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ABSTRACT
Location recommendation is an important feature of social network
applications and location-based services. Most existing studies fo-
cus on developing one single method or model for all users. By
analyzing real location-based social networks, in this paper we re-
veal that the decisions of users on place visits depend on multiple
factors, and different users may be affected differently by these fac-
tors. We design a location recommendation framework that com-
bines results from various recommenders that consider various fac-
tors. Our framework estimates, for each individual user, the un-
derlying influence of each factor to her. Based on the estimation,
we aggregate suggestions from different recommenders to derive
personalized recommendations. Experiments on Foursquare and
Gowalla show that our proposed method outperforms the state-of-
the-art methods on location recommendation.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Filtering

Keywords
Location recommendation, personalization, aggregation

1. INTRODUCTION
Due to the proliferation of mobile devices, location-based social

networks (LBSNs) have emerged. Some of these social networks
are dedicated to location sharing (e.g., Gowalla, Foursquare, etc.)
while others provide location-based features together with other so-
cial networking services (e.g., Facebook, Twitter, etc.). In either
case, users can share with their friends the experience of visiting
locations (such as restaurants, view spots, etc.). Location recom-
mendation is very important for these applications, because it pro-
vides better user experience and may thus contribute to business
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promotion in cyber-physical space.
This paper focuses on check-in records of LBSN users. An

LBSN user may check-in at different locations from time to time,
by explicit check-in operations via mobile applications or by im-
plicit actions such as posting photos with location annotations.
Therefore, over time, a user generates a sequence of check-in
records. It is important to distinguish user-location check-ins from
their analogues in classic recommender systems (e.g., user-item rat-
ings [1]). As Hu et al. [12] have pointed out, a rating is explicit,
indicating directly whether and how a user likes an item, whereas a
check-in record is implicit with some unique characteristics:

1. There is no negative feedback in check-in records, i.e.,
check-ins do not indicate whether a user dislikes a location.

2. The check-in frequency, even after normalization, is not a
reliable indicator of how much a user likes a location.

Despite any differences between ratings and check-ins, conven-
tional collaborative filtering (CF) methods (e.g., [1]) are compu-
tationally applicable to check-in data. Recently, many new ap-
proaches have been proposed, making use of social, geographical,
temporal, and semantic information of LBSN data (e.g., [7, 10, 18,
26] and others discussed later in Section 2). However, most exist-
ing methods take unified perspectives towards the recommendation
problem, though some of them do consider more than one aspects
of the check-in data. In other words, most exising methods focus
on developing one single method / model for all users.

In this paper we argue, and reveal by analyzing real LBSN
datasets, that the decisions of users on where to go depend on multi-
ple factors, and different users may be affected differently by these
factors. For example, some users are easily affected by their friends
and do not care much about the places to visit, while some others
are more independent with more concern of the places. Therefore,
we aim to personalize location recommenders. That being the pur-
pose, we propose a general framework to combine multiple rec-
ommenders that are potentially useful. A pair-based optimization
problem is formulated and solved to identify the underlying prefer-
ence of each user. The contributions of this paper are as follows:

• By analyzing two real LBSN datasets, Foursquare [10] and
Gowalla [6], we reveal the diversity among recommenda-
tions made by different recommenders and the diversity of
user preferences over recommenders.

• We propose a framework for location recommendation. Un-



der our framework we are able to personalize location rec-
ommenders to better serve the users.

• We evaluate our method using Foursquare and Gowalla data.
The results show that our method outperforms the state-of-
the-art location recommenders.

The rest of this paper is organized as follows. By analyzing
Foursquare and Gowalla data, Section 2 shows the diversity in rec-
ommenders and user preferences. Motivated by certain observa-
tions, Section 3 describes LURA, our proposed framework, which
is extensively evaluated in Section 4. Finally, Section 5 presents
some related work and Section 6 concludes the paper.

2. DATA AND RECOMMENDERS
In this section we first introduce the datasets and formally define

the location recommendation problem. Then, we select 11 repre-
sentative recommenders which, to the best of our knowledge, cover
all the factors that the state-of-the-art methods consider in loca-
tion recommendation. By analyzing their performance on different
users, we demonstrate the diversity of (i) recommendations from
the representative recommenders and (ii) users’ check-in behaviors.

2.1 Datasets & Recommendation Problem
We use Foursquare [10] and Gowalla [6] datasets. In both

datasets, there are users (U), locations (L), and check-ins each in
the form of a tuple (u, `, t) recording the event that user u vis-
ited location ` at time t. Note that from the tuples we can infer
the check-in frequency cu,` of user u to location `. In many recom-
menders, the matrix C = (cu,`)u∈U,`∈L is the primary data source.
Associated with each location there is a longitude and latitude co-
ordinate. Friendships are represented as undirected, unweighted
pairs of users. In addition, for each location we have collected its
semantic information (i.e., category) from a Foursquare API1.

We filtered the datasets to include only users that have at least 10
check-in records, and locations that are visited at least twice. The
resulting Foursquare dataset has 11,326 users, 96,002 locations,
and 2,199,782 check-in records over 364 days; Gowalla is a bit
larger, containing 74,725 users, 767,936 locations, and 5,829,873
check-in records over a period of 626 days.

