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Preface

As Model Driven Engineering (MDE) is increasingly applied to larger and more complex
systems, the current generation of modelling and model management technologies are
being pushed to their limits in terms of capacity and efficiency. As such, additional
research and development is imperative in order to enable MDE to remain relevant with
industrial practice and to continue delivering its widely-recognised productivity, quality,
and maintainability benefits.

The third edition of the BigMDE workshop (http://www.big-mde.eu/) has been co-
located with the Software Technologies: Applications and Foundations (STAF 2015)
conference. BigMDE 2015 provided a forum for developers and users of modelling and
model management languages and tools where to discuss different problems and solutions
related to scalability aspects of MDE, including

• Working with large models

• Collaborative modelling (version control, collaborative editing)

• Transformation and validation of large models

• Model fragmentation and modularity mechanisms

• Efficient model persistence and retrieval

• Models and model transformations on the cloud

• Visualization techniques for large models

Many people contributed to the success of BigMDE 2015. We would like to truly
acknowledge the work of all Program Committee members, and reviewers for the timely
delivery of reviews and constructive discussions given the very tight review schedule.
Finally, we would like to thank the authors, without whom this workshop would not
exist.

July 23, 2015
L’Aquila, Italy

Dimitris Kolovos
Davide Di Ruscio

Nicholas Matragkas
Jesús Sánchez Cuadrado

Istvan Rath
Massimo Tisi
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Generation
of Large Random Models for Benchmarking

Markus Scheidgen1

Humboldt Universität zu Berlin, Department of Computer Science,
Unter den Linden 6, 10099 Berlin, Germany
{scheidge}@informatik.hu-berlin.de

Abstract. Since model driven engineering (MDE) is applied to larger and
more complex system, the memory and execution time performance of model
processing tools and frameworks has become important. Benchmarks are
a valuable tool to evaluate performance and hence assess scalability. But,
benchmarks rely on reasonably large models that are unbiased, can be shaped
to distinct use-case scenarios, and are ”real” enough (e.g. non-uniform) to
cause real-world behavior (especially when mechanisms that exploit repetitive
patterns like caching, compression, JIT-compilation, etc. are involved). Cre-
ating large models is expensive and erroneous, and neither existing models
nor uniform synthetic models cover all three of the wanted properties.
In this paper, we use randomness to generate unbiased, non-uniform models.
Furthermore, we use distributions and parametrization to shape these models
to simulate different use-case scenarios. We present a meta-model-based
framework that allows us to describe and create randomly generated models
based on a meta-model and a description written in a specifically developed
generator DSL. We use a random code generator for an object-oriented pro-
gramming language as case study and compare our result to non-randomly
and synthetically created code, as well as to existing Java-code.

1 Introduction

In traditional model driven software engineering, we are not concerned about how
much memory our editors consume or how long it takes to transform a model;
models are small and execution is instantaneous. But when models become bigger,
their processing requires substantial resources. Up to the point, where we began
to conceive technology that is specifically designed to deal with large models. In
this context, memory consumption and execution times are of central concern and
BigMDE technology is valued by its performance. Consequently, benchmarks that
enable sound comparison of a method’s, framework’s, or tool’s performance are
valuable and necessary tools in evaluating our work.

In computer science, we define a software benchmark as the measurement of a
certain performance property taken in a well defined process under a well defined
workload in a well defined environment. Where the benchmark mimics certain ap-
plication scenarios. In MDSE scenarios, workloads comprise input models and tasks
that are performed on these models.
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Input models characteristics have an influence on the quality of the benchmark.
First, input models need to be unbiased, i.e. they must not deliberately or accidentally
ease the processing by one technology and burden another. Secondly, they need to
be real enough to invoke behavior that is similar to behavior caused by actual input
models. Non random synthetic models for example are often overly uniform and can
therefore fool compression, caching, or runtime optimization components (often con-
tained in BigMDE technology) into unrealistic behavior. Thirdly, benchmarks mimic
different application scenarios. Different scenarios require input models with different
shapes. Here, the concrete form of possible shapes depends on the meta-model. E.g.
shapes can be expressed as sets of model metrics. Fourthly and finally, input models
need to scale, i.e. we need to find input models of arbitrary size. Only with scalable
input, we can use benchmarks to access the scalability of MDSE technology.

It is common practice to either use existing models (e.g. the infamous Grabats
09 models) or non random synthetically generated models. Where the former yields
in realistic, somewhat unbiased, but only given shapes and scale, the later results in
arbitrary large, but utterly unrealistic models. Our approach is to use randomness as a
tool to achieve both scalability and configurability as well as a certain degree of realism
and reduced bias. We present a generator description language and corresponding
tools that allows us to describe and perform the generation of random models with
parameterizable generator rules.

The paper is structured as follows. We start with a discussion of related work in
the next section. After that, we introduce our generator language. The next section,
demonstrates our approach with a generator for object-oriented program code models.
The paper closes with conclusions and suggestions for further work.

2 Related Work

Benchmarking with Existing Models

The idea to generate large models for benchmarking large model processing technolo-
gies is new and to our knowledge there is no work specifically targeting this domain.
However, benchmarking of large model processing technologies has been done before;
mostly by authors of such technologies. Common practice is the use of a specific set
of large existing models. If we look at benchmarking model persistence technology
for NoSQL databases, which is our original motivation for this work, the set of the
Grabats 09 graph transformation contest example models are exclusivly used by all
work known to us [7,1,8,2].

This benchmarking practice has itself established as a quasi standard to evaluate
and compare model persistence technology, even though it exhibits all of the previ-
ously stated flaws of using existing models for benchmarks. First, the Grabats models
aren’t exactly large (<107 objects), at least when compared to the target scale of the
benchmarked technology. Secondly, there is no meaningful mathematical relationship
between size metrics of the models in the set, e.g. there is no usable ramp-up in model-
size. Even though the models show an increasing size, the models have internally
different structure, which makes them non-comparable. Some models represent Java
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code in full detail, others only cover declarations. This makes it impossible establish
a meaningful formal relationship between size-metric and performance measurements.
Thirdly, we have a very small set of 4 models and all models are models of the same
meta-model. This makes the example set biased (towards reverse-engineered Java
code models) and again makes it difficult to establish relationships between metrics
and performance. Forthly, the internal structure of the models makes it impossible to
import all the models into CDO. At least no publication presented any measurements
for CDO and the biggest two of the four Grabats models. This is especially bad,
since CDO as most popular SQL-based persistence technology, presents the most
reasonable (and only used) baseline.

More concrete benchmarks including the precise definition of tasks exist for model
queries and transformations [11]. The Grabats 09 contents actually formulates such
benchmarks. In [11,5] the authors define frameworks to precisely define tasks for
model transformation and query benchmarks and provide the means to evaluate the
created benchmarks in that domain.

Model Generation for Test

Before benchmarking became an issue for MDSE, models were generated to provide
test subjects for MDSE technology. We can identify three distinct approaches.

SAT-solver For most test scenarios, not only syntactically but also static semantically
correct models are needed. Brottier et al. [3] and Sen et al. [9] propose the use of SAT-
solvers to derive meta-model instances from the meta-model and it’s static semantic
constraint. Meta-model and constraints are translated into logical formula, solutions
that satisfy these are translated back to corresponding meta-model instances. Since
each solution ”solves” the meta-model and it’s constraints, the solution represents a
semantically correct instance of the given meta-model. The non-polynomial complexity
of SAT problems and the consequently involved heuristics do not scale well.

Existing graph generators Mougenot et al. [6] use existing graph generators and
map nodes and edges of generated graphs to meta-model classes and associations.
While this approach scales well, it does not allow to shape the generated model.
The used algorithms provide uniform looking random graphs and result in uniform
models. In reality, most models cover different aspects of a system with completely
different structural properties. E.g. the graph that represents package,class,method
declarations has different properties/metrics as a graph that describes the internals
of a method implementation.

Constructive formalisms Models can be generated with constructive formalisms like
formal grammars or graph grammars. Ehrig et al. [4] propose to use graph grammars
and random application of appropriate graph grammar rules to generate models. Our
own approach (which is very similar to context-free grammars) fits this category as
well. In comparison it lacks the formal properties of the graph grammar approach
and is limited to context-free constructs (e.g. no static semantic constraints), but
scales better due to the simpler formalism. In practice graph-grammars introduce
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further restrictions, since graph grammars become inherently complex, especially if
one tries to map static semantic constraints into the rules.

3 Generator Language

name:String
ObjectRule

EClass

EStructural
Feature

EReference

EAttribute

XExpression

JvmFormalParameter

JvmType

Generator

* rules

*  parameters

type

type

prioritymultiplicity
value

* features * alternatives

feature

feature

Alternatives
Rule

AlternativeValue
Rule

CreateObject
Rule

FeatureValue
Rule

PrimitiveValue
Rule

ObjectValue
Rule

ContainedObject
ValueRule

ReferencedObject
ValueRule

ValueRule

class

Fig. 1: Meta-model of the proposed model generators description language.

We developed the model generator description language rcore1 as an external
domain specific language based on EMF, xText, and xBase with the consequent
eclipse-based tool support. Fig. 1 depicts the underlying meta-model of our generator
language. RCore follows a declarative approach and uses production rules to describe

1 The source code and examples can be obtained here:
http://github.com/markus1978/RandomEMF
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possible models. Similar to a formal grammar that can be used to generate strings
over an alphabet, we generate models over a meta-model. In contrast to grammars,
rcore rules govern rule application via expressions that present concrete choices (i.e.
concrete multiplicities or chosen alternatives). These expressions can either use fix-
values (e.g. to generate synthetic models) or call random number generators following
different distribution functions (i.e. to generate random models). Build in variables
(e.g. the generated model in progress, or depth of rule application) and custom rule
parameters can also be used within expressions.

Generally, we distinguish between ObjectRules that can generate model ele-
ments (i.e. EMF objects) and FeatureValueRules that assign values to an object’s
structural features (i.e. EMF attributes and references). Cascading application of
ObjectRule-FeatureValueRule-ObjectRule-Fea... allows clients to generate con-
tainment hierarchies, i.e. the spine of each EMF model.

Each rcore description comprises an instance of Generator and is associated
with an ecore-package that represents the meta-model that this generator is written for.
Each Generator consist of a set of ObjectRules, where the first ObjectRule is the
start rule. Each of these ObjectRules is associated with a EClass that determines
the meta-type of the objects generated by this rule. There are two concrete types of
ObjectRules: CreateObjectRules that describe the direct creation of objects (i.e.
meta-class instances, a.k.a model-elements) and AternativesRules that can be used
to randomly refer object creation to several alternative rules. Further, ObjectRules
can have parameters.

While ObjectRules are used to describe object generation, ValueRules are used
to determine values that can be used within ObjectRules. ValueRules determine
concrete values via an xBase XExpression that can evaluate to a primitive value (e.g.
to be assigned to an attribute, PrimitiveValueRule), or that calls an ObjectRule

(e.g. to create a value for a containment reference, ContainedObjectValueRule),
or that queries the generated model for a reference target (e.g. to be assigned to
a non-containment reference, ReferencedObjectValue), or that refers object cre-
ation to an ObjectRule (e.g. to create an alternative for an AlternativesRule,
AlternativeValueRule).

Concrete FeatureValueRules are associated with a EStructuralFeature and
are used to assign values to the according feature of the object created by the con-
taining CreateObjectRule. Each FeatureValueRule also has an expression that
determines the multiplicity of the feature, i.e. that determines how many values
are assigned to the feature, i.e. how many times the value expression is evaluated.
ObjectValueRules are associated with EReference and are used to assign values
to references, and PrimitiveValueRules are associated with EAttribute and are
used to assign value to attributes.

AlternativeValueRules have an additional expression that determines the pri-
ority of the alternative within the containing AlternativesRule. When applied the
AlternativesRule will uniformly choose an alternative with priorities as weights.
Only the chosen alternative is evaluated to provide an object.

Further static semantic constraints have to be fulfilled for a correct rcore descrip-
tion. (1) the value expressions of AlternativeValueRules must have compatible
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type with the EClass associated with the containing AlternativesRule. The types
of all value expressions in FeatureValueRules must be compatible with the associated
structural feature’s type. The associated features of FeatureValueRule’s must be
features of the EClass associated with the containing CreateObjectRule. All used
EClasses must be contained in the meta-model that is associated with the Generator.

1. package de.hub.rcore.example

3. import org.eclipse.emf.ecore.EDataType
4. import org.eclipse.emf.ecore.EcorePackage
5. import static de.hub.randomemf.runtime.Random.*

7. generator RandomEcore for ecore in "platform:/resource/org.eclipse.emf.ecore/model/Ecore.ecore" {
8. Package: EPackage ->
9. name := LatinCamel(Normal(3,2)).toLowerCase
10. nsPrefix := RandomID(Normal(2.5,1))
11. nsURI := "http://hub.de/rcore/examples/" + self.name
12. eClassifiers += Class#NegBinomial(5,0.5);
13.
14. Class: EClass ->
15. name := LatinCamel(Normal(4,2))
16. abstract := UniformBool(0.2)
17. eStructuralFeatures += Feature#NegBinomial(2,0.5);
18.
19. alter Feature: EStructuralFeature ->
20. Reference(true) | Reference(false) | Attribute#2;
21.
22. Reference(boolean composite):EReference ->
23. name := LatinCamel(Normal(3,1)).toFirstLower
24. upperBound := if (UniformBool(0.5)) -1 else 1
25. ordered := UniformBool(0.2)
26. containment := composite
27. eType:EClass := Uniform(model.EClassifiers.filter[it instanceof org.eclipse.emf.ecore.EClass]);
28.
29.  Attribute:EAttribute ->
30. name := LatinCamel(Normal(3,1)).toFirstLower
31. upperBound := if (UniformBool(0.1)) -1 else 1
32. eType:EDataType := Uniform(EcorePackage.eINSTANCE.EClassifiers.filter[it instanceof DataType]);
33. }

Fig. 2: Example generator description for Ecore models.

Fig. 2 presents an example rcore description. The described generator produces
randomly generated Ecore models. Some of the expressions use predefined random
number generator based method to create random ids, strings, numbers (based
on different distributions such as normal, neg. binomial, etc.)). The method Uni-

form(List<EObject>) for example, is used to uniformly draw reference targets from
a collection of given possible target objects. Another example is LatinCamel(int)

that generates a camel case identifier with the given number of syllables. The two
methods Normal(double,double) and NegBinomial(double,double) are exam-
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ples for the use of random number generators to create normal and negative binomial
distributed random numbers.

4 Example Results

1. package dabobobues;

3. class Dues {
4.
5. DuBoBuTus begubicus;
6. ELius brauguslus;
7.
8. void Dues(Alius donus, FanulAudaCio aubetin) {
9. }
10.
11. void baGusFritus() {
12. eudaguslius = "";
13. bigusdaGubolius();
14. if ("") {
15. annulAugusaugusfrigustin("");
16. albucio = Dues()<=++12;
17. bi();
18. eBoTor();
19. } else {
20. brauguslus = 9;
21. baGusFritus();
22. duLus = ""=="";
23. }
24. }
25.
26. void aufribonulAubufrinus(Dues e) {
27. dobubogutor();
28. aubiguTus = 9;
29. }
30. }

Fig. 3: Example of randomly generated code for an object-oriented programming language.

