
Automatic recommendations of categories for geospatial
entities

Giorgos Giannopoulos
IMIS Institute, R.C. ATHENA

giann@imis.athena-
innovation.gr

Nikos Karagiannakis
IMIS Institute, R.C. ATHENA
nkaragiannakis@imis.
athena-innovation.gr

Dimitrios Skoutas
IMIS Institute, R.C. ATHENA
dskoutas@imis.athena-

innovation.gr

Spiros Athanasiou
IMIS Institute, R.C. ATHENA
spathan@imis.athena-

innovation.gr

ABSTRACT
Over the last years, thanks to Open Data initiative and
the Semantic Web, there has been a vast increase on user
contributed data. In several cases (e.g. OpenStreetMap,
Geonames), the respective data include geospatial informa-
tion, that is the coordinates and/or the precise geometries
of buildings, roads, areas, etc. In such cases, proper schemas
are defined to allow users to annotate the entities they con-
tribute. However, browsing through a large and unstruc-
tured list of categories in order to select the most fitting one
might be time consuming for the end users. In this paper, we
present an approach for recommending categories for geospa-
tial entities, based on previously annotated entities. Specifi-
cally, we define and implement a series of training features in
order to represent the geospatial entities and capture their
relation with the categories they are annotated with. These
features involve spatial and textual properties of the enti-
ties. We evaluate two different approaches (SVM and kNN)
on several combinations of the defined training features and
we demonstrate that the best algorithm (SVM) can provide
recommendations with high precision, utilizing the defined
features. The aforementioned work is deployed in OSMRec,
a plugin for JOSM tool for editing OpenStreetMap.

Categories and Subject Descriptors
[Information systems]: [Recommender systems]

Keywords
Category recommendation, spatial entities, OSM

1. INTRODUCTION

Copyright held by the author(s).
LocalRec’15, September 19, 2015, Vienna, Austria.

OpenStreetMap (OSM)1 is an initiative for crowdsourcing
map information from users. It is based on a large and ac-
tive community that contributes both data and tools that
facilitate the constant enrichment and enhancement of OSM
maps. One of the most prominent tools of OSM is JOSM2,
a graphical tool that allows users to (a) download all the
spatial features (i.e. roads, buildings, stations, areas, etc.)
of a geographic area from OSM, (b) visualize these features
on a map overlay, (c) add, change or delete spatial features
and (d) reload the changed dataset into the publicly acces-
sible OSM map dataset. Specifically, through its interface,
the user can draw the geometry of a spatial feature. Then,
she can annotate the feature with categories, in the form of
key-value pairs. These spatial entities can also be annotated
by categories (classes, tags) that assign semantics to them.
Each entity may belong to multiple classes; for example, a
building can be further characterized as school or bar.

The system allows the selection of such categories from an
existing list3 or the definition of new categories by the user.
At this point lies the problem we handle, which is expected
in such crowdsourcing approaches: the user can define an ar-
bitrary category which (a) might already exist in a slightly
different form or (b) might have no actual semantic meaning
in the context of OSM and, thus, degrade the quality of the
inserted information. Besides, the user might be discour-
aged by the large amount of available categories and quit
the task of annotating the inserted spatial entity. Trying to
avoid (a) and (b) by restricting the category selection only to
categories that already exist in the OSM dataset has impor-
tant disadvantages. First, it would cancel a large part of the
crowdsourcing character of OSM and, second, it is not guar-
anteed that the OSM categories, in their current form, cover
every aspect of characterizing spatial features. Instead, the
most suitable course of action is to guide the users during
their annotation process, recommending to them already ex-
isting categories to annotate the new spatial entities.

In this work, we propose such a process, that trains recom-
mendation models on existing, annotated geospatial datasets
and is able to recommend categories for newly created enti-

1https://www.openstreetmap.org/
2https://josm.openstreetmap.de/
3http://wiki.openstreetmap.org/wiki/Map features



ties. The main contribution of our work lies on the problem
specific training features we define in order to capture the
relations between the spatial and textual properties of each
spatial entity with the categories-classes that characterize it.
Essentially, this way, the proposed framework takes into ac-
count the similarity of the new spatial entities to already ex-
isting (and annotated with categories) ones in several levels:
spatial similarity, e.g. the number of nodes of the feature’s
geometry and textual similarity, e.g. common important
keywords in the names of the features.