Top-N location recommendation. Given a user u, the top-N
location recommendation problem is to suggest to u a list of N
locations, previously unvisited by u, with the expectation that u
will be intrigued to visit (some of) these locations.

2.2 Representative Recommenders
We select 11 representative recommenders that consider social,

geographical, temporal, as well as semantic aspects of the data.

2.2.1 User-based CF Methods
User-based CF methods assume that similar users have similar

preferences over locations, thus the score of location ` for user
u, score(u, `), is computed by the similarity-weighted average of
other users’ visits to `:

score(u, `) =

∑
v∈U wu,v · cv,`∑

v∈U wu,v
.

N locations with the largest scores are recommended to user u.
Different weighing schemas (i.e., wu,v) yield different recom-
menders (R1-R5).

R1: User-based CF (UCF). wu,v could be the cosine similarity
between users u and v, i.e., wu,v = cos (cu, cv),where cu and
1https://developer.foursquare.com/

cv are corresponding rows in the check-in matrix C. This is the
conventional user-based CF method [1].

R2: Friend-based CF (FCF). Similarity between users could be
reflected by their common friends. For friends u and v, let wu,v =
Jaccard (Fu, Fv), where F∗ refers to the set of friends of a user
and Jaccard (·, ·) computes the Jaccard index. This recommender
is proposed by Konstas et al. [14].

R3: Friend-location CF (FLCF). In addition to common
friends, commonly visited locations may as well reflect the close-
ness of two friends: wu,v = η · Jaccard (Fu, Fv) + (1 − η) ·
Jaccard (Lu, Lv), where u and v are friends; L∗ is the set of lo-
cations that a user has visited [14]. Parameter η ∈ [0, 1] is the
weighing between common friends and common locations. Setting
η = 0.1 achieves the best performance for this method on our data.

R4: Geo-distance CF (GCF). The rationale of GCF is that
nearby friends are more influential than faraway ones. This intu-
ition is used by Ying et al. [28], where the weight wu,v is a rescale
of the geographical distance between u and v:

wu,v = 1− geodist (u, v)

maxw∈Fu geodist (u,w)
.

The location of each user can be inferred from her most frequently
visited locations.

R5: Category CF (CCF). Consider users as keywords and lo-
cation categories as documents; between user u and category C
there can be a relevance score, rel(u,C) (e.g., TF-IDF). To mea-
sure the similarity between two users u and v, Bao et al. [2] con-
sider the sum of minimum relevance scores over all categories, i.e.,
sim(u, v) =

∑
C min{rel(u,C), rel(v, C)}. This value is then

penalized by the difference between users’ randomness in prefer-
ences, thus the weight wu,v is

wu,v =
sim(u, v)

1 + |ent(u)− ent(v)| ,

where ent(·) is the entropy of a user’s preference over categories.

2.2.2 Item-based CF Methods
Item-based CF methods take a “transposed” view of the data, i.e.,

users are recommended to items instead of the other way round.
When the weight w`,`′ between two locations is properly defined,
the score of user u to location `, score(u, `), can be computed as

score(u, `) =

∑
`′∈L w`,`′ · cu,`′∑

`′∈L w`,`′
.

R6: Item-based CF (ICF). Similar to UCF, w`,`′ could be the
cosine similarity cos (c`, c`′), where c` and c`′ are corresponding
columns in C the check-in matrix [1, 21].

R7: Time-weighted CF (TCF). Recent check-in records are rel-
atively more reliable if we consider any evolution of user pref-
erence. Ding and Li [7] use an exponential discounting func-
tion f(t) = e−αt to describe temporal bias in w`,`′ . Namely,
w`,`′ = cos (c`, c`′) f(tu,`′) where tu,`′ is the time of the user’s
check-in at `′. α is the decreasing rate. We set α = 1

7
so that TCF

achieves the best performance.

2.2.3 Probabilistic Methods
Besides the CF family, another methodology of making recom-

mendations is to estimate the probability of user u visiting location
`, conditioned on the check-in history of u, i.e.,

score(u, `) = Pr {` |Lu } .
The most probable N locations are recommended to the user. The
next three recommenders (R8-R10) attempt to estimate Pr {` |Lu }.



R8: Power-law model (PLM). Ye et al. [26] study pairs
of locations that have at least one common visitor, P =
{(`, `′) |U` ∩ U`′ 6= ∅}, and report that the set of all distance
values, {geodist (`, `′)}(`,`′)∈P , obeys a power-law distribution.

Hence, Pr {` |Lu } =
∏
`′∈Lu

a · geodist (`, `′)b, where parame-
ters a and b are determined via a regression process.

R9: Kernel density model (KDM). For a user u with past
check-ins at locations Lu = {`1, `2, · · · , `n}, this factor estimates
the probability of u visiting a new location ` using kernel tech-
niques: Pr {` |Lu } = 1

n

∑n
j=1 Kh (geodist (`, `j)), where Kh(·)

is a scaled kernel trained on an individual basis. h is set to n−
1

d+4

where d = 1 is the dimensionality of the data (distance values).
This model is used by Zhang and Chow [30].

