the r.h.s. instances are finally glued together w.r.t. RT ◦
ProjLT /K. The resulting cell complex TK could be obtained as the colimit

of this functor. However, colimits are only guaranteed5 in AccM since the
universality may require a non-inclusion morphism to hold. So we use the
forgetful functor U to pass from AccI to AccM.

4 Only a subset of the inclusion rules is drawn but all other rules can be retrieved
using composition of inclusion.

5 A way to show that all the colimits exist consists in exhibiting an initial object and
all pushouts. Here, the initial object is simply the empty cell complex. The pushout
of a span of cell complexes can be obtained from the pushout in Set of their cells sets
by adding the unique possible dimension function and the smallest possible strict
partial order relation, which happens to necessarily exist thanks to the dimensions.



A global transformation application is summarized as follows:

Definition 2 (Application of Global Transformation). Given a cell com-
plex K and a global transformation T , the result TK of the application of T on
K is the cell complex TK = Colim(U ◦ RT ◦ ProjLT /K).

Note that since we consider all the inclusions between the l.h.s. graphs, we
also consider their automorphisms, i.e., their symmetries. This means that, in
our previous examples, each matching is really matched as many times as it
has symmetries. The final result remains correct because all the results of these
symmetric matchings are glued together appropriately due to the functorial na-
ture of LT and RT . Considering these automorphisms is in fact meaningful as
they allow to prevent incoherent specifications that intuitively lead to symmetry
breaking. Unfortunately, the size of this paper does not allow us to enter into a
more detailed discussion about these features.

5.2 Double-Pushouts and Global Transformations

One of the consequences of our construction of the transformation result is that
all parts of the original cell complex which are not matched are not conserved
by any means. This is why we do not consider any morphism relating l.h.s. and
r.h.s. If something has to be kept, this must be specified explicitly as we did for
the not-refined triangles in Section 4. This is in plain contrast with the DPO
approach where the default behavior is to conserve unmatched parts of the graph
and deletion has to be specified explicitly.

However, if a global transformation states that some patterns have to be
conserved, then it is possible to see the elements of the DPO occurring in a
different light. This relation appears because conservation rules have identical
l.h.s. and r.h.s. So despite the fact that all considered inclusions are either strictly
between l.h.s. or strictly between r.h.s., these conservation rule allows to think
inclusions linking both l.h.s. and r.h.s. worlds. To express this a bit more visually,
let us consider a derivation G⇒ G′ via a production p = L← K → R based on
an inclusion i : L→ G and try to lay it out in a global transformation application
way. The elements of the derivation are given in the following diagram.

L K R

G G− G′

l r

l′ r′

i k o

In the global transformation framework, G− is a compound of many conservation
rules, K is a compound of many small conservation rules included in both the
conserved and the modified parts, and L and R are all the l.h.s. and r.h.s. of the
transformation rules. The result G′ is obtained as the colimit of K, G− and R,
which is precisely a pushout. This gives the following layout:



rules
K K

G− G−

L R

k

l

k

r

matchings

K

G−

L

G

i ◦ l

l′

i

k

l

r.h.s. and colimit
K

G−

R

G′

o ◦ r

r′

o

k

r

Notice that no notion of pushout complement is required in our construction.
The existence of a pushout complement for a production L ← K → R based
on a morphism m : L → K imposes that the parts of L which are not in K
should not be incident to any cell outside of m for a derivation to be feasible.
Contrary to DPOs, all matchings are necessarily applicable in our setting. This
gives more flexibility in the design of transformation rules and allows to work
exclusively with inclusions. All of this are consequences of the fact that we are
in the restricted case where nothing from an input cell complex is considered as
conserved.

5.3 Amalgamation and Global Transformations

There is a strong relation between the proposed formalism and the amalgama-
tion of productions available in the DPO approach. Indeed, both consider rules
and a notion of inclusions between rules. Moreover, amalgamation of two pro-
ductions via a sub-production is a pushout of productions and it is well-known
that a colimit can be viewed as being mainly a compound of pushouts. If we
consider all the matchings of a set of productions and if we have enough sub-
productions to handle all possible overlaps, it is clearly possible to synchronize
all the productions into one production that operates in a single step as required.

However there are some differences. We have already discussed the default
behavior on the unmatched part for both approaches: amalgamation conserves
it while global transformation drops it. Assuming that there is no unmatched
part, a strong difference remains because of applicability. Indeed, in the DPO
approach the amalgamation theorem states that anytime an amalgamation of
productions can be applied, each production can be applied individually, with the
restriction imposed by the existence of a pushout complement explained earlier.
Let us consider the following production that is a straightforward translation of
rule ρ1 of Fig 3a:

Since the three 1-cells in L are not part of K, the rule can only be used on
triangles whose edges are incident to no other 0-cells nor 2-cells, which is not



the common case in a triangular mesh. Indeed, in mesh refinement, every cells
(except the 0-cells) have to be transformed and the main part of them are inci-
dent to each other. This makes impossible in general the design of productions
isolating the cells to be transformed, except by considering the whole black re-
gion in one global production. As a consequence, there is no simple way to use
amalgamation alone to build a single global production from many local ones.

Again, an important property of our approach is that there is no applicability
condition over the cell complex to transform. The only constraint comes from
the completeness and the consistency of the set of inclusion rules which ensure
to get a well defined and unique result.