We perform an extensive evaluation that assesses the effec-
tiveness of several feature subsets deployed in the frame of
two classification algorithms: (i) Support Vector Machines
(SVM) and (ii) k Nearest Neighbour (kNN). The experimen-
tal results show that a proper combination of classification
algorithm and training features can achieve recommenda-
tion precision of more than 90%, rendering the proposed
approach suitable for deployment on real world use cases.
To this end, the proposed framework is implemented as a
JOSM plugin4, allowing the real-time and effective annota-
tion of newly created spatial entities into OSM.

To the best of our knowledge, this is the first approach on
recommending annotation categories for spatial entities in
OSM. Another existing work on a similar problem [1] focuses
on classifying road segments in OSM, thus it specializes only
on geometrical and topological features of the specific en-
tities and reduces the space of recommendation categories
from more than 1000 to only 21.

The rest of the paper is organized as follows. Section 2 de-
scribes our proposed method, including the defined training
features and the assessed algorithms. Section 3 presents the
evaluation of training features and algorithms in terms of
recommendation performance and Section 4 concludes.

2. RECOMMENDATION MODELS
Next, we describe the model training and recommendation
process we follow. In general, our goal is, given a training
set, that is a set of spatial entities that are already annotated
with categories, to be able to produce category recommen-
dations for each new, unannotated entity. Thus, we aim at
(a) learning correlations between attributes of the spatial
entities and the respective categories and (b) “matching”,
through these correlations, new entities with already anno-
tated ones, in order to produce recommendations.

The first step to this end is to define proper, problem spe-
cific training features, that describe each entity and cap-
ture its latent relation with the category that annotates it.
In Section 2.1 we describe the defined features that corre-
spond to geometric and textual properties of the entities.
The next step is to feed training entities, expressed through
their features, into a classification algorithm that utilizes
them to classify new entities to categories. We applied both
model based (Support Vector Machines) and memory based
(k Nearest Neighbour) state of art classification methods.
Each of the algorithms is described in Section 2.2.

2.1 Training features
4http://wiki.openstreetmap.org/wiki/JOSM/Plugins/OSMRec

In our scenario, the training items are the geospatial entities
that have already been annotated with categories. However,
since the same entity might be annotated with more than
one category, we consider, for each entity, as many training
items as its categories. The items are respesented in exactly
the same way, w.r.t. the values of their training features,
with the exception of the different label that corresponds
to the different class. Each item is represented as a feature
vector, with each feature corresponding to a property of the
item. Next, we present the implemented features:

• Geometry type. Six distinct geometry types are
identified: Point, LineString, Polygon, LinearRing, Cir-
cle and Rectangle. This is a boolean feature, so six
positions in the feature vector are assigned to it.

• Number of geometry points. Depending on the
algorithm this might be a double precision number, or
a set of boolean positions in the feature vector that
are used to represent it. For the latter case, each po-
sition represents a different range. In total, we define
(based on a statistical analysis of the frequencies of en-
tities having certain numbers of points) 13 ranges, thus
mapping this integer characteristic into 13 boolean fea-
tures: [1-10], (10-20], ..., (200-300], (300-500], (500-
1000], (1000-...). So, according to the number of points
of an entity’s geometry, the proper position is set to 1,
while the rest positions are set to 0.

• Area of geometry. Depending on the algorithm
this might be a double precision number, or a set of
boolean positions in the feature vector that are used to
represent the various ranges of areas we consider. In
the latter case, we define intuitively (and considering
that in this problem setting we are mainly interested
in entities that are buildings) 24 ranges with increas-
ing length in square meters, until the area of 4000m2,
where we consider the 25th range of (4000-...).

• Mean edge length. Depending on the algorithm this
might be a double precision number, or a set of boolean
positions in the feature vector representing different
ranges of the mean length of the geometry’s edges.
In our case, we define 23 ranges, starting from length
less than 2meters and ending with length more than
200meters.

• Variance of edge lengths. Depending on the algo-
rithm this might be a double precision number, or a
set of boolean positions in the feature vector represent-
ing different variations of a geometry’s edges from the
mean value. Likewise, we define 36 ranges, based on
statistics on our training dataset.

• Textual features. For each entity of the training set,
we extract the textual description of its name. We con-
sider each word separately and count their frequency
within the dataset. Then, we sort the list of words
in descending frequency and filter out words with fre-
quency less than 20. Finally, we apply a stopword
list and remove words without any particular meaning.
What remains are special meaning identifiers, such as
avenue, church, school, park, etc. Each of these special
keywords is used as a separate boolean feature.