R10: Spatial kernel density model (SKDM). This is our
improvement over R9. Instead of geodist (`, `′) we directly
consider distances between latitudes and longitudes and em-
ploy a 2D kernel density estimation, i.e., Pr {` |Lu } =
1
n

∑n
j=1 Kh (lat(`)− lat(`j), lon(`)− lon(`j)); here, lat(·) and

lon(·) give the latitude and longitude of a location, and Kh is a
2D scaled kernel, with h = n−

1
d+4 = n−

1
6 .

2.2.4 Matrix Factorization
The last recommender belongs to the matrix factorization (MF)

family. MF attempts to find latent structures of the check-in matrix
C. In particular, MF tries to find low-rank matrices (i.e., latent
user and location profiles) P and Q such that Ĉ = PQ is a good
approximation of C. A zero-valued entry cu,` in C may thus have
a good estimation ĉu,` in Ĉ; recommendations can then be made.

R11: Implicit matrix factorization (IMF). Proposed by Hu et
al. [12], this is a modification of the conventional MF for implicit
user feedbacks (such as check-ins).

2.3 Diversity in Recommendations
We now show that the 11 recommenders (R1-R11) generate very

different recommendations. We use the first 300 days of Foursquare
and the first 420 days of Gowalla to construct the recommenders,
involving 3,942 and 1,307 users respectively. We compare the top-
10 suggested locations by different recommenders.2 For two such
length-10 recommendation lists, Jaccard index can be used to mea-
sure their similarity. Therefore for each user, we measure the diver-
sity of the 11 recommenders by pairwise aggregation [11]:

diversity(L1, L2 · · · , Ln) =
2 ·∑i,j(1− Jaccard (Li, Lj))

n · (n− 1)
.

Intuitively, this value will be close to 0 if Li’s are all highly similar,
and otherwise be close to 1 if they are pairwise different.

Figure 1 shows the distribution of the diversity values. In
Foursquare, the diversity values are all between 0.79 and 0.99, with
an average of 0.92, whereas in Gowalla the minimum, maximum,
and average values are 0.58, 0.99, and 0.93 respectively. This indi-
cates that the 11 recommenders generate very different results.

2.4 Diversity in User Preferences
Users may also have different preferences over the aspects on

which recommenders are based (i.e., friendship, geographical dis-
tance, etc.). To understand user preferences, we test the 11 rec-
ommenders using Foursquare (Days 1-300 for training and Days

2Note that sometimes a recommender may fail to generate a list
of length 10. For example, FCF (R2) requires that the target user
has some friends but loners do exist in LBSNs. In such cases, we
complement the length-10 list with the most popular locations.
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Figure 1: Distribution of diversity values.

301-360 for testing). For each user u, each recommender generates
a list of 10 locations. The performance of the recommender is then
measured by the number of hits (i.e., the number of recommended
locations that are actually visited by u). Hence, a user u can be
depicted by an 11-dimensional vector of which the jth element is
the performance of recommender Rj .
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R8: Power-law model (PLM). Ye et al. [33] consider al-
l pairs of locations that have at least one common visitor, P =
{(`, `′) |U` ∩ U`′ 6= ∅}, and report that the set of all distance
values, {geodist (`, `′)}(`,`′)∈P , observes power-law distribution.

Hence, Pr {` |Lu } =
∏
`′∈Lu

a · geodist (`, `′)b, where parame-
ters a and b are determined via a data fitting process.

R9: Kernel density model (KDM). For a user u with past
check-ins at locations Lu = {`1, `2, · · · , `n}, this factor estimates
the probability of u visiting a new location ` using kernel tech-
niques: Pr {` |Lu } = 1

n

∑n
j=1 Kh (geodist (`, `j)), where Kh(·)

is a scaled kernel [4] trained on an individual basis. h is set to
n−

1
d+4 where d = 1 is the dimensionality of the data (distance

values). This model is used by Zhang and Chow [37].
R10: Spatial kernel density model (SKDM). This is our

improvement over R9. Instead of geodist (`, `′) we direct-
ly consider distances between latitudes and longitudes and
employ a 2D kernel density estimation, i.e., Pr {` |Lu } =
1
n

∑n
j=1 Kh (lat(`)− lat(`j), lon(`)− lon(`j)); here, lat(·) and

lon(·) give the latitude and longitude of a location, and Kh is a
2D scaled kernel, with h = n−

1
d+4 = n−

1
6 .

2.2.4 Matrix Factorization
The last recommender belongs to the matrix factorization (MF)

family. MF attempts to find latent structures of the check-in matrix
C. In particular, MF tries to find low-rank matrices (i.e., latent
user and location profiles) P and Q such that Ĉ = PQ is a good
approximation of C. A zero-valued entry cu,` in C may thus have
a good estimation ĉu,` in Ĉ; recommendations can then be made.

R11: Implicit matrix factorization (IMF). Proposed by Hu et
al. [14], this is a modification of the conventional MF for implicit
user feedbacks (such as check-ins).

2.3 Diversity in Recommendations
We now show that the 11 recommenders (R1-R11) generate very

different recommendations. We use the first 300 days of Foursquare
and the first 420 days of Gowalla to construct the recommenders,
involving 3,942 and 1,307 users respectively. We compare the top-
N suggested locations by different recommenders, for N = 10.3

For two such length-N recommendation lists, L1 and L2, Jaccard
index can be used to measure the their similarity. Therefore for
each user, we measure the diversity of the 11 recommenders by
pair-wise aggregation [13]:

diversity(L1, L2 · · · , Ln) =
2 ·∑i,j(1− Jaccard (Li, Lj))

n · (n− 1)
.