In this section, we want to demonstrate the use rcore for meta-models that are
more complex than the Ecore example in the previous section. Based on their popu-
larity, overall complexity, and well understood properties, we chose an object-oriented
Java-like programming language with packages, classes, fields, methods, statements,
expressions (incl. operators and literals). We omitted details that are either repet-
itive (template parameters, interfaces, anonymous classes) or not interesting from
a randomized generation point of view (most flags and enums like abstract, overrides,
visibility, etc.). We developed the model generator based on a ecore meta-model for
the described example language, but we use a simple code generator to pretty print
the generated models in a Java-like syntax for better human comprehension. Fig. 3
depicts a sample of the generated models in the serialized form.

Similar to our Ecore generator in Fig. 2, we use probability distributions to pro-
duce randomized models that exhibit certain characteristics such as average number
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of methods per class and similar metrics. We compare the generated results to non
synthetic instances of the same meta-model and to program code models of a real-life
Java project. We look at two aspects: first the overall containment hierarchy and
secondly the use of non-containment references exemplified by method calls (i.e.
references between method call and respective method declarations).

Containment Hierarchies

Fig. 4 shows a sunburst chart representation of three packages of object-oriented code.
One is synthetically generated, one is actual Java code taken from our EMF-fragments
project, and one is randomly generated. The synthetically generated program com-
prises a fixed number of classes, each of which contains a fixed number of inner classes,
fixed number of methods, etc. Multiplicity and choice of contained elements are de-
termined by constants or values in a repetitive pattern. The result is a homogeneous
repetitive non random structure. The actual Java code shows that containment in
real code is varying: there are classes with more or less methods, methods can be
short or longer. Tamai et al [10] suggest that multiplicities of containment references
can be modeled with negative binomial distributed random variables. Our generator
for random code uses such negative binomial distributed random variables. We chose
parameters that yield in expected values that represent reasonable metrics for classes
per package, methods per class, statements per methods, depth of expressions, etc.
We chose metrics that resemble the empirically determined corresponding metric in
the reference Java code of the prior example.

References and Dependencies

Fig. 5 show chord chart representations of method calls in three different object-
oriented programs. In this chart each line represents a method call and the line end
points represent calling and called method. Methods are clustered in blocks that
represent the classes that contain them. The first program was randomly generated.
We chose the called method for each method call uniformly from the set of all methods
within the program. Hence, each class has a similar relative number of expected depen-
dencies to each other class, including the calling class. The code taken from an actual
program (again, the same EMF-fragments code as before) shows a different distribu-
tion. Calls of methods within the containing class are more likely and furthermore calls
of methods within in certain other depending classes are more likely than calls of meth-
ods of other less depending classes. The last chart shows generated code gain. Now, we
changed our generator to emulate the reference distribution of actual Java code. We do
not chose methods uniformly from all methods, but put higher probability on methods
of the calling class and of depending classes.We pseudo randomly chose pairs of depend-
ing classes based on the similarity of the hash code of their corresponding EMF objects.

5 Conclusions

We presented the domain specific language rcore and a corresponding compiler that
aids clients in the development of generators that automatically create instances of
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given Ecore meta-models based on a set of generator rules. These parameterizable
rules can be used to control the generation of model elements with random variables of
certain probabilistic distributions. This gives clients randomness and configurability as
means in their efforts to create instances of their ecore meta-models that are potentially
unbiased, have a certain shape, and yet mimic real world models. Furthermore, rcore
allows to describe arbitrary large models with a small set of generator rules. Rcore’s
simple operational semantics of one executed element generating rule calling other ele-
ment generating rule should lead to linear time complexity in the number of generated
elements, unless the user defined functions used to determine the concrete feature
values for the generated elements introduce higher complexities. Therefore, the actual
amount of achieved bias, real world mimicry, configurability, and scalability depends
on concrete generator descriptions. As future work, we need to create a larger set of
case study generators and evaluate these generators for the proposed characteristics.
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Abstract. Domain-specific modelling is increasingly adopted in the soft-
ware development industry. While open source metamodels like Ecore
have a wide impact, they still have some problems. The independent
storage of nodes (classes) and edges (references) is currently only possi-
ble with complex, specific solutions. Furthermore the developed models
are stored in the extensible markup language (XML) data format, which
leads to problems with large models in terms of scaling.
In this paper we describe an approach that solves the problem of inde-
pendent classes and references in metamodels and we store the models
in the JavaScript Object Notation (JSON) data format to support high
scalability. First results of our tests show that the developed approach
works and classes and references can be defined independently. In ad-
dition, our approach reduces the amount of characters per model by a
factor of approximately two compared to Ecore. The entire project is
made available as open source under the name MoDiGen. This paper fo-
cuses on the description of the metamodel definition in terms of scaling.

Keywords: Metamodel definition, JavaScript Object Notation, JSON,
Model scalability, Metamodel scalability, Model storage

1 Introduction

Tools for creating Domain-Specific Modeling Languages (DSML) are becoming
more accepted in the software development industry to develop specific solutions
for specific problems. These solutions are developed with tools such as Xtext[5],
Meta Programming System (MPS)[6], MetaEdit+ Modeler[7], Kybele[8], Mag-
icDraw[9] or Eugenia[10]. The underlying metamodel of the tools is of crucial
importance, because it serves as basis for all subsequent steps like code gener-
ation or programatic manipulation of the model data. Therefore, access to the
metamodel has to be very simple and the memory consumption should be as
low as possible.

Only if the metamodel is maintained at a high abstraction level, the subse-
quent programmatic processing can be implemented simple, clean, and clear like
it is suggested by the KISS-principle (”Keep it simple, stupid”). However, exist-
ing open source tools cover only the needs of specific subject areas such as the
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software development industry. Requirements of very complex metamodels for
instance the statics of buildings can currently only be fulfilled through complex
detours. Not considering commercial solutions, because they do not give insight
into the structure of their metamodel and storage solution, another common
problem is the storage consumption of very large models. Furthermore, a great
weakness of existing open source solutions such as Ecore[1] is, that they do not
scale well to very large models.

Our suggested approach allows the definition of metamodels in a simple and
clear way. We offer the possibility, that nodes (classes) and edges (references) can
exist independently and with equal rights. This leads to a variety of possibilities
in the creation of metamodels. In addition, the data of metamodels and models is
held in the JavaScript Object Notation (JSON)[17] file format. This allows the
smooth scaling of the model data using existing solutions such as CouchDB[14],
MongoDB[15], and RavenDB[16].

We demonstrate, that the storage of metamodels and models is possible with-
out problems, even when involving well over 10,000 elements (classes and refer-
ences).

The paper first reviews related work in the field in section 2, which is mostly
other tools and techniques for the definition of meta models. Our general ap-
proach for the definition of meta-models based on JSON for high scalability is
described in section 3. The core contribution of this publication is the developed
metamodel with independent classes and connections and the data structure us-
ing JSON to store models for high scalability. Section 4 illustrates the results of
our approach from different angles. Finally, we summarise the limitations of our
research and draw conclusions in section 5.

2 Related Work

The Ecore metamodel of the Eclipse Modeling Framework (EMF) stores edges
as parts of nodes. An EReference actually models one end of an edge [1]. This
is also true for the Generic Modeling Environment (GME) [2] and WebGME
[3]. The disadvantages of this approach were already discussed in [11]. Storing
edges as parts of nodes does not scale well for large numbers of edges. Accessing,
loading and saving individual edges requires linear time and may pose a prob-
lem in terms of heap memory. As an alternative, [11] proposes storing edges as
relations like a relational database, separating the edge from the node. That is
the same basic principle we follow. Instead of an SQL-like structure as proposed
in [11], we introduce the edge as a first-level-object that is stored in a NoSQL
database.

The Ecore metamodel uses an Extensible Markup Language (XML) based
format for model serialization [1]. The need for a model serialization format that
is not based on XML was formulated in [12]. While our approach does not satisfy
all the criteria for model storage set forth in that paper, we believe that JSON
as the basic format for model storage will simplify implementing these criteria.
A diagram is stored as a collection of JSON objects which can be addressed
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through an identifier. Instead of loading large models all at once, objects could
be loaded as needed using their identifier. The partial loading of model data
based on JSON is covered by databases like CouchDB or MongoDB. An XML-
based format would always have to be loaded in full apart from approaches such
as partial parsing which significantly increases the runtime.

Approaches such as GEMSjax [4] or EMF-REST [19] provide Representational
State Transfer (REST) access to Ecore models and translate them into either
JSON or XML. Compared to a method that stores JSON data in a document
oriented database, these approaches require additional overhead, as the Ecore
model has to be serialised into the target format on each call to the REST
interface.

3 Approach

In this section we will give a detailed explanation of our approach. First we
discuss and reason about the architecture of our metamodel and its components
and then present an example.

3.1 Architecture

An overview of the MoDiGen metamodel architecture is given in Figure 1. The
design is focused on universality and simplicity. We utilise standard conform
JSON to store both model and instance data. This helps us to achieve program-
ming language agnosticism and scalability. In the following paragraphs we will
discuss the architecture depicted in Figure 1 and the corresponding metamodel
components in detail.

+ name: String

<<abstract>>
M_OBJ

+ upperBound: Int
+ lowerBound: Int

<<abstract>>
M_BOUNDS

+ abstract: Bool
+ superTypes: List[M_CLASS]
+ inputs: List[M_LINK_DEF]
+ outputs: List[M_LINK_DEF]

M_CLASS

+ type: M_CLASS | M_REFERENCE
+ deleteIfLower: Bool

M_LINK_DEF

+ globalUnique: Bool
+ localUnique: Bool
+ default: Type
+ constant: Bool
+ singleAssignment: Bool
+ expression: String
+ type: Scalar | M_ENUM
+ ordered: Bool
+ transient: Bool

M_ATTRIBUTE

+ values: List[Skalar]
M_ENUM

attributes

attributes

+ sourceDeletionDeletesTarget: Bool
+ targetDeletionDeletesSource: Bool
+ source: List[M_LINK_DEF]
+ target: List[M_LINK_DEF]

M_REFERENCE

Fig. 1. MoDiGen Metamodel

M Obj is the abstract base class of most of the metamodel’s components. Its
use is to provide a name attribute to all components that need to be identifiable.
The name attribute is guaranteed to be unique on a model scope.

M Bounds is abstract and defines upperBound and lowerBound attributes.
Bound values can either be zero, a positive Integer, or -1 for infinity. By defining
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an upper as well as a lower bound, one can model maxima, minima, as well as
ranges. By default lowerBounds are set to 0 and upperBounds to -1.

The modelling of attributes in nodes and edges is done using M Attribute.
It extends M Bounds so it can be defined to either be single-valued or an array
with an optional maximum and/or minimum length. To further define its be-
haviour a number of mandatory attributes exist which will be discussed now. If
uniqueLocal is set to true the M Attribute behaves much like a Set data structure,
for it is a collection which can not contain any duplicate values. The uniqueGlobal
flag in contrast, guarantees that the attribute’s values are unique on a model
scope. This may be useful for modelling attributes like Social Security Num-
bers. The default attribute is a value of type and defines the initial value of the
M Attribute. Using expression one can define a simple arithmetic formula to
derive the value of the attribute. This renders the attribute read only and can
be useful in cases where one attribute depends on other attributes. Whether the
M Attribute is a String, Integer, Double, or Enum is defined by setting the type
attribute. The ordered flag defines whether the attribute’s values are ordered in
some fashion. The attribute transient determines whether the attribute is tran-
sient. If set to true the attribute’s value won’t be stored when the model is being
saved to a database. This might be useful for attributes which are the result of
an expression. Single Assignment behaviour can be modelled by setting the sin-
gleAssignment flag, this causes the value to be settable exactly once. Constant
on the other hand means that the value is default and may never be changed.

Nodes are modelled using M Classes, which in addition to a number of
mandatory attributes may contain an arbitrary number of user defined at-
tributes. The mandatory attributes are defined in the following manner. Ab-
stract denotes whether the M Class is declared as abstract, meaning it may not
be instantiated but only be used as a base for other M Classes. Inheritance be-
tween M Classes is modelled using the superTypes attribute. It contains all direct
predecessors. By defining superTypes as a list we explicitly allow multiple inher-
itance. The inputs attribute is a list of all incoming M Link Defs and outputs
is a list of all outgoing M Link Defs. On the other side M Reference also has a
target and source attribute which behaves like inputs and outputs.

M Link Def is used to define one endpoint of a connection and has a type
attribute which is either M Class or M Reference as well as an upper- and lower-
bound. The flag deleteIfLower defines whether the M Class and M Reference
which contains the M Link Def should be deleted in case the number of values of
the M Link Def drops to its lower bound. This means one can model a minimum
count of Output/Input or Source/Target values a certain Class or Reference must
have of any type.

An M Reference denotes an edge between two M Classes. By defining ref-
erences as first-level classes our metamodel gains a couple of powerful modelling
possibilities. For example edges may have an arbitrary number of custom at-
tributes and allow n:m relationships. A set of standard attributes also exists
which will be defined now. With sourceDeletionDeletesTarget set, in case the
source of the M Reference is deleted, the target, and the reference itself is also
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deleted. Accordingly targetDeletionDeletesSource deletes the source and the ref-
erence in case the target is deleted. This can be useful to model containments
and similar constructs where one end of a reference can not exist without the
other end. The source attribute is a list of sources and the target attribute is a
list of targets of the M Reference. Both have the Type M Link Def, therefore
M References can be defined to be valid for a number of different source- and
target-classes with dedicated bounds for each class in both directions. For ex-
ample one can define an edge to be valid from A to B or C and further specify
separate bounds for the number of edges from A to B or A to C as well as
separate bounds for the number of Bs, Cs, and As involved in those edges.

Finally M Enum is a simple Enum of a scalar type and might be used as a
type for attributes.

3.2 Example

To demonstrate the capabilities of our metamodel, we will consider the following
(oversimplified) family tree model. Three M Classes, Person, Male, and Female
exist, where Male and Female inherit from Person and Person is abstract. The
following relationships exist between these classes: The Relationship isHusband
has a Male source and a Female target, while the reverse relationship isWife
has a Female source and a Male target. The Male class also has a relationship
isFather, directed at Person and the Female class has the corresponding isMother
relationship, also directed at Person. Figure 2 illustrates the setup.

Male Female

+ FirstName: String
+ SocialSecurityNumber: String
+ Birthday: String

Person

isMother

isFather

isHusband

isWife
1

1

0…1

0…1

1

**

1

Fig. 2. Family Tree Model

Listing 1.1 is taken from the compressed familytree model and represents the
M Class Male. The mtype property is necessary because JSON has no type sys-
tem and so this property is needed to declare that this is an M Class. The inputs
and outputs properties are M Link Defs linking to the respective M Reference
and indicating that at most one such relationship is allowed for one instance of
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this M Class. Because Male inherits all its attributes from Person mAttributes
is empty.

1 "Male ": {

2 "mType": "mClass",

3 "name ": "Male ",

4 "superTypes ": ["Person"],

5 "mAttributes ": [],

6 "inputs": [

7 { "type ":"isWife",

8 " upperBound ": 1,

9 " lowerBound ": 0

10 }

11 ],

12 "outputs ": [

13 { "type ":"isHusband ",

14 " upperBound ": 1,

15 " lowerBound ": 0

16 },

17 { "type ":"isFather ",

18 " upperBound ": -1,

19 " lowerBound ": 0

20 }

21 ]

22 },

Listing 1.1. The Male M Class taken from the Family Tree example model

An M Reference is given in listing 1.2. This is the isHusband M Reference
linking the Male source to the Female target. The isHusband reference links
exactly one Male object to one Female object.

