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ABSTRACT

In this paper we investigate the problem of recommend-
ing Twitter hashtags for users with known GPS location,
learning online from the stream of geo-tagged tweets. Our
method learns the relevance of regions in a geographical hi-
erarchy, combined with the local popularity of the hashtag.
Unlike in typical collaborative filtering settings, trends and
geolocation turns out to be more important than personal-
ized user preferences. We evaluate in a time-aware setting,
where evaluation is cumbersome by traditional measures,
since we have different top recommendations at different
times. We describe a time-aware framework based on in-
dividual item discounted gain.

1. INTRODUCTION

We investigate the problem of recommending Twitter hash-

tags for users, based on the temporal geolocation informa-
tion of both the users and the hashtags. Our aim is to rec-
ommend new hashtags, i.e. hashtags that the user has not
used before. The recommendations are obtained by learn-
ing online from the stream of geo-tagged tweets. In our task
the novel element is that neither users nor items (hashtags)
are bound to one single location. Hashtags may in fact re-
late to certain locations as well as be popular worldwide.
Earlier results on recommendation in location-based social
networks surveyed in e.g. [1, [L3] combine spatial ratings for
non-spatial items, nonspatial ratings for spatial items, and
spatial ratings for spatial items [10]. Our new results address
the problem of the fuzzy relation of users and hashtags with
locations.

Since hashtag usage is highly volatile, the problem calls for
an online method. Whenever a user sends a geotagged tweet
with a hashtag he or she has not used earlier, we consider the
event as a trigger for recommendation. We measure the ac-
curacy of our methods in the online evaluation framework of
[12] based on discounted cumulative gain (DCG) computed
individually for each event and averaged over time.
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We find that location and timing are the key factors with
little contribution from personalized user interest. The lo-
cality of Twitter hashtag adoption in both spatial and tem-
poral sense is observed among others by Kamath et al. |7].
They state that “hashtags are a global phenomenon |...]
but distance between locations is a strong constraint on the
adoption [...] and follow a spray-and-diffuse pattern”.

We use a four-month collection of 400 million geotagged
Twitter messages detailed in [6]. We discard the text of
the tweet messages and keep only the hashtags, the times-
tamp and the GPS coordinates. In our experiments we
focus on the user location and the new hashtags that ap-
pear in the message. As we have no information on which
tweets are read by the users but we know the new hashtags
they tweeted, we use the hashtag publishing information to
measure user topic adoption. We consider a hashtag newly
adopted if we have not observed the given user-hashtag pair
before in the dataset. To guarantee at least one month for
each user-hashtag pair without activity, we simply skip the
first month of the stream of new hashtag usages.

Some content may have obvious connection to certain lo-
cations but others can have more widespread interest on
different levels such as language, continent, or even world-
wide. Dealing with this, our models rely on the hierarchy of
regions from a global or continent-wide level down to a vil-
lage or city district to attribute the momentary popularity
of a hashtag to levels of locations. This hierarchical property
of locations is surveyed also in [1]. We use the open hier-
archical database of Global Administrative Areas (GADM,
http://gadm.org). We mention that the metadata of tweets
may contain not only GPS coordinates but also a place at-
tribute that can contain the name and type of the place.
However, we found the place attribute often ambiguous and
less reliable.

We use two models to recommend hashtags at a given time
and location, one based on the estimated probability of the
hashtag appearance based on its recency, and another based
on its temporal popularity. In both cases, our new method
learns the importance of each node in the GADM tree. The
final prediction arises as the weighted combination of the
hashtag probabilities along the path of the GADM tree from
the leaf location of the user up to the root.

As baseline method, we use online matrix factorization
|12]. Surprisingly, it turns out that matrix factorization per-
forms much weaker than the distance based methods and
contributes relatively little to the final prediction. This ob-
servation justifies the importance of the temporal and geo-
graphic context of Twitter messages.



1.1 Related work

Most of previous publications on geographic recommender
systems work with check-in data, where each of the items has
a predefined static location. For brevity, we do not survey
these here. Hashtag recommendations are addressed in two
recent papers: Chen et al. [3] give methods for efficiently
maintaining a sliding window for time aware recommenda-
tion, and Diaz et al. |5] introduce methods to compute ma-
trix factorization online. These results are orthogonal to our
exploitation of the location information.