Intuitively, this value will be close to 0 if Li’s are all highly similar,
and otherwise be close to 1 if they are pairwise different.

Figure 1 shows the distribution of diversity values. As we can
see, the values are all distributed around 0.9. Specifically, in
Foursquare, the values are all in the range [0.77, 0.99] with an av-
erage of 0.93, whereas in Gowalla the minimum, maximum, and
average values are 0.58, 0.99, and 0.93 respectively. This indicates
that the 11 recommenders make very different recommendations.

2.4 Diversity in User Preferences
Users may also have different preferences over the aspects on

which recommenders are based (i.e., friendship, geographical dis-
tance, etc.). To understand user preferences, we test the 11 rec-
3Note that sometimes a recommender may fail to generate a list
of length 10. For example, FCF (R2) requires that the target user
has some friends but loners do exist in LBSNs. In such cases, we
complement the length-10 list with the most popular locations.
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Figure 1: Distribution of diversity values.

ommenders using Foursquare (Days 1-240 for training and Days
241-360 for testing). For each user u, each recommender generates
a list of 10 locations. The performance of the recommender is then
measured by the number of hits (i.e., the number of recommended
locations that are actually visited by u). Hence, a user u can be
depicted by an 11-dimensional vector of which the jth element is
the performance of recommender Rj .
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Cluster Coverage Variance
1 42.55% 0.67
2 18.03% 1.76
3 7.62% 4.80
4 3.29% 8.98
5 12.84% 1.48
6 11.04% 2.93
7 4.62% 5.28

(b) Statistics of the clusters

Figure 2: Diversity in user preferences.

Cluster Coverage Variance
1 1.65% 3.06
2 65.3% 0.12
3 5.71% 1.04
4 9.01% 0.82
5 7.52% 0.75
6 4.45% 1.55
7 3.71% 2.58
8 2.65% 0.25

This experiment involves 4,694 Foursquare users. To present
their preferences, we group them into 7 clusters using the K-means
algorithm. Figure 2(a) shows the centers of the 7 clusters in paral-
lel coordinates, where an 11-dimensional vector is represented as a
sequence of 11 values. Figure 2(b) shows some statistics of each
cluster. For example, the entry “1,42.55%,0.67” means that, Clus-
ter 1 contains 42.55% of the users; and the variance within the clus-
ter is 0.67. From this experiment we see that the 11 recommenders
perform differently on the 7 clusters.

The above analysis supports our claims: (i) different recom-
menders make very different recommendations and (ii) different
users have different behavioral patterns with regard to visiting lo-
cations. This basically indicates that a good recommender for one
person is not necessarily good for another. Combining different
recommenders may produce better recommendations, though, s-
ince multiple recommenders together may cover a wider range of
factors that potentially affect a user’s behavior.

(b) Statistics of the clusters

Figure 2: Diversity in user preferences.

To present the preferences of 3,942 Foursquare users, we group
these users into 8 clusters using the K-means algorithm. (The num-
ber 8 is chosen to get the best modularity from the resulting clus-
ters.) Figure 2(a) shows the centers of the 8 clusters in parallel
coordinates, where an 11-dimensional vector is represented as a
sequence of 11 values. Figure 2(b) shows some statistics of each
cluster. For example, the entry “1, 1.65%, 3.06” means that, Cluster
1 contains 1.65% of the users, and the variance within the cluster is
3.06. We see that the 11 recommenders perform differently on the
8 clusters.

The above analysis supports our claims: (i) different recom-
menders make very different recommendations and (ii) different
users have different behavioral patterns in visiting locations. This
basically indicates that a good recommender for one person is
not necessarily good for another. Combining different recom-
menders may produce better recommendations, since multiple rec-
ommenders together may cover a wider range of factors that poten-
tially affect users’ behaviors.

3. OUR METHOD
In this section we explain LURA, our framework for combining

different location recommenders. (The name “LURA” comes from
its execution cycle of Learn-Update-Recommend-Aggregate.) Al-
gorithm 1 outlines the steps of LURA, which could be repeated
every ∆t time (e.g., every 3 days or 1 week, as long as there is ne-
cessity in providing new recommendations and there are sufficient
data). LURA is based on two important elements: recommenders
and user preferences; every time LURA runs, it keeps these ele-
ments up to date. Specifically, if invoked at time t, LURA first



learns the user’s current preferences αtu(i) (i.e., weights) over dif-
ferent recommenders; this is done by testing the recommendations
made at time t − ∆t against the actual check-ins during the pe-
riod (t −∆t, t] (Line 1). Then, LURA updates the recommenders
to make use of all the data available (Line 2). After that, LURA
makes recommendations to users, by aggregating the results of the
component recommenders (Lines 3-4).

Algorithm 1 LURA(Gt,Rt−∆t, u)

Input: Gt: the snapshot of LSBN up to the t-th (current) day;Rt−∆t:
a set of n recommenders, trained using Gt−∆t; u: a user
Output: N recommended locations for user u at time t

. At time t −∆t each recommender Rt−∆t
i has recommended N loca-

tions to u, Rt−∆t
i (u) =

[
`t−∆t
ij

]
j=1,2,··· ,N

.