1 "isHusband ": {

2 "mType": "mRef ",

3 "name ": "isHusband ",

4 "mAttributes ": [],

5 "source": [

6 { "type ":"Male ",

7 " upperBound ": 1,

8 " lowerBound ": 1

9 }

10 ],

11 "target": [

12 { "type ":"Female",

13 " upperBound ": 1,

14 " lowerBound ": 1,

15 }

16 ]

17 }

Listing 1.2. The isHusband M Reference taken from the Family Tree example model
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We instantiate this model with three persons. A Male instance and a Fe-
male instance, who are married to each other (using the isHusband and isWife
references) and another Male, who is the child of the other two.

Listing 1.3 shows part of the JSON of an instance of the family tree model.
Specifically it shows one instance of the Male class and one of the isHusband
Reference. The complete JSON source for both the model and the instance can
be found at MoDiGen[13].

1 "846 bc8a2 -00fc -401f-b626 -0 b0252516aee ": {

2 "mClass": "Male ",

3 "outputs ": {

4 "isFather ": ["8e9b1093 -a589 -4ae4 -8e1e -1 b3d63a3f842 "],

5 "isHusband ": ["ee204744 -6322 -49 d4 -928e -1442 e8bc70c4 "]

6 },

7 "inputs": {

8 "isWife": ["666 d4de7 -e0f2 -4620 -8 c19 -d5469b40be1f "]

9 },

10 "mAttributes ": {

11 "First_Name ": ["Hans "],

12 "SocialSecurityNumber ": ["12"],

13 "Birthday ": ["12 -02 -2015 "]

14 }

15 },

16
17 "ee204744 -6322 -49d4 -928 e -1442 e8bc70c4 ": {

18 "mRef ": "isHusband ",

19 "source": {

20 "Male ": ["846 bc8a2 -00fc -401f-b626 -0 b0252516aee "]

21 },

22 "target": {

23 "Female": ["a264a43b -6f97 -4257 -9243 - baddbf745490 "]

24 }

25 }

Listing 1.3. Family tree instance

4 Evaluation

The presented approach makes it possible to create nodes and edges with equal
rights. This results from the revised metamodel definition which is crucial for pro-
grammatic processing of the model data. The storage of metamodel and model
information is done using JSON. This allows for easy integration and processing
by conventional programming languages and web technologies. Furthermore, the
number of characters and therefore the storage consumption for metamodel def-
initions and model instances was reduced, compared to the XML data structure
of Ecore, by separating edges and nodes, and by using JSON.

The change of the number of characters based on the metamodel definition
of the familytree example is shown in Figure 3. It turns out that the number
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Fig. 3. Number of characters for the Familytree Metamodel

of characters were consistently reduced when compared to Ecore. The biggest
difference can be revealed by removing white spaces. This comes at the expense of
human readability but is irrelevant for machine processing. By removing default
values a further reduction was achieved. Ecore applies these measures by default.

The development of the number of characters based on the model instance,
depending on the number of nodes is shown in Figure 4. This is based on the
smallest possible model instances (without whitespace and default values) for a
model where all nodes are interconnected. It can be seen, that for smaller models
the Ecore approach is more appropriate, but for larger models the presented
approach has advantages. This is mainly caused by the changed handling of
connections between objects. If only few connections are present in a model
the advantage of our approach relativizes. We generated model instances with
10,000 interconnected nodes for Ecore as well as MoDiGen and found that the
storage consumption of Ecore was 5,58 Gigabyte and the storage consumption
of MoDiGen was 3,6 Megabytes.

Our approach has advantages regarding the scalability of big models. This
is mainly due to the used data structure implemented in JSON. Data formats
like JSON can easily be horizontally scaled using existing database solutions like
CouchDB, MongoDB or RavenDB. This is additionally favoured by the lower
memory consumption of the developed metamodel. In contrast to XML-based
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data structures the JSON based data structure offers the possibility to access
just parts of the stored model.

5 Conclusion and future work

We have introduced the MoDiGen metamodel and shown how its approach differs
from other metamodels for DSMLs, such as Ecore or GME. Treating edges as
first level objects instead of features of nodes allows for easy programmatic access
to the edges. The use of JSON yields more compact models than XML, allows
for seamless integration into web applications using JavaScript, and opens the
door for improvements regarding scalability.

In comparison to Ecore, the MoDiGen metamodel lacks the possibility to de-
fine operations. While in the Ecore itself, EOperation is more of a placeholder, it
can be given an implementation in the context of the Eclipse Modeling Frame-
work. Edges as first level objects give easier access to references and permit the
existence of stand-alone edges. However, this also means that the modeller has to
explicitly state whether an edge must be automatically deleted upon the deletion
of one of the connected nodes. This is not a problem in Ecore where references
are deleted when the containing class is deleted. In its current form, the JSON
representation of MoDiGen models still contains code that could be removed.
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For example, attributes that have their default value or empty properties are
still in the JSON. The JSON representation could be significantly compressed
by removing that code.

In the future, we plan to implement a complete modeling framework on the
basis of this metamodel and work on improving the JSON representation in
terms of size. We will also use the MoDiGen metamodel for code generation
projects. Furthermore, we plan on extending the metamodel to allow specifica-
tion of constraints using the Object Constraint Language (OCL)[18].
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Abstract. Model-Driven Engineering (MDE) promotes the use of mod-
els to conduct all phases of software development in an automated way.
However, for complex systems, these models may become large and un-
wieldy, and hence difficult to process and comprehend. In order to alle-
viate this situation, we explore the combination of model fragmentation
strategies, to split models into more manageable chunks; and model ab-
straction and visualization mechanisms, able to provide simpler views of
the models. The feasibility of this combination is confirmed based on an
evaluation over a synthetic models, and the model sets of the GraBaTs’09
contest.

Keywords: Model-Driven Engineering, Model Scalability, Model Frag-
mentation, Model Visualization, Model Abstraction.

1 Introduction

Model Driven Engineering (MDE) promotes a model-centric approach for soft-
ware development, where models are used to specify, design, test, and generate
code for the final application. While models abstract details of the real system
they represent, they may become large and unwieldy and therefore difficult to
understand and process. Therefore, methods to cope with large models are key
for a wider adoption of MDE in indutrial practice [6].

As a step in this direction, we present techniques, backed up by tools, for the
scalable exploration and processing of large models. First, we show a method
to specify strategies for fragmenting models. Taking inspiration from the way
programming languages organize projects, our strategies organize a model as
a project, which then can be divided into folders and files. Such strategies are
specified over the meta-model, as “annotations” of the different classes [2].

Second, we present a method for the visual exploration of models. The
method is based on filtering and abstracting models according to certain strate-
gies, so that only a few nodes in the focus of interest are fully displayed, while
others are aggregated into “abstract nodes”. Then, different ways are provided

⋆⋆ Authors listed in alphabetical order.
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to navigate through abstract nodes to the submodels they contain. Compared
to fully representing a model on the screen, our approach permits higher space
scalability (as fewer nodes are represented), but requires from algorithms to
compute and navigate the abstractions.

We evaluate the approaches for large models and show how to combine them
on the basis of two case studies. The first one is based on a synthetic generation
of models, but based on a real case study of an EU project1. The second one is
based on the large models (up to 5 million objects) provided by the GraBaTs’09
competition case study2. As a lesson from these experiments, we conclude that
our visual exploration gives reasonable abstraction times (∼ 2 secs.) for models
up to roughly 10.000 objects. Beyond that point, even for a one-shot exploration,
it is advisable to first fragment the model, and then apply the visual exploration.

The rest of the paper is organized as follows. Section 2 describes a method
and tool support to define model fragmentation strategies. Section 3 introduces
some techniques and support for model visualization and exploration. Section 4
evaluates the approaches with the two experiments. Section 5 compares with
related research and Section 6 concludes.

2 Fragmenting models

We propose fragmenting models, following modular principles adopted by many
programming languages and IDEs [2]. Therefore one model is organized as a
Project. The model can then be fragmented into Packages (which are mapped to
folders in the file system), which may hold Units (or these can be placed directly
inside a project).

This kind of hierarchical organization permits structuring or defining different
ways to fragment a model. Fragmentation strategies are specified at the meta-
model level, where the different classes can be tagged as Project, Package and Unit,
giving rise to different possible model organizations. Conceptually, the different
model organizations are configured by instantiating the meta-model shown at
the top of Figure 1, and then mapping such instantiation to the meta-model to
which we want to apply the fragmentation strategy.

Figure 1 shows the application of the pattern to the Java JDTAST meta-
model. In this case, the IJavaModel class is mapped to Project. The IJavaProject

class is tagged as Package, this is possible because there is a composition relation
from IJavaModel (the project) to IJavaProject, as the patterns demands by means
of relation javaProjects. Another composition relation between IJavaProject and
IPackageFragmentRoot allows classes which inherit from the latter (BinaryPackage-

FragmentRoot and SourcePackageFragmentRoot) be tagged as Package. Finally, both
IClassFile and ICompilationUnit are instantiated as Unit.

We have built tool support to apply such fragmentation strategies and to
produce a modelling environment that splits monolithic instances of the meta-
model according to the fragmentation strategy and supports the creation of mod-

1 http://mondo-project.org
2 http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs_2009_Case_Study
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Fig. 1: Pattern to describe the modular structure of a meta-model (top). Appli-
cation to the JDTAST meta-model (bottom).

els according to such organization. Our tool is called EMF-Splitter, it is built
atop of Eclipse and freely available at http://antoniogarmendia.github.io/
EMF-Splitter/. Figure 2 shows the generated modelling environment. The en-
vironment shows an Eclipse project, named Projectset0, created from the model
set0.xmi of the GraBaTs’09 contest. The project explorer shows the structure
of folders and files generated from the model, which follows the specified frag-
mentation strategy. To the right, a tree editor shows the content of one file.
The original model has about 70.000 model elements, while the fragmentation
strategy fragments it into 1.800 files.

3 Exploring models

When working with models it is very useful to explore them to get some insight
using our intuition, to analyse its different parts, or to find unusual or interesting
features. However, big models are impossible to be completely represented in a
computer monitor. Exploring models through the default tree editor of EMF is
also cumbersome, as it lacks facilities to visualize, search and navigate. Moreover,
many times, models lack a dedicated graphical editor providing visualization and
exploration services.

To solve these problems we have developed a tool called SAMPLER (ScAlable
Model exPLorER). It offers several features to visualize big models in the form of
graphs, such as focusing on a specific point of the graph or making some general
abstractions over the model before painting it. It allows to navigate along the
visualization and even search a node through the whole model. The tool permits
exploring models for which no concrete syntax has been defined, as it uses a
default graph-based representation.
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Fig. 2: Generated environment.

The main goal of SAMPLER is to draw the model without painting every
element on the screen. For this purpose we have developed a composition strategy
where we combine different kinds of abstractions which, executed in sequence,
give a fast and compact view of the model. There are two basic operations in
SAMPLER to make a model more readable: removing elements from the view,
and grouping some elements in a big composite element. When we decide to
remove an element, we can not view it when exploring the model, but when
we compact some elements into one bigger node, we can expand it and explore
the smaller elements as we wish. These operations are applied in three different
steps:

– Filters: the first step to make our visualization easier is to apply some
kind of filter. In many EMF models there are many intermediate objects,
which may not provide the user with meaningful information, but they are
technically needed to make the model conform to the meta-model. Hence,
SAMPLER provides mechanism to select and filter those undesired objects,
removing them from the view. When an object is filtered out, its incoming
references are composed with its outgoing ones, so that the connectivity of
the model is preserved.

– Global abstraction strategies: after filtering, there are others groups of
elements which may share properties of interest, and hence it makes sense to
cluster them into abstract nodes. This kind of composite operation is what
we will call global abstraction. There are many possibilities to create a global
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abstraction strategy. For example, we can unify the leaves of the containment
tree of the model or we can use some cluster algorithms (like k-means).

– Local abstraction strategies: the last step of the SAMPLER abstraction
strategy is what we call local strategies. After applying the previous steps, we
may still have thousands of elements to draw, so that it is impossible to read
anything on the screen. In this case, our approach is to focus on a part of the
model at once. The local strategies focus the visualization in some point of
the model (a set of elements that the user can choose), fully displaying the
elements around that point, and compacting the other elements into abstract
nodes. These abstract nodes do not take much space in the screen, but are
explorable.

These three kinds of steps are put together to create visualization algorithms,
which create a drawing of the model. In SAMPLER, we offer some basic algo-
rithms, like just performing a global abstraction, or just a local one. These basic
algorithms can be composed, and new algorithms can be incorporated by imple-
menting a dedicated extension point.

Further than the visualization algorithms, SAMPLER provides a navigation
utility. It allows, once a model has been painted on the screen, to navigate
through the model. There are three navigation options:

– It is possible to expand a compacted abstract node so that, in the same
screen, the first elements of the abstract node are shown together with the
others elements present in the view.

– It allows to open an abstract node in another window and apply a common
visualization algorithm to view this part of the model.

– It is also possible to open a new window with the containment subtree of an
element of the model. As in the last option, in this new window, a common
algorithm can be used to view the subtree.

Finally, SAMPLER offers a search functionality. It uses the filters algorithms
described before, and allows to dynamically define different criteria for searching.

All these functionalities and tools have been implemented in a Eclipse plug-
in available at http://rioukay.github.io/sampler/. The main elements in-
cluded in the plug-in are the different Eclipse views (see Figure 3):

– The View Preferences view allows to change the configuration of the visu-
alization algorithm that is being using at that moment. It also gives the
possibility to change between the existing visualization algorithms.

– The Node Information view shows the information of the elements that have
been clicked on in the canvas. If the node clicked is an abstract node, then
it shows the information of its contained elements.

– The Filter Information view allows to add and configure additional filter
steps to the end of the algorithm.

Figure 3 shows an example of how SAMPLER works. We can see the diagram
visualization of the model where we have applied a local algorithm that shows the
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Fig. 3: Exploring a model with SAMPLER

Fig. 4: Preview of the “Preferences View” of SAMPLER

root of the model (node WT ) and the five nearest elements of the containment
tree. The other elements are compacted according to their parents in that tree.

Each box in the diagram represent an element of the abstracted model. The
blue boxes correspond to simple elements of the model and the brown ones
are abstract nodes. There are two kinds of arrows connecting the nodes of the
diagram: dot arrows represent references, and line arrows represent containment.
Just below the canvas, we can see the views that we have described. Figure 3
shows the “Node Information” view. To the right we see the elements of the
model contained in the selected compacted node (the yellow box in the diagram).
To the left we show the attributes of the element selected on the right side of
the view.

Figure 4 shows how the “View Preferences” view looks like. To the left we
give the option to modify the generic options of the visualization and choosing
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the abstraction algorithm. To the right, we allow changing the configuration of
the algorithm. In the example, with the local algorithm, we can choose how
many elements to show near the root, and which element of the model is the
root of the visualization.

4 Evaluation

Next, we evaluate the performance of our tools to deal with large models. Our
intention is to analyse to what extent large models can be explored with SAM-
PLER. When models become difficult to be visualized with the tool, we will
fragment them first, using a fragmentation strategy, so that the smaller chunks
can be visualized individually. Hence, we also perform an experiment to give an
account for the incurred cost of fragmentation.