6 Conclusion and Future Work

In this article, we have presented the Global Graph Transformations, an original
categorical framework to deal with deterministic graph transformation with a
maximal application strategy. Global transformations are based on the notion
of mutual agreement (as opposed to mutual exclusion) which allows overlap-
ping matchings to agree on the transformation of the shared part. Analogously
to amalgamation of productions, mutual agreement is realized by considering
additional rules specifying the behavior of the intersection parts. Global trans-
formations are useful for expressing the global rewriting of a graph where no
interface is explicitly conserved between the l.h.s. and the r.h.s. Taking a point
of view different from substitution processes, a global transformation is a way
to construct a set of constraints: local transformation constraints imply that for
each l.h.s. matching the corresponding r.h.s. has to appear in the result; inclusion
constraints state how r.h.s. have to be glued from l.h.s. inclusions. The resulting
graph corresponds to the solution of these constraints.

In this paper, the formalization of global transformations relies on the cell
complexes category. We made this choice for bridging with other related works.
Firstly, our running example about mesh refinement is definitively more clear
without any encoding in usual graphs. Secondly, this approach is in line with
the MGS programming language based on the rewriting of topological collec-
tions [20]. In this context, labeled cell complexes are reminiscent of the MGS
topological collections and global transformations correspond to a new rule ap-
plication strategy. We plan to integrate this strategy in the current implementa-
tion of the language. Finally, causal graphs dynamics proposed in [1] have been
recently extended to combinatorial manifolds [2], a specific class of cell com-
plexes. Similarly to these works, we are interested in understanding the notion
of locality and causality in global transformations and to relate these notions
to a kind of topological continuity of the transformation. In this context, using
cell complexes seems more natural since they have been the subject of many
developments in algebraic and digital topology.

From a pure algebraic point of view, the use of cell complexes is a detail. For
example, the global transformation framework can be moved seamlessly from
cell complexes to graphs. One can then ask what kind of general theory supports



global transformations in the same way that the essential properties of graphs
regarding DPOs have been identified leading to several axiomatic frameworks
(e.g., adhesive [9] and High-Level Replacement [13] categories). There also seems
to be interesting possibilities in integrating the notion of nested application
condition in the context of global transformations too, to specify for example
that a sub-rule is only considered as the intersection of some super-rules and not
others. All these issues are part of future work.

Acknowledgments

This research is partially supported by the French ANR grants “SynBioTIC”
ANR-10-BLAN-0307 and “TARMAC” ANR-12-BS02-0007, and by the Univer-
sity Paris-Est Créteil.

References

1. Arrighi, P., Dowek, G.: Causal graph dynamics. CoRR abs/1202.1098 (2012)
2. Arrighi, P., Martiel, S., Wang, Z.: Causal dynamics of discrete surfaces. In: DCM

2013, Buenos Aires, Argentina, 26 August 2013. pp. 30–40 (2014)
3. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: A

synchronization mechanism. Journal of Computer and System Sciences 34(2–3),
377 – 408 (1987)

4. Ehrig, H., Rosen, B.K.: Parallelism and concurrency of graph manipulations. The-
oretical Computer Science 11(3), 247 – 275 (1980)

5. Giavitto, J.L., Michel, O., Cohen, J., Spicher, A.: Computation in space and space
in computation. In: UPP’04. LNCS, vol. 3566, pp. 137–152. Spinger, Le Mont
Saint-Michel (Sep 2005)

6. Golas, U., Habel, A., Ehrig, H.: Multi-amalgamation of rules with application
conditions in m-adhesive categories. Mathematical Structures in Computer Science
24(4), 1 – 68 (2014)

7. Janssens, D., Rozenberg, G., Verraedt, R.: On sequential and parallel node-
rewriting graph grammars. Computer Graphics and Image Processing 18(3), 279–
304 (1982)

8. Kovalevsky, V.A.: Geometry of Locally Finite Spaces. Editing House Dr. Baerbel
Kovalevsky (2008)

9. Lack, S., Sobociński, P.: Adhesive categories. In: FOSSACS 2004, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings. pp. 273–288. Springer
(2004)

10. Lane, S.M.: Categories for the working mathematician, vol. 5. Springer Science &
Business Media (1978)

11. Loop, T.L.: Smooth subdivision surfaces based on triangle. Master’s thesis, Uni-
versity of Utah (Aug 1987)

12. Munkres, J.: Elements of Algebraic Topology. Addison-Wesley (1984)
13. Padberg, J.: Survey of high-level replacement systems. Tech. rep. (1993)
14. Paszyńska, A., Grabska, E., Paszyński, M.: A graph grammar model of the hp

adaptive three dimensional finite element method. part i. Fundamenta Informaticae
114(2), 149–182 (2012)



15. Paun, G.: Computing with membranes. Journal of Computer and System Sciences
1(61), 108–143 (2000)

16. Prusinkiewicz, P., Lindenmayer, A., Hanan, J.S., et al.: The Algorithmic Beauty
of Plants. Springer-Verlag (1990)

17. Raoult, J.C., Voisin, F.: Set-theoretic graph rewriting. Tech. Rep. RR-1665, INRIA
(April 1992)

18. Rozenberg, G., Ehrig, H.: Handbook of graph grammars and computing by graph
transformation, vol. 1. World scientific Singapore (1999)

19. Rozenberg, G., Salomaa, A.: Lindenmayer Systems. Springer, Berlin (1992)
20. Spicher, A., Michel, O., Giavitto, J.L.: Declarative mesh subdivision using topo-

logical rewriting in MGS. In: ICGT 2010. LNCS, vol. 6372, pp. 298–313 (2010)


	Global Graph Transformations