Spatial statistics of hashtag adoption are analyzed by Ka-
math et al. [7]. Cheng et al. [4] give methods to geolocalize
tweets based on content. Mocanu et al. [11] use a data set
similar to ours to analyze geographical properties like ho-
mogeneity and seasonal patterns of language usage at scales
ranging from country-level to city neighborhoods. Similar
to our use of the Global Administrative Areas, regions-of-
interests partitioning is examined in [9] by applying k-means
clustering to establish natural regions over Twitter data.
None of these papers exploit the results in recommender
systems.

No other results use external data to define the hierarchy
of locations for recommendation tasks. Similar to our result,
in [6], GADM is used over the same Twitter data set, but
only for visualization purposes.

2. ONLINE RECOMMENDATION AND
EVALUATION

We use the online recommendation framework described
in [12], in which model training and evaluation happen si-
multaneously, iterating over the dataset only once, in chrono-
logical order. Whenever we see a new tweet, we assume that
the user becomes active and reveals its location to the recom-
mender system. Next, we recommend hashtags of potential
interest for the user. The recommendation is online, hence
it depends on the context at the exact time instance of the
tweet. If a user u tweets with hashtag h at time ¢ in loca-
tion ¢, our models give a score #(u, h’, £, t) for each hashtag
h' seen so far, and recommend to u the k hashtags with the
largest values from those that u has not used before.

The data is implicit: the events imply only that the user is
interested in a hashtag. In most of our models, we need nega-
tive instances as well for training. We use all hashtag usages
as positive training instances and generate negative training
instances by selecting negRate random hashtags uniformly
at the time when a user first used a hashtag. We tested the
negRate parameter between 1 and 300.

We use the quality metric of [12] that we adopt to hash-
tag recommendation. If h is the new hashtag in the message
and the rank of h returned by the recommender system is
rank(h), then the discounted cumulative gain, DCGQk of

I _
log, (rank(h) + 1) if rank(h) < k, and 0 oth

erwise. The overall evaluation of a model is the average
cumulative DCGQk.

this event is

3. TWITTER AND GEOGRAPHICAL DATA

Dobos et al. |6] collected the dataset using the Twitter
open API by requesting geotagged tweets. We used the data
between February 1 and May 30, 2012 with February for
training and observing distributions only, hence the online
learning period lasts three months.

Table 1: Properties of the cleansed dataset.

number of records | 6,978,478
number of unique user-hashtag pairs | 2,993,183
number of users | 792,860
number of hashtags | 268,489
number of countries | 49

Most of the hashtags in the database are quite rare, thus
we use only the hashtags that appear more than 5 times.
This way we exclude about 90% of the hashtags, but most of
the hashtag timeline remains. We also exclude the hashtags
that appear in the first month of the collection to recom-
mend newly spreading hashtags for the users. The proper-
ties of the final cleansed dataset are summarized in Table [Il

We collected all 214,230 nodes from the GADM database,
from which 190,315 are leaves. The depth of the tree is 6,
and includes 5 levels from the GADM tree plus continent-
country relations. The hashtag time series data covered
30,450 leaves from the tree.

4. MODELING

4.1 Recommendation by location hierarchy

In our recommendation model we use the location ¢ at
time ¢ of the user. Here ¢ notes the leaf of the tree that is
closest to the current GPS location of the user. First, we
get the path in the tree from the root node to location ¢,
Path(¢). Next, for a given hashtag, assume we have a rec-
ommendation method that yields scores s(h,n,t) for nodes
n along Path(¢). We will give two such methods in the next
subsections. In order to aggregate the individual recommen-
dation at each GADM tree node, we propose the formula

Z Wn 'S(h,’l’l,,t),

nePath (L)

TA(”? h? E? t) =

where w,, values are node specific weights. The weights ws,
are independent of the hashtags and characterize the area
n only. We learn the weights by online gradient descent by
optimizing for RMSE. If we consider all positive instances
and generate negative ones as described in Section[2] we will
have sufficiently many implicit data to update the weights
online as we read the sequence of events.

In our experiments we also investigate models where we
set all w,, values constant, i.e. we do not learn the weights,
but simply sum all s(h,n,t) values along Path(¢).

4.2 Temporal popularity

Given a predefined time discretization that we test be-
tween a minute and a day, for each location in the tree, we
compute the number of occurrences of the hashtag in the
time interval at the given location. As it follows power-law
distribution, we use the logarithm of the temporal popular-
ity values as node scores: s(h,n,t) = log(pop(h,n,t)), where
pop(h, n,t) denotes the number of occurrences of hashtag h
in node n in the time interval ending at time t.