In all our tests, we used the following environment:

– Execution environment:

• Operative System: Windows 7 Professional Service Pack 1.

• Processor: Intel(R) Core(TM) i7-2600, 3.40GHz

• RAM: 12 GB

– Java Virtual Machine Configuration:

• Execution environment: Java SE 1.8 (jre1.8.0 40 )

• Initial memory: 512 MB

• Maximum memory: 8 GB

4.1 Exploration performance

In this experiment, the goal is to check the performance of some of the SAM-
PLER abstraction strategies for large models. We generated models using an
EMF random instantiator from the ATLANMOD team3. We used a meta-
model taken from a case study of the EU project MONDO4 in the domain of
component-based embedded systems. We created 500 test models of each size.
The sizes we have tested go from 100 to 6.000 model elements.

In each test, we have taken four measures, the time taken to read the model,
and the time of execution of three of SAMPLER basic algorithms. Those algo-
rithms are:

– A global algorithm that creates only one composite node with all elements
inside it. This is a measure of how much time SAMPLER takes to explore
the whole model (compactification algorithm)

– A global algorithm that explores the whole model detecting the leaves of the
containment tree and compact them (global algorithm)

– A local algorithm that, given an object of the model, shows this element and
n of its neighbours while the others are compacted (local algorithm).
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Fig. 5: Performance (ms) of the different algorithms of abstraction. From left to
right: local algorithm, global algorithm and compactification algorithm.

The graphics in Figure 5 show that every algorithm takes a reasonable time
to execute (no more than 10 seconds for 6.000 elements in the model) and that
the local and global algorithm takes a quadratic polynomial time to execute.

After this synthetic tests, we have executed the same algorithms in the same
conditions over the two first sets of JDTAST models of the GRaBaTs competi-
tions, which have a larger size. Table 1 shows the results of the experiment for the
three algorithms together with the estimation from the run of the smaller tests.
As it can be noted, the time required to create the abstraction of the model is
more than 25 minutes with the set0 model and more than 5 hours with the set1
model. Those times are not acceptable, and hence we resort to the application
of another pre-drawing techniques, such as fragmentation strategies. The next
subsection discusses on its performance.

Model
Local Algorithm Global Algorithm Compactification
Measure Estimation Measure Estimation Measure Estimation

set0 1.527.543, 80 82.280, 29 1.224.024, 6, 786.525, 93 778, 8, 745, 04

set1 20.596.201 611.014, 12 13.689.961, 00 6.126.755, 18 2.080, 00 2.096, 68

Table 1: Performance (ms) of SAMPLER over some JDTAST models.

4.2 Fragmentation performance

Next, we evaluate the performance of model fragmentation. Figure 1 shows the
fragmentation strategy that was applied to the JDTAST meta-model. After the
application of the modularity pattern, we split all the models found in the Gra-
BaTs’09 case study, turning each one of them into an Eclipse project.

Table 2 shows the results of our experiment. The columns depict the split
time, merge time (merging all files of a fragmented model into one file), gener-
ated number of files, mean and maximum number of elements of each fragment,

3 http://modeling-languages.com/a-pseudo-random-instance-generator-for-emf-models/
4 http://www.mondo-project.org
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Model Split time Merge time # files Avg Max # model elements

set0 94.362, 04 7.808, 04 1.779 40, 17 1.322 71.458

set1 231.143, 78 37.847, 10 6.240 32, 68 4.549 203.938

set2 544.609, 02 83.905, 74 6.050 345, 27 50.718 2.088.890

set3 747.739, 30 199.811, 98 4.460 1.031, 24 50.718 4.599.358

set4 808.351, 00 511.554, 59 5.068 980, 04 50.718 4.966.846

Table 2: Performance (ms) of EMF-Splitter over the test-cases of GraBaTs’09.

and the total number of elements in the whole model. We can observe that the
maximum number of elements in a file is repeated for set2, set3 and set4. This
happens because this group of models was built by adding java classes incre-
mentally. For example, set2 is formed by set1 and the addition of some java
packages.

The results shows that, in average the exploration of the files with SAMPLER
would become easier, because the largest average size is about 1.000 elements
(which are easily explorable), while the maximum number of elements in a file
is 50.718, which would take about a minute and a half to load.

5 Related work

In this section we focus on existing works dealing with model fragmentation, and
model exploration and visualization of large graphs.

Due to the need to process large models, some authors have proposed to
split models for solving different tasks. For instance, Scheidgen and Zubow [10]
propose a persistence framework that allows automatic and transparent frag-
mentation to add, edit and update EMF models. This process is executed at
runtime, with considerable performance gains. However, the user does not have
a view of the different fragments as we have in EMF Splitter, which could help
improving the comprehensibility of the fragments.

Other works [5, 11] decompose models into submodels for enhancing their
comprehensibility. For example, in [5], the authors propose an algorithm to frag-
ment a model into submodels (actually they can build a lattice of submodels),
where each submodel is conformant to the original meta-model. The algorithm
considers cardinality constraints but not general OCL constraints, and there is
no tool support. Other works use Information Retrieval (IR) algorithms to split
a model based on the relevance of its elements [11]. Therefore, splitting models
that belong to the same meta-model can produce different structures.

Other works directed to define model composition mechanisms [3, 4, 12] are
intrusive. These papers [3,12] present techniques for model composition and re-
alize the importance of modularity in models as a research topic to minimise the
effort. Strüber et. al [4] present a structured process for model-driven distributed
software development which is based on split, edit and merge models for code
generation.

Regarding model visualization, in [9], the authors propose a framework call
ELVIZ for model visualization, based on the transformation of input models
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to appropriate output formats. For example, given a class diagram, they can
extract the number of methods per class, and visualize such numbers as a bar
chart. ELVIZ facilitates the generation of input models to different visualization
outputs relying on mappings.

In [1], the authors present the tool Explen, which uses slicing techniques in
order to visualize large meta-models. Similar to our approach, it is possible to
focus on a given class, and select some slicing criteria (e.g., show the composition
relations only, show only a certain radius of classes, or show the sub/super type
hierarchy). They also include a flattening filter, which presents a hierarchy in
the form of a unique class. SAMPLER supports the visualization of models and
meta-models, and the abstractions/slice criteria are extensible. Moreover, we
support different navigation strategies from abstracted models.

The analysis of large graphs arising in e.g., social networks have produced
some summarization techniques, which try to encode in smaller graphs [7] or as
a variety of statistics [8] the main features of the large graph. For this purpose,
they find the most often occurring subtype graphs (cliques, starts, chains, etc) in
graphs. In the context of MDE, this information is encoded in the meta-model.
Other methods are more flexible, as they allow customization of the interesting
attributes of nodes [13], and nodes with similar values are summarized in a
single node. This would be similar to SAMPLERs global abstractions.

Altogether, to the best of our knowledge, our approach to combine model
fragmentation and model visualization techniques is novel.

6 Conclusions and future work

In this work, we have proposed the combination of model fragmentation and
model visualization techniques to explore large models. Model fragmentation is
performed by applying fragmentation strategies at the meta-model level. Model
exploration is done by applying different abstraction strategies to the model,
and with the availability of model exploration techniques. We have performed
an evaluation of the approach for large models. We have seen that for models in
the range of up to roughly six thousand elements, abstraction gives good results.
For large models, such as those of the GraBaTs’09, our proposal is fragmenting
them first. In this case, fragments become of manageable size, and then can be
visually explored.

In the future, we aim at the tighter integration of SAMPLER with the infor-
mation provided by the fragmentation strategies. In particular, when exploring
a fragmented model, we currently need to use the package explorer to move
between fragments. In the future, we would like SAMPLER to use the frag-
mentation information as a (global) abstraction algorithm. This way, fragments
would be explored transparently from within the SAMPLER visual canvas.

Acknowledgements. Work supported by the Spanish Ministry of Economy and
Competitivity (TIN2011-24139, TIN2014-52129-R), the EU commission (FP7-
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Abstract. Contemporary model query and transformation engines typ-
ically provide built-in facilities for retrieving all instances of a particular
type/kind regardless of their location in a model (i.e. OCL’s allInstances()).
When implemented in a naive manner, such facilities can be computa-
tionally expensive for large models. We contribute a novel approach for
implementing allInstances()-like facilities for EMF models, which makes
use of static analysis and metamodel introspection and we report on the
results of extensive benchmarking against alternative approaches.

1 Introduction

As models involved in MDE processes get larger and more complex[1, 2], model
query and transformation languages are being stressed to their limits [3, 4].
One of the most computationally-expensive operations that model query and
transformation engines support is the ability to retrieve collections of instances
of a particular type/kind regardless of their location in a model (i.e. OCL’s
allInstances()). In this paper we discuss existing strategies for computing such
collections of instances and we highlight their advantages and shortcomings. We
then contribute a novel computation strategy that makes use of static analy-
sis and metamodel introspection to pre-compute and cache all such collections
needed in the context of a query in one pass. We present an implementation
of the proposed strategy on top of an existing model query language (Epsilon’s
EOL [5]) and benchmark it against alternative computation strategies.

2 Background and Motivation

The majority of contemporary model query and transformation languages pro-
vide support for retrieving collections of all model elements that are instances of
a particular type/kind. For example, OCL, QVTr, ATL, and Acceleo provide the
built-in allInstances() operation which can be invoked on a type to return a set
containing all its instances (e.g. Person.allInstances()), Epsilon’s EOL provides
the getAllOfType() and getAllOfKind() operations, and QVTo the objects(type :
Type) and objectsOfType(type : Type) operations that operate in a similar way.

32



We collectively refer to all such operations as allInstances() in the remainder of
the paper.

For file-based EMF models, a naive strategy to implement allInstances() is to
navigate the in-memory model element containment tree upon invocation, and
collect and return all instances of the requested type. Repeatedly traversing the
containment tree to fetch all instances of the same type for multiple invocations
of the operation on that type is clearly inefficient, so the majority of model query
and transformation engines provide support for caching and reusing the results
of previous invocations of the operation (this is straightforward for side-effect
free languages but requires some additional book-keeping for languages that can
mutate the state of a model).

When a query (or a transformation) contains a large number of calls to
allInstances() for different types, instead of traversing the containment tree for
each of these calls/types on demand, it can be more efficient for the execution
engine to pre-compute and cache all these collections in one pass at start-up
instead (greedy caching). This can incur a higher upfront cost and increase the
memory footprint, however, for a sufficiently high number of invocations on
different types, it is very likely to pay off eventually – particularly as models
grow in size.

Overall, when more than one calls to allInstances() are made for different
types in the context of a query, the on-demand approach is sub-optimal in terms
of performance. On the other hand, if a query only calls allInstances() on a small
number of types (compared to the total number of types in the metamodel),
greedy caching is wasteful.

3 Program- and Metamodel-Aware Instance Collection

Given in-advance knowledge of the metamodel of a model, and the types on which
allInstances() is likely to be invoked in the context of a query (e.g. obtained
through static analysis of the query itself) operating on that model, in this
section we demonstrate how a query execution engine can efficiently pre-compute
and cache the results of only these invocations by traversing the contents of the
model only once.

We demonstrate the proposed algorithms and their supporting data struc-
tures with reference to a concrete OCL-like query language (Epsilon’s EOL).
For conciseness, we also restrict the discussion to EOL queries operating on a
single EMF-based model which conforms to an Ecore metamodel comprising
exactly one EPackage. However, the proposed approach is trivially portable to
other query and transformation languages of a similar nature, and to queries
that involve more than one models conforming to multi-EPackage metamodels.

3.1 Cache Configuration Model

Figure 1 demonstrates a data structure (in the form of a metamodel), an instance
of which needs to be populated at compile-time (e.g. by statically analysing the
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Fig. 1. Cache Configuration Metamodel

query of interest and by introspecting the metamodel of models on which it will
be executed) in order to facilitate efficient execution of allInstances() at runtime.

CacheConfiguration acts as a container for the EClasses of the model’s meta-
model that the engine may need to retrieve all instances of in the context of the
query of interest. EClasses of interest can be linked to a CacheConfiguration
through the latter’s allOfKind and allOfType references (EOL, like QVTo, sup-
port distinct operations for computing all direct and indirect instances of a given
type). We intentionally refrain from discussion the traverse reference in Figure
1 for now.

3.2 Query Static Analysis

The first step of the process is to generate an initial version of the cache configu-
ration model by statically analysing the query of interest. Figure 2 demonstrates
the type-resolved abstract syntax graph of the example EOL program illustrated
in Listing 1.1, which operates on models conforming to the metamodel of Figure
3. To compute the initial version of the cache configuration model we need to
iterate through the abstract syntax graph and locate instances of:

– MethodCallExpression for which the name of the method called is allOfKind,
allOfType, allInstances (alias of allOfKind()), the resolved type of their tar-
get expression is ModelElementType, and which have no parameter values;

– PropertyCallExpression for which the name of the property is all (alias of
allOfKind()), and the resolved type of their target expression is ModelEle-
mentType.

Listing 1.1. An example EOL Program

1 WebPage.allOfType().println();

2 Member.allOfKind().println();

Having identified the calls of interest, we construct a new CacheConfiguration
and for each call to allOfType() we create an allOfType link to its respective
EClass. Similarly, for all other calls of interest we link the respective EClasses
to the cache configuration via its allOfKind reference. The initial extracted cache
configuration model for our running example is illustrated in Figure 5.
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Fig. 2. The Abstract Syntax Graph of the EOL program of Listing 1.1

Fig. 3. The University Metamodel Fig. 4. The University Model

3.3 Containment Reference Pruning

Following the process discussed above, the execution engine can now be aware
of all the allInstances() collections it needs to pre-compute and cache (Web-

Fig. 5. Initial Extracted Cache Configuration Model
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Page.allOfType() and Member.allOfKind() in our running example). The next
step is to collect the model elements of interest in one pass and as efficiently
as possible. A straightforward collection strategy would involve navigating the
entire model containment tree, assessing whether each model element is of one
of the types of interest and, if so, adding it to the appropriate cache(es).

However, by inspecting the example model in Figure 4, we observe that
traversing the containment closure of the modules reference of the “Computer
Science” Department model element is guaranteed not to reveal any model el-
ements of interest (according to the metamodel of Figure 3 modules can only
contain lectures and neither of these types of elements are of interest to the
query). This observation can be generalised and exploited to prune the subset
of the containment tree that the engine will need to visit in order to populate
the caches of interest.

To achieve this we need to analyse the metamodel and compute the subset
of containment references that can potentially lead to elements of interest. The
proposed algorithm is illustrated in Algorithm 1. Please note that the algorithm
has been simplified for presentation purposes and that implementations of the
algorithm need to make use of memoisation to avoid infinite recursion that can be
caused by circular containment references of no interest. Adding the computed
containment references that need to be traversed at runtime to the (incomplete)
cache configuration model of Figure 5, produces the (complete) configuration
model of Figure 6.

3.4 Instance Collection and Caching

Having computed the cache configuration model, the final step includes travers-
ing only the identified containment references of the in-memory model at runtime
in a top-down recursive manner to collect and cache the elements of interest.