1: Learn user u’s current preferences, αtu(i), on each recommender
Rt−∆t
i , based on recommendations Rt−∆t

i (u) and u’s check-in facts
during the time period (t−∆t, t]

2: UpdateRt−∆t toRt (or rebuild from scratch) using Gt
3: Recommend: each recommenderRti recommendsN locations to u, in

the form of N location-score pairs, Rti(u),

Rti(u) =
[
`tij

]
j=1,2,··· ,N

.

4: Aggregate recommendations Rt(u) =
[
Rti(u)

]
i=1,2,··· ,n using

weights αtu =
[
αtu(i)

]
i=1,2,··· ,n to generate the final recommen-

dation of N locations to u

Although maintaining and executing individual recommenders
(Lines 2-3) is straightforward, LURA’s novelty lies in the learning
of user preferences αtu (Section 3.1)3 and in the strategies for ag-
gregating the outputsRt

u of different recommenders (Section 3.2).
In general, the aggregation is a linear combination:

st(u, `;αtu, ϕ) =

n∑

i=1

αtu(i) · ϕ
(
Rti(u, `)

)
. (1)

Here Rti(u, `) is the score of user-location pair (u, `) estimated by
recommender Rti; ϕ(·) is a strategy for handling individual scores.
When there is no ambiguity on αtu or ϕ in the context, we may
omit one or both of them to simplify the notation.

3.1 Learning User Preferences
At time t, LURA has a set of recommenders Rt−∆t ={
Rt−∆t

1 , Rt−∆t
2 , · · · , Rt−∆t

n

}
, and each Rt−∆t

i has suggested N
locations to user u at time t − ∆t. New data during the period
(t−∆t, t] are used to evaluate the quality of each Rt−∆t

i with re-
gard to user u. This evaluation eventually results in weights αtu(i),
which are then used to guide the aggregation process.

As user check-in data are implicit, we utilize a pairwise method-
ology for preference learning. Consider a user u and her visiting
history up to time t, Ltu; let Lt+ = Ltu \ Lt−∆t

u and Lt− = {`|` 6∈
Ltu}. For two locations ` ∈ Lt+ and `′ ∈ Lt−, to some extent it is
reasonable to assume that u prefers ` to `′ (denoted as ` >u `′).
Clearly, a good recommendation should be highly consistent with
>u. This means, for the linear aggregation of Formula 1, pairs
(`, `′) ∈ P tu = Lt+ × Lt− can be used to tune the weights αtu(i).
We consider maximizing the likelihood Pr

{
P tu
∣∣αtu

}
, which is the

3It is worth mentioning that a trivial implementation of LURA is
to put equal weights on component recommenders. This, however,
usually leads to very bad recommendations due to the diversities we
studied in Section 2 (Figures 1-2). Indeed, the essence of learning
is to identify those good recommenders out of a large population of
bad ones, with regard to some individual user.

probability of observing P tu given the preference αtu. Assuming
that pairs (`, `′) ∈ P tu are independent, then

Pr
{
P tu
∣∣αtu

}
=

∏

(`,`′)∈P t
u

Pr
{
` >u `

′ ∣∣αtu
}
.

Computing Pr {` >u `′ |αu } is nontrivial, but an intuition is
that this probability should be proportional to the difference be-
tween scores s(u, `;αu) and s(u, `′;αu): the larger the difference
s(u, `;αu) − s(u, `′;αu), the more confident we will be on con-
cluding ` >u `′. Based on this idea, we set

Pr
{
` >u `

′ |αu
}

= σ
(
d`,`
′

u (αu)
)
,

where σ is the logistic function that can generate a probability dis-
tribution in the range of [0,1], σ(x) = 1

1+e−x , and d`,`
′

u (αu) =

s(u, `;αu) − s(u, `′;αu). For the ease of algorithm design, the
actual objective function being optimized is

ln
(
Pr
{
P tu |αu

})
=

∑

(`,`′)∈P t
u

ln
(
σ
(
d`,`
′

u (αu)
))

.

The learning approach (LEARNPREFERENCE) for finding αtu
based on αt−∆t

u uses a stochastic gradient descent technique, as
shown in Algorithm 2. Since the training space P tu is large, sam-

Algorithm 2 LEARNPREFERENCE(P tu,α
t−∆t
u ,M,K)

Input: P tu = Lt+ × Lt−; αt−∆t
u ; number of iterations M ; number of

samples K
Output: updated user preference αtu

1: for j = 1, 2, · · · ,M do
2: α(j) ← αt−∆t

u

3: Draw K sample pairs from the training space P tu
4: for each sample pair p = (`, `′) do
5: α(j) ← update with p and α(j) (gradient descent)
6: αtu ← 1

M

∑M
j=1α

(j)

ples are used for learning (Lines 3-5). The gradient descent update
in Line 5 is done with the following formula:

α(j) ← (1− γ) ·α(j) + γ · τ ·



∇α(j)d`,`

′
u

(
α(j)

)

1 + ed
`,`′
u


 , (2)

where γ ∈ (0, 1) is the learning rate, τ the step size, and
∇α(j)d`,`

′
u the gradient:

∇α(j)d
`,`′
u =




ϕ
(
Rt−∆t

1 (u, `)
)
− ϕ

(
Rt−∆t

1 (u, `′)
)

ϕ
(
Rt−∆t

2 (u, `)
)
− ϕ

(
Rt−∆t

2 (u, `′)
)

...
ϕ
(
Rt−∆t
n (u, `)

)
− ϕ

(
Rt−∆t
n (u, `′)

)


 . (3)

AfterM independent iterations, Algorithm 2 terminates with a per-
sonalized weight αtu (Line 6).