We should note here that we select different representations
(double precision number or set of boolean features) in or-
der to favour the functionality of the different models and
similarity functions we apply. Namely, we consider boolean
features in the case of SVM to facilitate the effectiveness of
the training model, since it is well known that such mod-
els perform better when the input feature vectors are ver-
tically normalized within (or at least close) to the interval
[0,1]. That is, defining several area ranges corresponding to
separate feature positions, we allow the model to correlate
these different areas (feature positions) with different train-
ing classes. On the other hand, in the case of k-NN, where
similarity measures such as the Euclidean distance or the
Cosine similarity are applied, using the exact value of a fea-
ture (e.g. area of geometry) is preferable in order to better
quantify the difference between two entities.

2.2 Algorithms
SVM. The first algorithm applies multiclass SVM classi-
fication considering as training items the geospatial enti-
ties themselves and as labels the categories that characterize
them. The method maps the training entities into a multi-
dimensional feature space and aims at finding the optimal
hyperplanes that discriminated the entities belonging to dif-
ferent categories. The optimality of the hyperplane depends
on the selected parameter C, which adjusts the trade-off
between misclassified training entities and optimal discrim-
ination of correctly classified entities. The output of the
training process is a model (essentially a weight vector) that
is able to map the feature vector of a new, unannotated en-
tity to a set of categories, providing, also, a matching score
for each category, This way, one can obtain the top-n most
fitting categories for a new spatial entity.

kNN. The second algorithm is the well known approach of
performing kNN on the initial set of training entities. That
is, the algorithm compares the new entity with each one
of the training entities and recommends the categories that
characterize the most similar training entities. As similarity
measures we consider cosine similarity and euclidean dis-
tance. The two similarity functions are initially applied to
the feature vectors of the respective entities. However, we
empirically observed that, in the specific setting, boosting
the vector-calculated similarity score with the area-based
and point-based similarity scores between two entities im-
proves the precision of the algorithms. Specifically, we use
the following formula in our experiments to calculate the
similarity score S between two entities u, v:

Scos = cosSim + 2 ∗ (1 − areaDist) + 2 ∗ (1 − pointDist)

areaDist =
areau − areav

max areau, areav

pointDist =
pointsu − pointsv

max pointsu, pointsv
(1)

where cosSim is the cosine similarity on the whole feature
vector of the two entities and is interchanged in our exper-
iments with the similarity that is based on the euclidean
distance

euSim = 1 − euDist/max euDist (2)

.

3. EXPERIMENTAL EVALUATION
Next, we present the evaluation of the proposed methods,
w.r.t. the recommendation precision they achieve. First, we
describe the dataset and the evaluation methodology. Then,
we compare the two algorithms and, finally, we discuss the
contribution of individual groups of training features.

3.1 Dataset and Evaluation methodology
We performed our evaluation on a subset of OSM data cov-
ering Athens, Greece, which we exported through the Over-
pass API5 from OSM’s site. The dataset contains overall
111, 491 geospatial entities which were properly divided into
training, validation and test sets, as will be demonstrated
next. The total number of distinct OSM categories/classes
where 1, 421. The dataset is partitioned into five subsets of
similar sizes. Then, combining each time different subsets
to make (a) the training, (b) the validation and (c) the test
set, we create five different arrangements for five-fold cross-
validation. In every fold, the validation set was used to tune
the parameters of the classification model and the test set
was the one where the actual evaluation of the method was
performed. Of course, the validation part was applied only
with SVM, since kNN does not train any model to be tuned.

As our evaluation measure, we consider the precision of cat-
egory recommendations, i.e. the ratio of correct recommen-
dations to the total recommendations:

P =
#correct category recommendations

#total category recommendations
(3)

We consider three variations of the measure, depending on
how strictly we define the recommendation correctness:

P 1: In this case, a recommendation is considered correct if
the recommended category with the highest rank from the
recommendation model is indeed a category that character-
izes the test geospatial entity.

P 5: In this case, a recommendation is considered correct
if one of the five recommended categories with the highest
rank from the recommendation model is indeed a category
that characterizes the test geospatial entity.

P 10: Similarly, a recommendation is considered correct if
one of the ten recommended categories with the highest rank
from the recommendation model is indeed a category that
characterizes the test geospatial entity.

3.2 Algorithm Comparison
We performed two rounds of experiments for the SVM method.
The first one regarded optimizing the classification model by
training it with different parameterizations on C (trade-off
parameter between the margin size and training error of the
algorithm). After obtaining, through the 5-fold validation,
the optimal parameters on the validation set, we run the
actual evaluation of the recommendation model, using the
three precision measure variations defined above. Note that
the plain k-NN algorithm is a purely memory based algo-
rithms, so it requires no training. The results for the best
performing configuration, for each algorithm are given in
Table 1.