For example, with reference to the example model of Figure 4, the instance
collection process starts at the top-level :University element. The element’s
EClass is not linked to the cache configuration via one of its allOfType or
allOfKind references, and as such the element is not cached. Navigating the uni-
versity’s departments reference reveals a :Department element, which also does
not need to be cached. The process does not need to navigate the department’s
modules reference as it is not linked to the cache configuration via the latter’s
traverse reference, and as such it proceeds with its members reference. Traversing
the members reference reveals an instance of Student and an instance of Staff,
both of which are cached in preparation for the Member.allOfKind() invocation.
Similarly, the webpage reference of :Staff is traversed and reveals a :WebPage,
which is also cached in preparation for the WebPage.allOfType() invocation.
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let cm = the initial version of the configuration cache model;
let p = the EPackage that the model conforms to;
let refs = empty list of EReferences;

foreach non-abstract EClass c in p do
foreach containment EReference r of c do

call shouldBeTraversed(r);
end

end

function shouldBeTraversed(r : EReference) : Boolean
let types = transitive closure of r ’s type and all its sub-types;
if types includes any of the EClasses in cm then

add r to refs;
return true;

end
else

foreach containment EReference tr of each of the types do
if shouldBeTraversed(tr) then

return true;
end

end
return false;

end
end

Algorithm 1: Containment Reference Selection Algorithm

Fig. 6. Complete Cache Configuration Model
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4 Evaluation

In this section we report on the results of benchmarks performed on four different
strategies for computing allInstances().

1. Lazy (on-demand) computation (L)
2. Greedy pre-caching (G)1

3. Type-aware pre-caching (T)2

4. Type-and-reference-aware pre-caching (TR)

Benchmarks were performed on a computer with Intel(R) Core(TM) i7 CPU @
2.3GHz, with 8GB of physical memory, running OS X Yosemite. The version of
the Java Virtual Machine used was 1.8.0 31-b13. Results are in seconds.

For our benchmarks, models of varying sizes obtained from reverse engineered
Java code in the 2009 GraBaTs contest3 are used. These models, named set0,
set1, set2, set3 and set4 (9.2MB, 27.9MB, 283.2MB, 626.7MB, 676.9MB respec-
tively) are stored in XMI 2.0 format and have been used for various benchmarks
for different tools [6, 7].

4.1 Model Element Coverage

To quantify model coverage in our benchmarks, we counted the number of ele-
ments in each data set and then automatically generated EOL programs which
exercise 20%, 40%, 60%, 80% and 100% of the total elements for each data set.
An example generated EOL program is provided in Listing 1.2.

We then executed all the generated EOL programs and measured perfor-
mance in terms of the time taken to load the models with the four different
strategies and the time taken to execute the programs.

Listing 1.2. An example of generated EOL program for model element coverage

1 var size = 0;

2 var methodInvocation = MethodInvocation.all.first();

3 size = size + MethodInvocation.all.size();

4 var qualifiedName = QualifiedName.all.first();

5 size = size + QualifiedName.all.size();

6 ...

7 size.println();

1 As discussed in Section 2, this approach naively pre-computes all possible allOfType
and allOfKind caches.

2 This approach makes use of static analysis as discussed in Section 3.2 but does not
prune containment references and as such it needs to visit the entire containment
tree at runtime. It is included in this benchmark only to assess the additional benefits
of containment reference pruning.

3 GraBaTs2009: 5th Int. Workshop on Graph-Based Tools, http://is.tm.tue.nl/

staff/pvgorp/events/grabats2009/
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4.2 Results

The obtained results are presented in Table 1. Initials L, G, T and TR rep-
resents the approaches aforementioned (Lazy, Greedy, Type-Aware and Type-
and-Reference-Aware). Since the execution time of the EOL programs for G,
T and TR is practically the same4, we only present one result for all three of
them under the * columns. Imp. represents the performance improvement of a
certain approach, Load represents the time it takes to load the models, whereas
Exec. represents the time it takes to execute the EOL programs. Finally, Total
represents the time it takes to load the model and execute an EOL program for
a single experiment.

From the benchmarks we observe that with the Greedy, Type-Aware and
Type-and-Reference-Aware approaches, programs execute significantly faster than
with the Lazy approach. These approaches require more time to load the models
due to the overhead incurred by their respective caching logic; such overhead
affects the performance for small data sets (set 0 in this case). However, as the
size of models gets larger, these approaches provide marginal benefits in terms
of the time it takes to load a model and to execute an EOL program (total
time). In general, TR provides better performance but for some cases in which
TR needs to visit elements deep in the containment tree, T and G marginally
outperform it. In terms of memory footprint, the three approaches behave very
similarly and incur a small linear overhead compared to L.

5 Related Work

Several database-based model persistence prototypes have been proposed for
persisting and loading large models, including Morsa [8], Neo4EMF [7], Mon-
goEMF [9], EMF Fragments [10] and Hawk [6]. The general idea behind these
prototypes is that they are able to load only the parts of a model that are needed
for the task at hand (e.g. to compute particular queries), so that large models can
be accessed efficiently both in terms of loading time and memory consumption.

Computing allInstances() in such systems typically does not require travers-
ing the entire model and can be achieved through efficient internal queries ex-
pressed in the underpinning database’s native query language (e.g. SQL, Cypher).
Despite the clear technical advantages of database-based technologies, there are
still valid reasons for using file-based formats (e.g. XMI) for model persistence in
certain contexts, such as standards-compliance, tool interoperability, and com-
patibility with existing file-based version control systems such as Git and Sub-
version.

4 This is expected as all three strategies populate all caches required before the EOL
program executes.
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Table 1. Benchmark results for Lazy, Greedy, Type-Aware, Type-and-Reference-
Aware caching (* in the table represents the results for G,T and TR collectively).

Perc.
L G T TR * Imp.G Imp.T Imp.TR Imp.*

Load Exec. Load Load Load Exec. Total Total Total Exec.
sec. sec. sec. sec. sec. % % % %

Set0

20% 0.552 0.015 0.652 0.554 0.572 0.001 -15.17% 2.12% -1.06% 93.33%

40% 0.555 0.007 0.631 0.572 0.561 0.002 -12.63% -2.14% -0.18% 71.43%

60% 0.549 0.012 0.645 0.571 0.573 0.003 -15.51% -2.32% -2.67% 75.00%

80% 0.543 0.026 0.652 0.573 0.576 0.005 -15.47% -1.58% -2.11% 80.77%

100% 0.552 0.141 0.638 0.623 0.619 0.013 6.06% 8.23% 8.80% 90.78%

Perc. Set1

20% 1.643 0.606 1.856 1.653 1.672 0.01 17.03% 26.06% 25.21% 98.35%

40% 1.596 0.595 1.875 1.736 1.711 0.011 13.92% 20.26% 21.41% 98.15%

60% 1.587 0.556 1.843 1.786 1.773 0.013 13.39% 16.05% 16.66% 97.66%

80% 1.611 0.571 1.86 1.787 1.788 0.017 13.98% 17.32% 17.28% 97.02%

100% 1.606 0.626 1.866 1.852 1.852 0.021 15.46% 16.08% 16.08% 96.65%

Perc. Set2

20% 14.159 2.244 17.169 14.802 14.809 0.007 -4.71% 9.72% 9.68% 99.69%

40% 14.061 4.402 17.979 16.587 16.613 0.015 2.54% 10.08% 9.94% 99.66%

60% 14.456 3.305 16.96 16.276 15.851 0.02 4.40% 8.25% 10.64% 99.39%

80% 15.151 5.685 18.145 17.724 18.217 0.03 12.77% 14.79% 12.43% 99.47%

100% 15.223 6.2 17.32 17.769 17.839 0.036 18.98% 16.89% 16.56% 99.42%

Perc. Set3

20% 34.199 8.706 38.096 34.17 33.753 0.017 11.17% 20.32% 21.29% 99.80%

40% 31.786 9.756 37.552 35.086 34.809 0.028 9.54% 15.47% 16.14% 99.71%

60% 31.835 12.222 37.528 36.516 35.662 0.045 14.72% 17.01% 18.95% 99.63%

80% 32.417 11.456 39.301 39.302 37.795 0.068 10.27% 10.26% 13.70% 99.41%

100% 35.872 13.7 38.659 40.779 40.513 0.071 21.87% 17.59% 18.13% 99.48%

Perc. Set4

20% 36.133 7.586 43.745 39.477 37.278 0.018 -0.10% 9.66% 14.69% 99.76%

40% 37.99 12.973 43.515 41.044 41.01 0.039 14.54% 19.39% 19.45% 99.70%

60% 36.457 14.131 44.883 42.348 41.055 0.05 11.18% 16.19% 18.75% 99.65%

80% 37.782 11.762 41.932 44.038 45.168 0.065 15.23% 10.98% 8.70% 99.45%

100% 37.617 14.563 44.813 46.914 43.406 0.078 13.97% 9.94% 16.67% 99.46%
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6 Conclusion and Future Work

In this paper we have proposed a novel approach for computation and caching
of allInstances()-like operations (e.g. used in declarative model transformation
rules) on in-memory EMF models. We have compared the proposed approach
against three alternative approaches via extensive benchmarking and demon-
strated the benefits it delivers in terms of aggregate model loading and query
execution time. Such an approach brings benefits only to model management
programs which trigger multiple calls to allInstances().

In future iterations of this work, we wish to investigate how static analysis
and metamodel introspection can be used to further improve performance of
computationally-expensive queries at runtime (e.g. by constructing and main-
taining in-memory indexes that can improve the performance of collection filter-
ing operations applied to the results of allInstances()).
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Abstract. The necessity of manipulating very large amounts of data
and the wide availability of computational resources on the Cloud is
boosting the popularity of distributed computing in industry. The appli-
cability of model-driven engineering in such scenarios is hampered today
by the lack of an efficient model-persistence framework for distributed
computing. In this paper we present NeoEMF/HBase, a persistence
backend for the Eclipse Modeling Framework (EMF) built on top of the
Apache HBase data store. Model distribution is hidden from client ap-
plications, that are transparently provided with the model elements they
navigate. Access to remote model elements is decentralized, avoiding the
bottleneck of a single access point. The persistence model is based on
key-value stores that allow for efficient on-demand model persistence.

Keywords: Model Persistence, Key-Value Stores, Distributed Persis-
tence, Distributed Computing

1 Introduction

The availability of large data processing and storage in the Cloud is becoming a
key resource for part of today’s industry, within and outside IT. It offers a tempt-
ing alternative for companies to process, analyze, and discover new data insights,
yet in a cost-efficient manner. Thanks to existing Cloud computing companies,
this facility is extensively available for rent [11]. This ready-to-use IT infrastruc-
ture is equipped with a wide range of distributed processing frameworks, for
companies that have to occasionally process large amounts of data.

One of the principal ingredients behind the success of distributed process-
ing are distributed storage systems. They are designed to answer to data pro-
cessing requirements of distributed and computationally extensive applications,
i.e., wide applicability, scalability, and high performance. Appearing along with
MapReduce [10], BigTable [9] strongly stood in for these qualifications. One of
the most compliant open-source implementations of MapReduce and BigTable
are Apache’s Hadoop [17] and HBase [18], respectively.

Another success factor for widespread distributed processing is the appear-
ance of high-level languages for simplifying distribution by a user-friendly syntax
(mostly SQL-like). They transparently convert high-level queries into a series of
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parallelizable jobs that can run in distributed frameworks, such as MapReduce,
therefore making distributed application development convenient.

We believe that Model-Driven Engineering (MDE), especially the query/-
transformation languages and engines, would be suitable for developing dis-
tributed applications on top of structured data (models). Unfortunately, MDE
misses some fundamental bricks towards building fully distributed transforma-
tion/query engines. In this paper we address one of those components, i.e.
a model-persistence framework for distributed computing. Several distributed
model-persistence frameworks exist today [3,16]: for the Eclipse Modeling Frame-
work (EMF) [6] two examples are Connected Data Objects (CDO) [3] that is
based on object relational mapping1, and EMF fragments [15], that maps large
chunks of model to separate URIs. We argue that these solutions are not well-
suited for distributed computing, exhibiting one or more of the following faults:

– Model distribution is not transparent: so queries and transformations need
to explicitly take into account that they are running on a part of the model
and not the whole model (e.g. EMF fragments)

– Even when model elements are stored in different nodes, access to model
elements is centralized, since elements are requested from and provided by a
central server (e.g. CDO over a distributed database). This constitutes a bot-
tleneck and does not exploit a possible alignment between data distribution
and computation distribution.

– The persistence backend is not optimized for atomic operations of model han-
dling APIs. In particular files (e.g. XMI over HDFS [7]), relational databases
or graph databases are widely used while we have shown in previous work [12]
that key-value stores are very efficient in typical queries over very large mod-
els. Moreover key-value stores are more easily distributed with respect to
other formats, such as graphs.

– The backend assumes to split the model in balanced chunks (e.g. EMF Frag-
ments). This may not be suited to distributed processing, where the opti-
mization of computation distribution may require uneven data distribution.

In this paper we present NeoEMF/HBase, a persistence backend for EMF
built on top of the Apache HBase data store. NeoEMF/HBase is transpar-
ent w.r.t. model manipulation operations, decentralized, and based on key-value
stores. The tool is open-source and publicly available at the paper’s website2.
This paper is organized as follows: Section 2 presents HBase concepts and archi-
tecture, Section 3 presents the NeoEMF/HBase architecture, data model and
properties; and finally, Section 4 concludes the paper and outlines future work.

1 CDO servers (usually called repositories) are built on top of different data storage
solutions (ranging from relational databases to document-oriented databases). How-
ever, in practice, only relational databases are commonly used, and indeed, only
DB Store [1], which uses a proprietary Object/Relational mapper, supports all the
features of CDO and is regularly released in the Eclipse Simultaneous Release [2,4,5].

2 http://www.emn.fr/z-info/atlanmod/index.php/NeoEMF/HBase
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2 Background: Apache HBase

Apache HBase [18] is the Hadoop [17] database, a distributed, scalable, ver-
sioned and non-relational big data store. It can be considered an open-source
implementation of Google’s Bigtable proposal [9].

2.1 HBase data model

In HBase, data is stored in tables, which are sparse, distributed, persistent multi-
dimensional sorted maps. A map is indexed by a row key, acolumn key, and a
timestamp. Each value in the map is an uninterpreted array of bytes.

HBase is built on top of the following concepts [14]:

Table — Tables have a name, and are the top-level organization unit for data
in HBase.

Row — Within a table, data is stored in rows. Rows are uniquely identified by
their row key.

Column Family — Data within a row is grouped by column family. Column
families are defined at table creation and are not easily modified. Every row
in a table has the same column families, although a row does not need to
store data in all its families.

Column Qualifier — Data within a column family is addressed via its column
qualifier. Column qualifiers do not need to be specified in advance and do
not need to be consistent between rows.

Cell — A combination of row key, column family, and column qualifier uniquely
identifies a cell. The data stored in a cell is referred to as that cell’s value.
Values do not have a data type and are always treated as a byte[].

Timestamp — Values within a cell are versioned. Versions are identified by
their version number, which by default is the timestamp of when the cell
was written. If the timestamp is not specified for a read, the latest one is
returned. The number of cell value versions retained by HBase is configured
for each column family (the default number of cell versions is three).

Figure 1 (extracted from [9]) shows an excerpt of an example table that
stores Web pages. The row name is a reversed URL. The contents column
family contains the page contents, and the anchor column family contains the

"CNN.com""CNN"
"<html>..."