4.3 Hashtag recency

Our next method estimates the chance of the appearance
of a hashtag by considering its most recent usage. The ad-
vantage of this method is that it is more sensitive to changes
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Figure 1: Inter-event distribution.

in trends. While it may more aggressively overfit to single
events, overall it performs similar to and combines very well
with the popularity based method. In Fig. (1} we investigate
the distribution of the time elapsed between the same hash-
tag appearing in tweets. This inter-event time distribution
follows power law, in accordance with several earlier obser-
vations [2| 14, 8], P(t =t) = (o —1)-t~%, whence we easily
get

A\
P(t<T§t+At\T>t):1—<1—|—T) (D

For location sensitive prediction we maintain the last ap-
pearance of each hashtag for every node in the geolocation
tree. We compute the estimate of in each node by using
the global measured value oo = 1.2.

4.4 Online matrix factorization

We apply stochastic gradient descent factorization for the
user-hashtag matrix as in [12]. Batch stochastic gradient
descent iterates several times over the training set until con-
vergence. Online recommenders seem to be more restricted
than those that may iterate over the data set several times.
However, online matrix factorization proved to be superior
to batch in [12], since it gives much more emphasis on recent
events.

5. EXPERIMENTS

In our graphs we show the average cumulative DCG for
the first three weeks, by when all of our methods reach stable
performance. Here the cumulative average corresponds to
cumulative time average. We set £ = 100 to compare our
methods in detail. All methods show a slight performance
degradation, which is due to the fact that the number of
possible hashtags to recommend increase in time.

5.1 Online matrix factorization

We used the online version of stochastic gradient descent
(SGD) matrix factorization algorithm of [12]. We applied
the mean square error with user and item regularization
terms of weight regRate as our objective function. Since
our data is implicit and contains only positive interactions,
we generated negative samples. Every time a user first posts
about a hashtag, we generate for her negRate hashtags that
she have not used in her past as described in Section [2] In
all cases, we set negRate=99, learning rate 1Rate=0.4, and
regRate=0.01.

As we show next, our tree based methods and their base-
line variants to exploit geographical information resulted in
better performance in our experiments.
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Figure 2: Average cumulative DCG@100 for the tree based
popularity model and its baseline variants.

5.2 Popularity and recency based methods

The temporal popularity based method using the GADM
tree of Section achieved best results by setting the time
frame around 2 hours. In the recency based model of Sec-
tion the parameter At had relatively little effect, we set
At = 12h. We compared the popularity and recency based
methods separately in Figs. |2 and [3] resp., by using differ-
ent levels of the GADM tree and turning recency and node
weight learning on and off.

In the figures, “world” denotes the methods that use global
values only and do not take user geolocation into account,
while “leaves” and “countries” use the corresponding level of
the tree. Note that country level popularity and recency
performed very well while leaves worked only with recency
not popularity. Note that using countries but no temporal
information at all performs the poorest.

Best performance is obtained when using the whole tree
for recommendation by adding all recency values along the
path corresponding to the current user location in the tree,
marginally improving the country based results. However,
by applying the gradient method to learn node specific weights
as in Section[4.1] we could achieve significantly better results
for recency but not for popularity. By using the recency
based tree learning algorithm, we were able to focus on the
active and representative part of the tree. We achieved our
best results with 1Rate=0.0001 and negRate=4.

5.3 Online combination

In our final experiments we compared and combined our
strongest methods. In Figure E| we plotted the average cu-
mulative DCG@100 as the function of time for our best mod-
els. Surprisingly, the tree based methods strongly outper-
form online matrix factorization, while the best popularity
based model overtook the best recency based method a little
bit in the long run. Next, we considered the strongest one,
the tree based popularity without node weight learning, to
improve it by combining it with the best factor model and
recency recommender. We used the SGD based double layer
combination method introduced in |12] with mean squared
error as objective function. In Figure [5| we show the results
of the combination. The popularity model can be improved
by using the best recency method that uses the tree with
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Table 2: Best performance methods and their combination,

with relative improvement.

[ DCG@i00 | DCGQIO |

factorization 0.206 0.180
recency w/ tree learning 0.355 0.323
popularity w/ tree learning 0.359 0.335
popularity 0.374 0.342
+ recency (4-1%) (2%)

popularity 0.381 0.35

+ recency + factor (6.1%) (4.2%)
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Figure 3: Average cumulative DCG@100 curves of the re-
cency based methods.
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exploit the time and location context. Surprisingly, user
personalization has little contribution to recommendation
quality, hence our best methods apply in the user cold start
setting as well.
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Figure 5: Combination of the best three different models.
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