The quality of samples (Line 3) are of essential importance in
Algorithm 2. Intuitively, if a sampled pair (`, `′) is such that
ϕ
(
Rt−∆t
i (u, `)

)
≈ ϕ

(
Rt−∆t
i (u, `′)

)
for all Rt−∆t

i (i.e., no rec-
ommender has distinct preference over ` and `′), then it does not
provide much information for learning (i.e., ∇α(j)d`,`

′
u ≈ 0).

Therefore, we use the strategies proposed by Rendle and Freuden-
thaler [19] to sample informative pairs. Since the size of Lt+ is
typically small, the number of samples K is usually proportional
to |Lt+|, e.g., K = K0 · |Lt+| for some integer K0 > 1. There-
fore, sampling in Lt+ is to simply sample each ` ∈ Lt+ uniformly



at random (i.e., K0 times on average), and strategies for sampling
informative pairs in fact focus on the set Lt−.

Random sampling (RS). This is the basic strategy. Locations in
Lt− are selected uniformly at random, i.e.,

Pr
{
`′ |u

}
=

1

|Lt−|
.

Static sampling (SS). This strategy favors popular locations, i.e.,
locations with many visitors have higher chances to be selected.
Specifically,

Pr
{
`′ |u

}
∝ exp

(
− rank(`′)

λ

)
, λ > 0,

where rank(·) is the “1234” ranking ofLt− by check-in frequencies;
smaller numbers are assigned to more popular locations.

Adaptive sampling (AS). When sampling, this strategy gives
higher chances to those locations with higher scores (i.e., locations
considered as promising by the recommender):

Pr
{
`′ |u

}
∝ exp

(
− rank(u, `′)

λ

)
, λ > 0,

where rank(u, `′) is the “1234” ranking of `′ based on the score
st−∆t(u, `′). Such promising yet unvisited locations may be more
informative in identifying a user’s preference.

3.2 Recommendation Aggregation
The last step in our LURA framework is to aggregate the rec-

ommendations from all the component recommenders, and then
provide the user u with a final list of N items (Formula 1). We
consider the following two different aggregation strategies.

Score-based aggregation (SA). This strategy is to use the scaled
score of user-item pair (u, `) estimated by each recommender (at
time t). ϕ

(
Rti(u, `)

)
is defined as

ϕ
(
Rti(u, `)

)
=

Rti(u, `)

max`′∈Lt
−
Rti(u, `

′)
, i = 1, 2, · · · , n.

Rank-based aggregation (RA). This strategy considers the
ranked position of a location `. Given a ranked list of N locations,
`1, `2, · · · , `N , this strategy assigns higher scores to top locations.
In particular, ϕ(·) is defined as

ϕ
(
Rti(u, `)

)
= 1− 1

N
(ranki(u, `)− 1) , i = 1, 2, · · · , n,

where ranki(u, `) is the ranked position of a location ` in the rec-
ommendation list provided to u by Rti . This strategy is a common
variant of Borda count [8].

4. EXPERIMENTS
In this section, we evaluate LURA on Foursquare and Gowalla

datasets. In Section 4.1 we explain the experiment setup as well as
the evaluation metrics. Then, in Section 4.2 we study how different
implementations, i.e., different sampling strategies (Section 3.1)
and aggregation strategies (Section 3.2), affect the performance of
LURA. After that, in Sections 4.3 and 4.4, we compare the best
implementations of LURA with (i) their own component recom-
menders, and (ii) other advanced recommenders, respectively.

4.1 Setup
The experiments involve three time periods: (i) a base period

T tbase = [1, t−∆t], in which the data are used for constructing com-
ponent recommenders; (ii) a learning period T tlearn = (t − ∆t, t],
for learning user preferences, updating component recommenders,

and constructing a LURA recommender; and (iii) a testing period
T ttest = (t, t + ∆t] for evaluating the recommenders. Competitor
methods that do not require any learning of user preferences are
built using all data in T tbase∪T tlearn = [1, t], so that any comparison
between them and LURA is fair.

To evaluate the performance of a recommender Rt, for each
user u we compare the top-N recommendation Rt(u) =

{`1, `2, · · · , `N} with L
(t,t+∆t]
u , the actual set of locations vis-

ited by u during the testing period T ttest. In the following, we use
t = 300 for Foursquare and t = 420 for Gowalla; ∆t is set to
60 for both datasets. We omit the experiments on evolving t due
to the lack of space. All the results at different t are similar, given
sufficient data in period (t−∆t, t].