"<html>..."
"<html>..."

t9
t6

t3t5 8t

"anchor:cnnsi.com"

"com.cnn.www"

"anchor:my.look.ca""contents:"

Fig. 1: Example of a table in HBase/BigTable (extracted from [9])
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text of any anchors that reference the page. CNN’s home page is referenced by
both the Sports Illustrated and the MY-look home pages, so the row contains
columns named anchor:cnnsi.com and anchor:my.look.ca. Each anchor cell
has one version; the contents column has three versions, at timestamps t3, t5,
and t6.

2.2 HBase architecture

Fig. 2 shows how HBase is combined with other Apache technologies to store
and lookup data. Whilst HBase leans on HDFS to store different kind of config-
urable size files, ZooKeeper [19] is used for coordination. Two kinds of nodes can
be found in an HBase setup, the so-called HMaster and the HRegionServer. The
HMaster is the responsible for assigning the regions (HRegions) to each HRe-
gionServer when HBase is starting. Each HRegion stores a set of rows separated
in multiple column families, and each column family is hosted in an HStore. In
HBase, row modifications are tracked by two different kinds of resources, the
HLog and the Stores. The HLog is a store for the write-ahead log (WAL), and is
persisted into the distributed file system. The WAL records all changes to data
in HBase, and in the case of a HRegionServer crash ensures that the changes to

HBase
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File System

Client
Space

DataNode

...
DataNodeDataNode

NameNode
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MemStore

StoreFile
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...
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DFS
Client ...
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Fig. 2: HBase architecture
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the data can be replayed. Stores in a region contain an in-memory data store
(MemStore) and a persistent data stores (HFiles, that are persisted into the
distributed file system) HFiles are local to each region, and used for actual data
storage. The ZooKeeper cluster is responsible of providing the client with the
information about both the HRegionServer and the HRegion hosting the row the
client is looking up for. This information is cached at the client side, so that a
direct communication could be directly setup for the next times without query-
ing the HMaster. When an HRegionServer receives a write request, it sends the
request to a specific HRegion. Once the request is processed, data is first writ-
ten into the MemStore and when certain threshold is met, the MemStore gets
flushed into an HFile.

2.3 HBase vs. HDFS

HDFS is the primary distributed storage used by Hadoop applications as it is
designed to optimize distributed processing of multi-structured data. It is well
suited for distributed storage and distributed processing using commodity hard-
ware. It is fault tolerant, scalable, and extremely simple to expand. HDFS is
optimized for delivering a high throughput of data, and this may be at the ex-
pense of latency, which makes it neither suitable nor optimized for atomic model
operations. HBase is, on the other hand, a better choice for low-latency access.
Moreover, HDFS resources cannot be written concurrently by multiple writers
without locking and this results in locking delays. Also writes are always made
at the end of the file. Thus, writing in the middle of a file (e.g. changing a value
of a feature) involves rewriting the whole file, leading to more significant delays.
On the contrary, HBase allows fast random reads and writes. HBase is row-level
atomic, i.e. inter-row operations are not atomic, which might lead to a dirty read
depending on the data model used. Additionally, HBase only provides five basic
data operations (namely, Get, Put, Delete, Scan, and Increment), meaning that
complex operations are delegated to the client appliaction (which, in turn, must
implement them as a combination of these simple operations).

3 NeoEMF/HBase

Figure 3 shows the high-level architecture of our proposal for the EMF frame-
work. It consists in a transparent persistence manager behind the model-manage-
ment interface, so that tools built over the modeling framework would be unaware
of it. The persistence manager communicates with the underlying database by
a driver, and supports a pluggable caching strategy. In particular we implement
the NeoEMF/HBase tool as a persistence manager for EMF on top of HBase
and ZooKeeper. NeoEMF also supports other technologies, such as an embedded
graph backend [8] and an embedded key-value store [12].

This architecture guarantees that the solution integrates well with the mod-
eling ecosystem, by strictly complying with the EMF API. Additionally, the
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Fig. 3: Overview of the model-persistence framework

APIs are consistent between the model-management framework and the per-
sistence driver, keeping the low-level data structures and code accessing the
database engine completely decoupled from the modeling framework high level
code. Maintaining these uniform APIs between the different levels allows in-
cluding additional functionality on top of the persistence driver by using the
decorator pattern, such as different cache levels.

NeoEMF/HBase offers lightweight on-demand loading and efficient garbage
collection. Model changes are automatically reflected in the underlying storage,
making changes visible to all the clients. To do so, first we decouple dependencies
among objects by assigning a unique identifier to all model objects, and then:

– To implement lightweight on-demand loading and saving, for each live model
object, we create a lightweight delegate object that is in charge of on-demand
loading the element data and keeping track of the element’s state. Delegates
load and save data from the persistence backend by using the object’s unique
identifier.

– For efficient garbage collection in the Java Runtime Environment, we avoid
to maintain hard Java references among model objects, so that the garbage
collector can deallocate any model object that is not directly referenced by
the application.

3.1 Map-based data model

We have designed the underlying data model of NeoEMF/HBase to minimize
the data interactions of each method of the EMF model access API. The design
takes advantage of the unique identifier defined in the previous section to flatten
the graph structure into a set of key-value mappings.

Fig. 4a shows a small excerpt of a possible Java metamodel that we will
use to exemplify the data model. This metamodel describes Java programs in
terms of Packages, ClassDeclarations, BodyDeclarations, and Modifiers. A Pack-
age is a named container that groups a set of ClassDeclarations through the
ownedElements composition. A ClassDeclaration contains a name and a set of

47



Package

name : String
ClassDeclaration
name : String

BodyDeclaration

name : String
Modifier

visibility : VisibilityKind

VisibilityKind
none
public
private
protected

ownedElements
*

bodyDeclarations *

modifier
1

(a)

p1 : Package

name : ’package1’
c1 : ClassDeclaration
name : ’class1’

b1 : BodyDeclaration

name : ’bodyDecl1’

b2 : BodyDeclaration

name : ’bodyDecl2’

m1 : Modifier

visibility : public

m2 : Modifier

visibility : public

ownedElements

bodyDeclarations bodyDeclarations

modifier modifier

(b)

Fig. 4: Excerpt of the Java metamodel (4a) and sample instance (4b)

BodyDeclarations. Finally, a BodyDeclaration contains a name, and its visibility
is described by a single Modifier.

Fig. 4b shows a sample instance of the Java metamodel, i.e., a graph of
objects conforming with the metamodel structure. The model contains a single
Package (package1), containing only one ClassDeclaration (class1). The Class
contains the bodyDecl1 and bodyDecl2 BodyDeclarations. Both of them are
public.

NeoEMF/HBase uses a single table with three column families to store
models’ information: (i) a property column family, that keeps all objects’ data
stored together; (ii) a type column family, that tracks how objects interact with
the meta-level (such as the instance of relationships); and (iii) a containment
column family, that defines the models’ structure in terms of containment ref-
erences. Table 13 shows how the sample instance in Fig. 4b is represented using
this structure.

As Table 1 shows, row keys are the object unique identifier. The property
column family stores the objects’ actual data. As it can be seen, not all rows have
a value for a given column. How data is stored depends on the property type and
cardinality (i.e., upper bound). For example, values for single-valued attributes
(like the name, which stored in the name column) are directly saved as a single
literal value; while values for many-valued attributes are saved as an array of
single literal values (Fig. 4b does not contain an example of this). Values for
single-valued references, such as the modifier containment reference from Body-
Declaration to Modifier, are stored as a single value (corresponding to the iden-
tifier of the referenced object). Examples of this are the cells for 〈b1, modifier〉
and 〈b2, modifier〉 which contain the values ’m1’ and ’m2’ respectively. Finally,
multi-valued references are stored as an array containing the literal identifiers of
the referenced objects. An example of this is the bodyDeclarations containment
reference, from ClassDeclaration to BodyDeclaration, that for the case of the c1
object is stored as { ’b1’, ’b2’ } in the 〈c1, bodyDeclarations〉 cell.

Structurally, EMF models are trees (a characteristic inherited from its XML-
based representation). That implies that every non-volatile object (except the

3 Actual rows have been split for improved readability
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Table 1: Example instance stored as a sparse table in HBase
property

Key eContents name ownedElements bodyDeclarations modifier visibility
’ROOT’ ’p1’
’p1’ ’package1’ { ’c1’ }
’c1’ ’class1’ { ’b1’, ’b2’ }
’b1’ ’bodyDecl1’ ’m1’
’b2’ ’bodyDecl’ ’m2’
’m1’ ’public’
’m2’ ’public’

containment type
Key container feature nsURI EClass

’ROOT’ ’http://java’ ’RootEObject’
’p1’ ’ROOT’ ’eContents’ ’http://java’ ’Package’
’c1’ ’p1’ ’ownedElements’ ’http://java’ ’ClassDeclaration’
’b1’ ’c1’ ’bodyDeclarations’ ’http://java’ ’BodyDeclaration’
’b2’ ’c1’ ’bodyDeclarations’ ’http://java’ ’BodyDeclaration’
’m1’ ’b1’ ’modifiers’ ’http://java’ ’Modifier’
’m2’ ’b2’ ’modifiers’ ’http://java’ ’Modifier’

root object) must be contained within another object (i.e., referenced from an-
other object via a containment reference). The containment column family
maintains a record of which is the container for every persisted object. The
container column records the identifier of the container object, while the fea-
ture column records the name of the property that relates the container object
with the child object (i.e., the object to which the row corresponds). Table 1
shows that, for example, the container of the Package p1 is ROOT through the
eContents property (i.e., it is a root object and is not contained by any other
object). In the next row we find the entry that describes that the Class c1 is
contained in the Package p1 through the ownedElements property.

The type column family groups the type information by means of the nsURI
and EClass columns. For example, the table specifies the element p1 is an in-
stance of the Package class of the Java metamodel (that is identified by the
http://java nsURI ).

3.2 ACID properties

NeoEMF/HBase is designed as a simple persistence layer that maintains the
same semantics as the standard EMF. Modifications in models stored using
NeoEMF/HBase are directly propagated to the underlying storage, making
changes visible to all possible readers immediatly. As in standard EMF, no
transactional support is explicitly provided, and as such, ACID properties [13]
(Atomicity, Consistency, Isolation, Durability) are only supported at the object
level:

Atomicity — Modifications on object’s properties are atomic. Modifications
involving changes in more than one object (e.g. bi-directional references),
are not atomic.
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Consistency — Modifications on object’s properties are always consistent us-
ing a compare-and-swap mechanism. In the case of modifications involving
changes in more than one object, consistency is only guaranteed when the
model is modified to grow monotonically (i.e., only new information is added,
and no already existing data is deleted nor modified).

Isolation — Reads on a given object always succeeds and always give a view
of the object’s latest valid state.

Durability — Modifications on a given object are always reflected in the un-
derlying storage, even in the case of a Data Node failure, thanks to the
replication capabilities provided by HBase.

These properties allow the use of NeoEMF/HBase as the persistence back-
end for distributed and concurrent model transformations, since reads in the
source model are consistent and always success; and the creation of the target
model is a building process that creates a model that grows monotonically.

4 Conclusion and Future Work

In this paper we have outlined NeoEMF/HBase, an on-demand, memory-
friendly persistence layer for distributed and decentralized model persistence.
Decentralized model persistence is useful in scenarios where multiple clients
may access models when performing distributed computing. NeoEMF/HBase
is built on top of HBase, a distributed, scalable, versioned and non-relationals
big data store, specially designed to run together with Apache Hadoop.

NeoEMF/HBase takes advantage of the HBase properties by using a sim-
ple data model that minimizes data dependencies among stored objects. More
specifically, NeoEMF/HBase exploits the row-locking mechanisms of HBase
to provide limited ACID properties without requiring the use of transactions,
which may increase latency in model operations. NeoEMF/HBase provides
ACID properties at the object level, and guarantees that: (i) object queries al-
ways return the last valid state of an object; (ii) attribute modifications always
succeed and produce a consistent model; and (iii) modifications of references
which make the model grow monotonically always succeed and produce a con-
sistent model.

Previous work [12] shows that key-value stores present clear benefits for stor-
ing big models, since model operations cost remains constant when models size
grows. However, NeoEMF/HBase still lacks of a thorough performance eval-
uation. Hence, immediate future work is focused in the development of an eval-
uation benchmark. In this sense, we pursue to determine how the latency intro-
duced by HBase – specially on write operations – affects the overall performance.

Additionally, a more advanced locking mechanism allowing arbitrary object
locks will be implemented. Such a mechanism will provide multi-object ACID
properties to the framework, allowing client applications to implement the syn-
chronization logic to perform arbitrary, distributed and concurrent modifica-
tions.
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Abstract. As software systems have grown large and complex in the last few
years, the problems with which Model-Driven Development has to cope have
increased at the same pace. In particular, the need to improve the performance
and scalability of model transformations has become a critical issue. In previous
work we introduced LinTra, a model transformation platform for the parallel ex-
ecution of out-place model transformations. Nevertheless, in-place model trans-
formations are required in several contexts and domains as well. In this paper we
discuss the fundamentals of in-place model transformations in the light of their
parallel execution and provide LinTra with an in-place execution mode.

Keywords: In-place Model Transformations, Performance, Scalability, Linda

1 Introduction

Model transformations (MT) are gaining acceptance as model-driven techniques are
becoming commonplace [1]. While models capture the views on systems for particular
purposes and at given levels of abstraction, model transformations are in charge of the
manipulation, analysis, synthesis, and refinement of the models [2].

So far the community has mainly focused on the correct implementation of a model
transformation, according to its specification [3–8], although there is an emergent need
to consider other (non-functional) aspects such as performance, scalability, usability,
maintainability and so forth [9]. In particular, the study of the performance of model
transformations is gaining interest as very large models living on the cloud have to be
transformed as well. Consequently, new approaches to parallelize model transforma-
tions are starting to appear [10–13]. Following this path, in a previous work we intro-
duced LinTra [11,14], a model transformation engine, together with its implementation
in Java called jLinTra. LinTra encapsulates all the concurrent mechanisms needed for
the parallel execution of model transformations, and in particular users do not need to
worry about threads and their synchronization. The engine is based on Linda [15], a
mature coordination language for parallel processes.

So far, LinTra only permitted out-place model transformations. In this kind of trans-
formations, input and output models often conform to different metamodels and output
models are created from scratch. However, there are many situations in which we need
to evolve models, instead of creating them anew. For instance, when migrating and
modernizing software using model-driven engineering (MDE) approaches [16, 17], (i)
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software is reverse-engineered to obtain a model representation of the system, (ii) mod-
ernization patterns are applied on the model level, and (iii) the modernized model is
translated back into code. Modernization at model level is typically achieved using in-
place model transformations, where the initial model is evolved until the final target
model is obtained. Models which are reverse-engineered from large systems may be
huge, thus high-performing in-place transformation engines are needed. For this rea-
son, in this paper we extend our LinTra language with an in-place semantics.

This paper is structured as follows. Section 2 shortly introduces LinTra and our
reference non-recursive in-place semantics. Section 3 shows how LinTra realizes its
in-place semantics, while Section 4 illustrates the benefits of parallel in-place trans-
formations. Finally, Section 5 discusses related work before we conclude the paper in
Section 6 with an outlook on future work.