5http://overpass-api.de/



Features C Valid. Set Test Set

P 1 P 1 P 5 P 10

Geometry Type 5 66.95 67.86 69.45 71.03
Points and Area 200000 64.44 64.66 69.50 74.60

Mean and Variance 10000 65.087 65.17 78.69 85.63
Simple Geometry 170000 63.05 61.43 67.19 71.39

Only Textual 100000 6.71 6.01 7.83 8.261
Simple Geom. & Text. 200000 79.54 79.04 87.90 92.07

All 650 63.56 63.92 83.11 89.82

Table 2: SVM feature combinations.

Algorithms Valid. Set Test Set

P 1 P 1 P 5 P 10

SVM 79.54 79.04 87.90 92.07
kNN - 65.53 73.03 78.05

Table 1: Recommendation precision.

It is obvious that SVM outperforms kNN by far. Regard-
ing the strictest measure (P 1), the recommendation model
achieves precision of 79%, which is a very good result, con-
sidering that it is measured on real-world OSM data with-
out any restrictions that might favour the method. Further,
when we consider the other two measures, the precision be-
comes even higher, reaching 88% and 92% for P 5 and P 10
respectively. Given that recommending 5 or 10 categories
to the user is a realistic option, P 5 and P 10 are suitable for
evaluating in a real-world application, and thus the effec-
tiveness of the system proves to be very high.

3.3 Training Features Analysis
The evaluation presented in Section 3.2 indicated that the
SVM algorithm produces by far more precise recommen-
dations in our setting. In this section, we analyze which
training feature combinations achieve the highest precision
results, when applied with SVM. To this end, we ran several
experiments, following the same five-fold, training-validation-
testing process, selecting each time, different groups of traing
features. Next we report on these results (Table 2).

Geometry Type. This configuration consists in using vec-
tors that contained only the features regarding the geometry
type of the OSM entities. The geometry types are: polygon,
linestring, linear ring, point, circle and rectangle

Points and Area. This configuration consists in using vec-
tors that contain boolean features that correspond to the
number of points and the area of the entities.

Mean and Variance. This configuration consists in using
only the mean and variance features.

Simple Geometry. This configuration consists in using
vectors containing only the geometry information about the
OSM entities, without any class, relation or textual features
in the vectors. In this experiment we also excluded the mean
and variance geometry features from the vector.

Only Textual. This configuration consists in using vec-
tors with features regarding only textual information. The

precision came out very low with this configuration because
only a little fraction of the OSM entities contain information
about their names.

Simple Geometry and Textual. This configuration con-
sists in using the geometry features (without the features
regarding mean and variance values), plus the textual infor-
mation extracted from the names of the entities. This is the
best achieving configuration in the whole set of experiments,
on all evaluated methods.

All. This configuration consists in using all available fea-
tures. As mentioned above the class and relation features
exist only in the train sets. The results are slightly worst
that the best performing configuration above.

In brief, the above analysis indicated that, in the specific sce-
nario, the most highly contributing training features are the
ones considering simple geometric properties of the entities.
The textual features, although they perform very poorly on
their own (probably due to their sparseness) they can boost
the performance of the simple geometric features.

4. CONCLUSIONS
In this paper, we presented a framework for producing cat-
egory recommendations on spatial entities, based on previ-
ously annotated entities. We defined a set of problem spe-
cific training features that, combined with SVM classifica-
tion, result to recommendations of high precision. Although
we base our work on the OSM use case, the proposed frame-
work is general enough to be used in any other scenario that
involves spatial entities and an initial set of annotations on
a few of them. Further, our method is already implemented
as a plugin for JOSM OSM editing tool. Our next steps in-
volve defining further meaningful training features and per-
forming more extended evaluation on the effectiveness of the
algorithms, e.g. by excluding very frequent categories from
the experimental data.

5. ACKNOWLEDGEMENTS.
This research is conducted as part of the EU project Geo-
Know6 FP7-ICT-2011-8, 318159.

6. REFERENCES
[1] Jilani, M. and Corcoran, P. and Bertolotto, M.

Automated Highway Tag Assessment of
OpenStreetMap Road Networks. In Proceedings of
SIGSPATIAL’14, 2014.

6http://geoknow.eu/