Evaluation metrics. Two metrics are commonly used for lo-
cation recommendation: Precision@N and Recall@N [26]. Let
Ht
u =

∣∣∣Rt(u) ∩ L(t,t+∆t]
u

∣∣∣ be the number of correctly predicted
locations with regard to user u (i.e., the number of successfully
predicted locations). Then,

Precision@N =

∑
u∈AH

t
u

N · |A| ,

Recall@N =

∑
u∈AH

t
u

∑
u∈A

∣∣∣L(t,t+∆t]
u

∣∣∣
.

whereA is the set of active users. For a user u to be active, she must
(i) visit at least 5 new locations in the learning period T tlearn so that
LURA can infer her preference, and (ii) visit at least 1 new location
in the testing period T ttest so that the evaluation is nontrivial.

4.2 Different Implementations of LURA
We first study different implementations of LURA, i.e., we com-

pare different sampling and aggregation strategies presented in Sec-
tions 3.1 and 3.2, and see how they affect the performance of
LURA. We have 3 sampling strategies and 2 aggregation strategies,
thus in total we have 6 different implementations of LURA.

Figure 3 shows the comparison result among these 6 implemen-
tations with respect to varying N . As we can see, the performance
of different implementations are nearly the same, with adaptive
sampling (AS) being slightly better than the other two sampling
strategies in most of the cases. On the other hand, we observe
that the performance of aggregation strategies is data-dependent:
on Foursquare, rank-based aggregation (RA) is slightly better than
score-based aggregation (SA) while on Gowalla it is the other way
round. This could be due to the fact that Gowalla has relatively
more data for learning user preferences (29,996 check-ins for 1,307
active users, comparing to 38,688 check-ins for 3,942 active users
in Foursquare), and therefore the final scores are more accurate.

For both Foursquare and Gowalla, precision and recall values
are all at the level of 1%-10%. Such performance of location rec-
ommendation is due to data sparsity, i.e., out of a huge collection
of locations (96,002 in Foursquare and 767,936 in Gowalla) most
people merely visit several to dozens of them.

4.3 Comparing with the 11 Component Rec-
ommenders

We compare LURA with its 11 component recommenders. We
use the best sampling and aggregation strategies for LURA, i.e.,
we use LURA-ASSA and LURA-ASRA based on the findings in
Section 4.2. The comparison results are shown in Figure 4.

Both LURA-ASSA and LURA-ASRA outperform all the other
methods in all cases. This justifies that combining different rec-
ommenders may provide better recommendations. Among the 11
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Figure 3: Comparing different implementations of LURA
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Figure 4: Comparing LURA with its 11 component recommenders

component recommenders of LURA, UCF always performs the
best. This means that the behaviors of most users are best reflected
by other similar users. Nonetheless, comparing to UCF, LURA can
be better in Foursqure by up to 11.82% in precision and 11.72%
in recall; in Gowalla these numbers are 8.53% and 8.52% respec-
tively.

Considering the small absolute values of precision and recall, we
also carry out tests of statistical significance. Specifically, we run
a paired t-test between the numbers of hits of LURA and UCF, the
best-performing component recommender. The p-values are both
less than 0.01 (2.99 × 10−4 for Foursquare and 1.79 × 10−4 for
Gowalla), indicating that the improvement of LURA over UCF is
statistically significant.

4.4 Comparison with Other Methods
We also compare LURA with other existing methods that adopt

similar ideas to what we use for LURA.
USG [26]. This is a linear combination of UCF, FLCF, and PLM,

i.e., the component recommenders R1, R3, and R8 of LURA.

USG(u, `) = (1− α− β) · ϕ (R1(u, `))

+ α · ϕ (R3(u, `)) + β · ϕ (R8(u, `)) ,

where α and β are parameters, and ϕ(·) is a rescale of scores as
what we use for LURA (Section 3.2). To construct USG at time t,

we do as what [26] has proposed: we randomly select 70% of the
data before time t to construct the three component recommenders:
UCF, FLCF, and PLM, and then use the rest 30% to determine pa-
rameters α and β. The final parameters are α = β = 0.1 for
Foursquare, and α = 0.1, β = 0.2 for Gowalla. These parame-
ters are also consistent with what [26] has suggested. Note that the
parameter settings are the same for all users, i.e., not personalized.

iGLSR [30]. This method combines GCF and KDM, i.e., the
component recommenders R4 and R9 of LURA, having a clear fo-
cus on the geographical relationships between locations. Differ-
ent from USG and LURA which aggregate scores linearly, iGLSR
adopts the following combination:

iGLSR(u, `) = ϕ (R4(u, `)) · ϕ (R9(u, `)) ,

where ϕ(·) is as in USG and LURA.
RankBoost [9]. This is a method to combine a given set of weak

recommenders. For a target user u, the training data for RankBoost
is P tu = Lt+ × Lt−, as what is fed to LURA (Section 3.1). Rank-
Boost takes K iterations to get a “boosted” recommender. During
the k-th iteration, it aims at maximizing the discrimination between
Lt+ and Lt−,

Zk =
∑

(`,`′)∈P t
u

Dk(`, `′)eαk·(ϕ(hk(u,`))−ϕ(hk(u,`′))),
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Figure 5: Comparing LURA with other existing methods

where Dk is a weight distribution over location pairs in P tu, mea-
suring how important the pair (`, `′) currently is; ϕ(·) is for scaling
recommendation scores as introduced in Section 3.2; and hk is the
selected weak recommender during the k-th iteration. While pur-
suing this goal, RankBoost estimates a weight βk for the selected
recommender hk and updates the distribution Dk. Eventually, rec-
ommendations are made based on the following scoring function:

RankBoost(u, `) =

K∑

k=1

βk · ϕ (hk(u, `)) .