2 Background

Previous Work on LinTra. LinTra [11, 14] is a parallel model transformation engine
that encapsulates all the concurrent mechanisms, so that users do not need to worry
about threads and their synchronization. It uses the Blackboard paradigm [18] to store
the input and output models, as well as the required data to keep track of the MT execu-
tion that coordinates the agents that are involved in the transformation process. One of
the keys of LinTra is the model and metamodel representation, where we assume that
entities in the model are independent from each other. Thus, every entity is assigned
an identifier, which is used to reference objects and to represent relationships between
them. Relationships between entities are represented by storing in the source entity the
identifier(s) of its target entity(ies).

In out-place model transformations, there might be dependencies between rules be-
cause the element(s) created in a rule are needed to initialize some properties of the
elements created by other rules. In LinTra, traceability is implemented implicitly using
a bidirectional function that receives as a parameter the entity identifier of the input
model and returns the identifier of the output entity, regardless whether the output enti-
ties have already been created or not. This means that LinTra does not store information
about the traces explicitly; thus, the performance is not affected by the access to mem-
ory and the search for trace information.

In order to carry out the transformation process in parallel, LinTra uses the Master-
Slave design pattern [18]. The master’s job is to launch slaves and coordinate their
work. Each slave is in charge of applying the transformation to submodels of the input
model (i.e., partitions) as if each partition is a complete and independent model. Since
in LinTra’s out-place mode the complete input model is always available, in case the
slaves have data dependencies with elements that are not in the submodels they were
assigned, they only have to query the Blackboard to retrieve them.

Non-recursive In-place Transformations. In-place transformations specify how
the input model evolves to obtain the output one, i.e., how the input model has to
change. There are two kinds of in-place model transformation strategies, non-recursive
and recursive, depending on whether recursive matching takes place or not. By recur-
sive matching we understand that the matches of rules are not solely computed based
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on the initial input model but on the current model state which probably has been mod-
ified by previous application of rules. This is the typical strategy followed in graph or
rewriting systems, where a set of rules modifies the state of a configuration of objects
(representing the model) one-by-one. Thus, after the application of each rule, the state
of the system is changed, and subsequent rules will be applied on the system on this new
state. Therefore, the transformation navigates the target model, which is continuously
updated by every executed rule.

Regarding non-recursive matching, it shares some characteristics with out-place
transformations. In this strategy, there is one input model which is used to directly com-
pute the output model without considering intermediate steps. This is the reason why
we chose to follow a non-recursive approach for the LinTra in-place mode. Our deci-
sion was also inspired by the ATL refining mode [19, 20], used to implement in-place
transformations. ATL supports both out-place and in-place modes. In both execution
modes, source models are read-only and target models are write-only. This is an im-
portant detail that significantly affects the way in which ATL works in refining mode.
Indeed, ATL in-place mode does not execute transformations as these are executed in
graph or rewriting systems, as explained in detail in [21]. Thus, we follow as well non-
recursive matching in LinTra where rules always read (i.e., navigate) the state of the
source model, which remains unchanged during all the transformation execution.

3 In-place Model Transformations with LinTra

LinTra follows a non-recursive approach for executing in-place transformations, as the
ATL refining mode does. In this section we discuss some semantic issues that might
occur in rule-based in-place model transformations in general as they are indeed highly
relevant for the parallel execution of in-place transformations.

3.1 Atomic Transformation Actions

When executing a non-recursive in-place transformation, the first decision concerns the
elements for which the transformation does not specify what to do. We could either
decide to exclude them from the target model or to include them as they are. In jLinTra
we decided for the second option, which implies that if we want to exclude objects in
the target model, the transformation will have to explicitly remove them. Thus, after the
input model is loaded, and once the transformation phase starts, an initialization phase
is needed where the identity transformation is applied so that the target area contains a
copy of the input model.

After the model is copied, in the following we explain the three operations that may
be applied to it: deletion of elements, creation of new elements, and modification of
existing elements.

Elements Deletion. When an element is deleted, the outgoing relationships from
such element to others are deleted too, since such information is stored as attributes in
the deleted element. However, the situation is different when the deleted element has
incoming relationships. In such case, the information about relationships to the deleted
element is stored in the attributes of other elements. In this case, we can distinguish
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two different semantics. Either all the incoming relationships are deleted, for which
the engine needs to traverse the whole model searching for relationships pointing to the
deleted element, or they are not deleted, causing dangling references and, consequently,
an inconsistent model. In the former option, we need to keep track of all the deleted
elements, so that the traversal is realized only once as the last step of the transformation.
The latter option is useful in order to make the user aware that he/she is removing
an element by mistake. LinTra permits both behaviors, since it is aimed at offering a
flexible implementation.

Elements Creation. If the developer wants to create a new element, he/she has to
create the instance and set its attributes and relationships. In case of bidirectional rela-
tionships, there are two alternatives: (i) the opposite reference is created automatically,
or (ii) the creation of the opposite relationship must be explicitly specified by the devel-
oper. We permit both behaviors.

Elements Updates. Updating an attribute or an ongoing unidirectional relationship
of an element is trivial, since the transformation only has to change the corresponding
attribute of the updated element. However, there are again two choices when updating a
relationship which is bidirectional, since the previous target element of the relationship
would still have a relationship to the updated element unless something is done. Thus,
(i) the relationship from the previous target element should be automatically removed
and a new relationship from the new pointed element to the updated element should be
automatically created, or (ii) the developer has to specify explicitly in the transformation
that the corresponding relationships are removed and created respectively. Again, we
permit both alternative behaviors.

3.2 Confluence conflicts

Confluence conflicts typically occur when two rules are applied to the same part of the
model and they treat it differently [22]. Thus, the resulting model may vary depending
on the order in which those rules are applied. The application of a rule can conflict with
the application of another rule in four different ways. Let us explain them for the ATL
refining mode which acts as blueprint for the LinTra in-place transformation strategy.
For the explanations, let us imagine a transformation for reverse engineering Java code.

Update/Update. Imagine that a rule sets the public variables to private and capital-
izes the name of the ones that are private. This case is not a problem for the confluence
of non-recursive in-place transformations since only the source model provided by the
user is read—the changes done by the rule that changes the visibility are not visible to
the rule that capitalizes the names of the variables. On the contrary, if a rule sets the
visibility of the variables to private and another rule sets them to public, the transfor-
mation may not be confluent. A possible way to prevent this situation is to force the
precondition of the rules to be exclusive, which leads to non-overlapping matches. This
was the solution adopted by ATL concerning the declarative part. Nevertheless, it is
easy to fool ATL by using the imperative part, which is executed after the declarative
part of the rule.

Delete/Update. Suppose that a rule sets the visibility of the variables to private
and another rule removes all the variables. The situation is similar to the second case
we presented for the conflict Update/Update. The two rules are a conflicting pair, thus
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the language should prevent this situation from happening or should establish the be-
haviour of the transformation. Again, it is possible to produce this case in ATL by using
the imperative part to set the visibility and writing a declarative rule that removes the
variables. Both rules are executed so that the visibility is changed and the variables are
removed. As a result, the variables are not present in the resulting model. Apparently,
the objects are removed in a later execution phase, after having done all the updates and
creations specified in the declarative and imperative parts.

Produce/Forbid. Imagine that a rule adds a variable to a class and another rule
removes all the empty classes (classes with no variables) from the model. The first rule
is producing an additional structure that is forbidden by the precondition of the second
rule. Once again, the order in which the rules are executed influences the result. This
time, if we try to implement this transformation with ATL using the imperative part of
a rule to add the variables and a declarative rule to remove the empty classes, both rules
are applied but the transformation does not fulfil the purpose for which it was written
(since only the source model is read). As a result, the classes are removed but the newly
created variables remain in the model without any container.

Delete/Use. This conflict appears when a rule deletes elements that produce a match
with another rule. Thus, it is the opposite case to Produce/Forbid. Depending on the
order in which the rules are executed, the transformation is able to execute a higher or
lower number of rules.

We have illustrated the conflicts that may appear between rules and how ATL tries
to solve them using non-overlapping matches, how they can be avoided or produced,
and which is the final result of the execution. Enforcing to have non-overlapping rules
is not the only solution; another possibility is to statically detect the conflicting rules
using the critical pair analysis approach [23], and subsequently, to deal with the conflicts
making use of layers which is also implicitly done in ATL by using different phases in
the transformation execution.

As jLinTra is realized as an internal transformation language embedded in Java, we
have opted for not imposing any restriction. Thus, our solution is completely flexible
with respect to rule executions. The idea is that high-level model transformation lan-
guages (such as ATL [24], ETL [25], or QVTO [26]) are compiled to an extended set
of the primitives [27] that automatically compile to jLinTra. In these primitives the rule
scheduling is already given (the layers and the rules that belong to each layer). There-
fore, in case that the critical pair analysis is needed, it can be done statically during the
compilation process from the high-level model transformation language to the LinTra
primitives.

4 Evaluation

To evaluate our approach we performed an experimental study concerning a transforma-
tion which, in reverse engineered Java applications, removes all the comments, changes
the attributes from public to private and creates the getters and setters.
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4.1 Research Questions

The study was performed to quantitatively assess the quality of our approach by measur-
ing the runtime performance of the transformations. We aimed to answer the following
research questions (RQs):

1. RQ1—Parallel vs. sequential in-place transformations: Is the parallel execution of
in-place transformations faster in terms of execution times compared to using the
state-of-the-art sequential execution engines? And if there is a positive impact, what
is the speedup with respect to the used number of cores for the parallel transforma-
tion executions?

2. RQ2—Parallel in-place vs. parallel out-place transformations: Is the parallel ex-
ecution of in-place transformations faster in terms of execution time compared to
using their equivalent out-place transformations?

4.2 Experiment Setup

To evaluate our approach, we use an experiment in which Java models are obtained
from Java code using MoDISCO [17]. The Java metamodel has a total of 125 classes
from which 15 are abstract, 166 relationships among them and 5 enumeration types.
As source model we have selected the complete Eclipse project, containing 4, 357, 774
entities. In order to assess how the transformation scales up with this kind of input,
we generated 11 smaller sample source models (with subsets of the Eclipse project)
ranging from 100, 000 elements to the complete model.

We apply an extended version of the Public2Private transformation – the original
one is available in the ATL Zoo3 – that changes the visibility of every public variable to
private and creates the corresponding getter and setter methods. In addition, the trans-
formation also removes all the comments contained in the code. All artifacts can be
downloaded from our website4.

Let us show the effects of this transformation with an example. Listing 1.1 shows
the Java code that declares a class called MyClass, a public attribute name and the
class’s constructor. The code contains some comments too. After applying the transfor-
mation, the Java code that the model represents should look like the fragment presented
in Listing 1.2.

Listing 1.1. Code to be refactored
1 p u b l i c c l a s s MyClass {
2 //Declaration of variable called name
3 p u b l i c String name ; /* This variable contains the name */
4 p u b l i c MyClass ( ) { /* Description @param ... */ . . . }
5 }

Listing 1.2. Refactored code
1 p u b l i c c l a s s MyClass {
2 p r i v a t e String name ;
3 p u b l i c String getName ( ) { re turn name ; }
4 p u b l i c vo id setName (String name ) { t h i s .name = name ; }
5 p u b l i c MyClass ( ) { . . . }
6 }

3 http://www.eclipse.org/atl/atlTransformations/
4 http://atenea.lcc.uma.es/index.php/Main_Page/Resources/LinTra
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An excerpt of the code corresponding to the rules in jLinTra is shown in Listing 1.3.
As stated in Section 2, every slave is in charge of transforming a chunk of the model.
For efficiency reasons the changes are made permanent once the whole chunk has been
transformed. In order to keep the temporary changes the structures deletedElems,
modifiedElems and createdElems (lines 2, 8 and 9) are needed.

Listing 1.3. jLinTra transformation
1 i f (ie i n s t a n c e o f Comment ){
2 deletedElems .add (ie ) ; //Delete Comment
3 } e l s e i f (ie i n s t a n c e o f FieldDeclaration ){
4 String modId = ( (FieldDeclaration ) ie ) .getModifier ( ) ;
5 Modifier mod = (Modifier ) srcArea .read (modId ) ;
6 String visibility = mod .getVisibility ( ) ;
7 i f (visibility .equals (PUBLIC ) ){
8 mod .setVisibility (PRIVATE ) ; modifiedElems .add (mod ) ; // Modify visibility
9 . . . createdElems .add ( . . . ) ; // Create getters and setters }
10 }

We have run all our experiments on a machine whose operating system is Ubuntu
12.04 64 bits with 11.7 Gb of RAM and 2 processors with 4 hyperthreaded cores (8
threads) of 2.67GHz each. We discuss the results obtained for the different transforma-
tions after executing each one 10 times for every input model and having discarded the
first 5 executions as the VM has a warm-up phase where the results might not be opti-
mal. The Eclipse version is Luna. The Java version is 8, where the JVM memory has
been increased with the parameter -Xmx11000m in order to be able to allocate larger
models in memory.

4.3 Performance Experiments

The in-place transformation described before has been implemented and executed in
jLinTra and in ATL, for which we have used the EMFTVM5. We have also developed
an out-place transformation version in jLinTra in order to compare its performance
with the proposed in-place version. Table 1 shows in its left-most column the number
of entities of the source models of the transformation. The second, third, and fourth
columns correspond to the execution times (in seconds) obtained for ATL and jLinTra
(using the in-place and out-place modes), respectively. Note that we have only taken into
account the time of the execution of the transformation, meaning that we do not consider
the time used for loading the models into memory, nor the time used to serialize them
to the disk. The fifth column presents the speedup of jLinTra with respect to ATL. We
can see that the speedup is not constant: it grows with the size of the model, reaching
a value of 955.23 for the complete model, meaning that value that jLinTra is 955.23
times faster than ATL for this concrete case. Finally, column six shows the speedup of
the in-place and out-place modes of LinTra, where we can see that the in-place model
transformation is on average 1.81 times faster than its out-place version.

We already mentioned in Section 3 that an initialization phase where the input
model is copied to the target area is needed. However, if we moved that process to
the loading phase so that both the source and target areas were loaded at the same time,
we would only pay a minimum price (an overhead of 5% in the loading phase) and the

5 https://wiki.eclipse.org/ATL/EMFTVM
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ATL LinTra Speedups
No. elements EMFTVM In-place (LI) Out-place (LO) LI–EMFTVM LI–LO

0.1×106 2.40 0.11 0.19 21.23 1.72

0.2×106 12.04 0.29 0.36 41.88 1.25

0.5×106 65.06 0.73 0.98 89.06 1.34

1.0×106 371.41 1.29 2.38 287.34 1.84

1.5×106 1042.41 2.06 2.61 506.71 1.27

2.0×106 2030.82 2.99 5.63 678.16 1.88

2.5×106 2952.46 3.92 9.64 754.14 2.46

3.0×106 4156.69 5.13 8.82 809.92 1.72

3.5×106 5527.96 6.26 13.77 883.37 2.20

4.0×106 6737.97 7.57 15.20 890.70 2.01
Complete 7238.70 7.58 17.18 955.23 2.27

Table 1. Execution results and speedups.

performance in the transformation phase would be improved reaching a speedup of 3.89
w.r.t. the out-place mode and speedup of 1, 195 w.r.t. ATL.

Regarding the gain of in-place MTs in LinTra w.r.t. the number of cores involved in
the transformation, the speedups of using only one core w.r.t. using four, eight, twelve
and sixteen are 1.19, 1.62, 1.97, 3.24, respectively.

We also planned to execute and compare this transformation with the original ATL
virtual machine. However, although it supports the refining mode it does not support the
imperative block, which is applied in the particular transformation used in this study.