Similar to LURA, RankBoost also has two options for ϕ(·): score-
based (SA) and rank-based (RA). In our experiments we consider
both options, i.e., we have RankBoost-SA and RankBoost-RA as
two different implementations of RankBoost.

BPRMF [20]. This method also takes a pairwise view of loca-
tions, i.e., it considers (`, `′) ∈ P tu as training samples. Given the
check-in frequency matrix at time t,Ct, BPRMF manages to max-
imize the posterior probability Pr

{
Θ
∣∣P tu

}
, where Θ is a comple-

tion of the matrix Ct (i.e., Θ has an estimation on every unknown
(u, `) entries in Ct). BPRMF transforms this posterior probability
using the Bayes’ theorem, and optimizes Pr

{
P tu |Θ

}
Pr {Θ} using

a stochastic gradient descent method.
SBPR [31]. SBPR integrates social information into BPRMF. It

divides items into three disjoint sets : positive items I+, negative
items I−, and social items IS . It assumes that items in I+ are more
preferable than those in IS , while the ones I− are the least prefer-
able. Two partial orders are thus used in a BPR-like framework.

GeoMF [16]. GeoMF integrates geographical information into
weighted MF methods [12]. Specifically, it assumes that a loca-
tion may have a Gaussian impact in its neighboring area, which is
considered as weights in an MF framework.

The comparison results are shown in Figure 5. USG and Rank-
Boost consistently perform the best among methods other than
LURA. LURA-ASSA and LURA-ASRA are clearly superior to
USG and RankBoost. In Foursquare, LURA can outperform the
best of USG and RankBoost by up to 7.16% in precision and 6.22%
in recall; in Gowalla, these numbers are 7.35% and 8.12% respec-
tively. Compared to USG which adopts unified parameters for
all users, the performance improvement of LURA comes from its
awareness of users’ preferences over recommenders.

Similar to what we have done in Section 4.3, we also did a
paired t-test for the numbers of hits of LURA and USG, the best-
performing competitor. The p-values are both less than 0.05 (0.021
for Foursquare and 0.005 for Gowalla), implying that LURA’s im-
provement over existing methods is also statistically significant.

5. RELATED WORK

5.1 Other POI Recommendation Methods
GPS data from mobile services are also used for location recom-

mendation. Zhang et al. [33] analyzed GPS trajectories to discover
points of interests for recommendation. Zhang et al. [32] studied
location-and-activity recommendation using GPS data, where ac-
tivities could be various human behaviors such as shopping, watch-
ing movies, etc. Leung et al. [15] proposed a co-clustering frame-
work for location recommendation based on user-activity-location
tripartite graphs. Some recent studies view location recommenda-
tion problem from a perspective of topic modeling (e.g., [17, 27]).
In general, with additional information such as location contents,
user-provided tips, etc., these methods build topic models for users
and locations, based on which the likelihood of a user visiting a
location can be estimated. In addition, Yuan et al. [29] consid-
ered time-dependent location recommendation, arguing that the lo-
cations recommended to a user at lunch time should be different
from the ones recommended at leisure time.

5.2 Recommender Ensemble
Ensemble techniques have been used to combine several simple

recommenders to form a stronger one. To name a few, Bar et al. [3]
studied different ways to combine simple CF methods, including
bagging, boosting, fusion, and randomness injection; Schclar et
al. [22] considered AdaBoost regression on a neighbor-based CF
method. Experiments on movie ratings data showed that these en-
semble methods had improved performance. Besides, Tiemann and
Pauws [24] considered ensembles of content-based methods, which
succeeded in recommending music and news.

These ensemble methods attempt to minimize the root mean
square error (RMSE) on ratings data. However, as we have em-
phasized earlier in this paper, check-in data are implicit, and thus
pursuing numerical estimations of check-in frequencies will essen-
tially be a distraction from the goal of location recommendation.

5.3 (Personalized) Learning to Rank
The problem of learning to rank is to determine a ranking among

a set of items. Given some training data (e.g., observed user click-
throughs that imply preference over search results), the problem
is to find a ranking function that best agree with the training data,
which can be done by machine learning techniques (e.g., [4, 5, 13]).
Recently, Wang et al. [25] and Song et al. [23] studied personalized
learning to rank, where personalized rankings were adapted from a
global user-independent ranking.

The problem of (personalized) learning to rank is related to our
problem in general, in that they both pursue the best ranking of



items. However, our problem is to infer user preference over dif-
ferent recommenders, which are themselves ranking functions over
items (locations); the above-mentioned learning to rank techniques
are thus not directly applicable to solve our problem.

6. CONCLUSION
In this paper we study the problem of location recommenda-

tion. We first investigate two real-life LBSN datasets, discover-
ing diversities in (i) recommendations generated by representative
recommenders, and (ii) user preferences over the recommenders.
Based on these observations, we consider personalized location
recommendation by inferring user preferences over multiple rec-
ommenders. We propose a LURA framework to achieve our goal
and test it with extensive experiments. The results show that LURA
achieves significant performance improvements over existing rec-
ommendation methods. In the future, we plan to investigate other
possible ways to aggregate recommenders.
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