Regarding the out-place transformation developed in LinTra, it explicitly specifies
that all elements that are not modified must be copied, together with their properties.
The out-place transformation counts on 3, 302 lines of Java code (we generated the code
for the identity transformation using Xtend 6 and adapted the corresponding code to fit
the needs of the Public2Private transformation), while the in-place transformation has
only 194 lines.

For answering the two RQs stated above, we can first conclude that the parallel
execution of in-place transformations reduces the execution time compared to using se-
quential execution and that the execution time can be further improved by adding more
cores. Second, for typical in-place transformation problems, in-place transformation
implementations are more efficiently executed than their equivalent out-place transfor-
mations using parallelization in both executions.

4.4 Threats to Validity

In this section, we elaborate on several factors that may jeopardize the validity of our
results.

Internal validity – Are there factors which might affect the results of this experi-
ment? The performance measures we have obtained directly relate to the experiment
we have used for the evaluation. Therefore, if we had used different experiments other
than the Public2Private transformation then the speedups between the executions of the
different implementations would have probably been different. Besides, we have gen-
erated 11 smaller sample source models. Should we have generated different models,

6 https://eclipse.org/xtend/
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the results in Table 1 would also be different. As another threat, we have decided to
use the executions after the 5th one in order to avoid the possible influence of the VM
warming-up phase. However, if after the 5th execution the VM has not finished warm-
ing up, our results are then influenced. Finally, we are quite confident that we have
correctly written the equivalent transformation in ATL due to our expertise with such
language. Nevertheless, there may exist tiny differences which may have an influence
on the execution times.

External validity – To what extent is it possible to generalize the findings? As a proof
of concept of our approach, we have compared the execution times of our approach
with the ATL implementation executed with the EMFTVM engine. We have chosen
ATL for the comparison study because we have enriched LinTra with the same in-place
semantics that ATL has. Therefore, since our study only compares LinTra and ATL, our
results cannot be generalized for all non-recursive engines.

5 Related Work

In this paper, we focus on in-place model transformations running in batch mode. How-
ever, to deal with large models, orthogonal techniques may be applied as well. Es-
pecially, two scenarios have been discussed in the past in the context of speeding-up
model transformation executions. First, if an output model already exists from a previ-
ous transformation run for a given input model, only the changes in the input model are
propagated to the output model. Second, if only a part of the output model is needed by
a consumer, only this part is produced while other elements are produced just-in-time.
For the former scenario, incremental transformations [28–30] have been introduced,
while for the latter lazy transformations [31] have been proposed.

An important line of research for executing transformations in parallel is the work
on critical pair analysis [22] from the field of graph transformations as discussed in
Section 3. This work has been originally targeted to transformation formalisms that do
have some freedom for choosing in which order to apply the rules. Rules that are not
in an explicit ordering are considered to be executed in parallel if no conflict is stat-
ically computed. However, most existing execution engines follow a pseudo-parallel
execution of the rules, but there are already some approaches emerging which consider
the execution of graph transformations in a recursive way on top of multi-core plat-
forms [12, 13, 32]. A closer comparison concerning the commonalities and differences
of recursive and non-recursive in-place semantics concerning parallelism is considered
as subject for future work.

The performance of model transformations is considered as an integral research
challenge in MDE [33]. For instance, Amstel et al. [9] considered the runtime perfor-
mance of transformations written in ATL and in QVT. In [34], several implementation
variants using ATL, e.g., using either imperative constructs or declarative constructs,
of the same transformation scenario have been considered and their different runtime
performance has been compared. However, these works only consider the traditional
execution engines following a sequential rule application approach. One line of work
we are aware of dealing with the parallel execution of ATL transformations is [35],
where Clasen et al. outlined several research challenges when transforming models in
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the cloud. A follow-up work is presented in Tisi et al. [36] where a parallel transforma-
tion engine for ATL is presented. However, they only consider out-place transforma-
tions while we tackled the parallel execution of in-place transformations.

6 Conclusion and Future Work

We have presented an extension for LinTra that allows the parallel execution of in-
place model transformations. We have shown with experiments that the performance
is improved w.r.t. other in-place MT engines and that in cases where in-place trans-
formations can be achieved also by means of out-place transformations, the in-place
transformations provide better performance and usability.

There are several lines of future work. First, we plan to provide a new in-place ex-
ecution mode that supports recursive matchings. Second, we plan to extend our set of
primitives so that in-place transformations written in any MT language may be com-
piled to and executed with LinTra.
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Abstract.  

Fragmented data management is commonplace for handling development 

and production data in large organizations today. While automated configura-

tion and build mechanisms have made the implementation data more integrated, 

on higher levels of abstraction data is still fragmented into silos such as files or 

isolated databases. In the recent years, many companies, including a large num-

ber of automotive corporations, have realized the potential of integrating high-

level data when it comes to saving cost, lowering time to market, increasing the 

efficiency of the processes, and increasing the quality of products. To achieve 

the integration, many initiatives on tool provider level and on standardization 

level have started. OSLC is one example of underlying architecture to enable 

integration of data that is stored in a distributed fashion. Systemite has more 

than 15 years of experience in central integrated data management, largely in 

the automotive industry. In this paper, we discuss our experience on some of the 

challenges that we have faced during the past years when it comes to integrating 

model-based and fine-grained data. Finally, we provide two approaches to 

move forward towards open ecosystems for tool interoperability. 

Keywords: Model-based information management, tool interoperability, inte-

grated information management, OSLC, meta modeling  

1 Introduction 

In most industries the predominant way of managing the complexity of product and 

process data during development is still the use of a file based approach, where data is 

fragmented into multitudes of computer files. As the amount of data increases and the 

nature of the products and processes become more complex, a new and separate type 

of complexity emerges from this file based approach that is not related to the com-

plexity of the product and the organization. This complexity is a result of the scattered 

data. Finding the correct and up to date data in a large organization with thousands of 

documents can be a cumbersome task that can consume 14-30% of an engineer’s time 

[1, 2, 3]. Finding the right version of the right data with a high confidence in the sea 

of data produced by parallel projects and historic data is often an impossible task. At 

the same time, using incorrect and obsolete data will produce inconsistencies that 

decrease the quality of the product or raise the verification costs. 
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As the products, processes, and development and manufacturing data becomes 

more complex, the cost of fragmenting data into files or other silos increases. This 

cost will rise as a result of difficulties to keep the data up to date in several files or 

several databases. At the same time organizations need to perform increasingly ad-

vanced analysis over the silo border, not the least as a result of external requirements 

such as safety standards or legal requirements. Another need from a process perspec-

tive is to have a realistic and correct view of the progress of large projects that is 

based on more reliable data than estimations. The need and the trend is clear that or-

ganizations are moving more towards generation of reports, analysis, visualization, 

and views of data instead of manually creating them. 

An example that stresses the need for efficient data management is testing of large 

systems. The challenge here is that the results of several processes meet and touch in 

the testing activities; the test cases, the specifications that are used as references for 

the test cases, the artifacts comprising the System Under Test, the test environment 

and equipment to mention the most important. The realization of individual artifacts is 

typically uncorrelated, on the scale of time relevant for testing activities: new artifacts 

arrive every day, requirements and test cases constantly change, and regression tests 

have to be performed daily. The rate of change means that formal waterfall, baseline 

based configuration management is not effective nor efficient, since there will be 

many changes included within each iteration, between each formal baseline. This rate 

of change means that the test data representing the developed system will change 

frequently. This also means that defining configurations based on labels and perform-

ing check-out, check-in, and merge operations required for file based configuration 

management is not adequate. 

These are just a few of the challenges that organizations are facing and all of these 

challenges point to the need for traversing the data not only inside one information 

silo, but over the borders of the silos (tools, files, databases). Therefore, there are 

many industrial initiatives to facilitate the interoperability between tools. The 

CRYSTAL project
1
 is one of these initiatives. Crystal aims at standardizing interoper-

ability between tools and integration of product and process information relying on 

the architecture of Open Services for Lifecycle Collaboration (OSLC)
2
. OSLC is an 

open community that exists to define specifications and mechanisms to integrate dis-

joint tools and workflows. The purpose of the integration is to save time and money 

through integrating data in different tools with the aim to keep the data more con-

sistent and transparent over the borders of different tools. The underlying mechanism 

in OSLC is inspired by the web architecture in the sense that it is distributed and link 

based. 

Systemite is a company with more than 15 years of experience in integrated data 

management. The company has an extensive experience in managing development 

data in the embedded and especially the automotive industry. Systemite provides a 

product called SystemWeaver is a model-based data management tool where all data 

that is stored or linked exists in a context and is integrated with its surrounding. The 

                                                           
1  http://www.crystal-artemis.eu/ 
2  http://open-services.net/ 
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cornerstone and basic philosophy of SystemWeaver is to keep data integrated, tracea-

ble, and consistent while it provides a real-time and high performance platform for 

engineers and developers to enter and view data in its context in contrast to fragment-

ing data in different databases based on the type of data (for instance requirements 

and tests). At the same time the collaborative, high performance and scalability aspect 

are essential parts of the SystemWeaver platform. In our opinion, neglecting any of 

these aspects renders an industrial solution a liability rather than a resource as the 

quantity and complexity of data and organizations increase. 

As the industry moves towards more integrated strategies for data management, we 

want to discuss some of the challenges in the area of data and share our experience on 

some of the obstacles that the industry needs to overcome to unleash more of the po-

tentials of integrated data management. 

2 Structured Data Management 

The idea to manage system and product models in structured databases is not new. In 

the early 80's there were the CASE tools that relied on a centralized data dictionary or 

database server to manage and give access to the model data, which was typically 

developed according to some structured analysis and design methodology. (Example: 

Teamwork3). These tools were typically expensive and required the use of networked 

so called workstations, the high spec computers of the time. The high cost limited the 

use of the tools to specific, high margin industries such as military or aerospace. The 

arrival of PCs that offered low cost computing power coincided with the development 

of object oriented (OO) methods and tools such as Rational ROSE4. Frameworks of 

the 90s that relied on centralized data dictionaries, like the AD/Cycle of IBM or the 

open standard PCTE5 (Portable Common Tools Environment) were never used wide-

ly and were all ousted by the new object oriented tools running on the inexpensive 

PCs. A common feature of most of this type of tools, apart from being OO, was that 

they relied on storing and managing the model in computer files. This made the tools 

accessible when used in small projects, but the use of computer files also introduces 

the complications described in this paper. Throughout this period software develop-

ment has remained a file based affair. Even modern ALM (Application Lifecycle 

Management) solutions manage the program source code as computer files, although 

information like change requests and configurations are managed with a database 

approach.  

A common industrial method to deal with complexity is to minimize dependencies 

and interactions between subsystems, so that these can be largely developed inde-

pendently. This practice of development on the sub system level leads to problems 

like sub-optimization, since analysis on the system level becomes difficult when all 

data is hidden on the sub system level. Any changes that need to break the subsystem 

barrier also tend to be very difficult to handle, calling for negotiation between sepa-

                                                           
3  Keysight Technologies 
4  IBM 
5  ISO/IEC 13719-1 

65



rate development teams. Integration is not done until the subsystems have been devel-

oped, leading to late discovery of integration problems.  

A special characteristic of configuration management of software is that the focus 

of the system generation (build) process is to compile and link single executables. It is 

indeed possible to extend the generation process to higher levels to collections of 

executables. However, since these higher level configurations do not have any specif-

ic semantics, from the perspective of the single executable and its software, they are 

rarely, if ever, used. Even when the development is according to concepts that support 

system level description and composability aspects, like AUTOSAR
6
, the detailed 

development is today done on the subsystem (Electronic Control Unit) level. A reason 

for this is the lack of tool support for collaboration, configuration management and 

integration of data on the system level. Data is instead managed in multitudes of com-

puter files, according to state-of-the-art software development practice. Another rea-

son for the late integration is that the organizations responsible for the development of 

systems (and subsystems) are themselves organized in a way similar to the structure 

of the fragmented data. If you organize your system according to the technology re-

quired for the different parts, you probably have a development organization made up 

in the same way. This can even mean that there is actually no one in the organization 

responsible for the system level aspects. If the development of the subsystems is done 

by separate corporations, which is common in the automotive world, this situation 

gets even more accentuated.  

3 Fragmented Data Management 

According to our experience, file based data management is by far the most common 

way of handling data in the industry. This also applies to industries such as automo-

tive that are more mature in data management. One reason for the spread of the file 

based approach is that many development tools still store their data in files, and the 

scale of individual development activities is small enough to be carried out in the 

traditional approach. However, the growing scale of systems like automotive elec-

tric/electronic systems combined with tight schedules in large development projects, 

and the need for integration and collaboration between different development activi-

ties has made the traditional approaches less feasible.  

In traditional file based development individual artifacts are defined in separate 

files. File based versioning can keep track of changes and versions of such files, while 

also offering basic configuration support, usually using some label mechanism, where 

different files in a configuration are tagged with a label representing the configura-

tion. A limitation with this approach is that the actual system configuration has to be 

built outside the versioning system, using some build script/mechanism, like the tradi-

tional ‘make’ command for software. This approach works well for development of 

software where an individual developer can develop a module of the software con-

tained in a file, for a period of hours or days. For a complex system, or system-of-

                                                           
6  http://www.autosar.org/ 
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system context, this level of granularity and level of collaboration becomes a bottle-

neck. 

Many companies use tools for managing specific types of data such as require-

ments, tests, designs, or change requests. These tools are another source of fragmenta-

tion as they operate under the paradigm of information silos. Information silos have 

no or limited connection to their surrounding and are not aware of their organizational 

context. We call this approach silo-based information management tools. The data in 

these tools is stored on a finer granularity level than a file, which enables configura-

tion and version management on a more detailed level than a file. Organizations use 

these tools increasingly to manage their data.  

4 Integrated Data Management 

As systems and systems of systems become larger and more complex, organizations 

realize the significance and difficulty of keeping data consistent. Data is produced and 

developed in teams that are spread geographically, and work across different disci-

plines and domains. These teams still need to have a shared understanding of the 

product and the organization. At the same time the data changes increasingly rapidly. 

In this reality, duplicating data creates inconsistencies unless advanced mechanisms 

are put in place to keep all copies of the data in sync. Also, data does not exist in iso-

lation. Much of the value of the data comes from its context and how it is connected 

to other data. Hence, linking data sources instead of copying them is a natural solu-

tion, and there are clear trends, for instance the OSLC initiative, suggesting that in-

dustrial tool vendors are moving in this direction. IBM’s Jazz platform and PTC In-

tegrity are examples of this trend. 

A few of the advantages of contextual and longitudinal traceability of data is to: 

 trace the data back to the rationale and why it was created. This is important to 

assess the validity of data in a new context, 

 see how a component, product, or process has changed over time. Organizing his-

toric data is not only important in order to improve the future work, but it is in 

many cases valid since that data describes products that are still operating and be-

ing used in the market, 

 see how a component is connected in a specific context, 

 analyze the different uses of a component in different products, 

 analyze the impact of the change to a component or requirements or any data in the 

whole organization 

On a higher abstraction level one common solution to hold the data together and 

linked is to use a Product Lifecycle Management (PLM) approach where data is man-

aged in a coherent framework. In this approach the actual system configuration, for 

example as defined by requirements, test cases and test results, is explicit in the PLM 

system, with no need for a separate build process like the one used in software con-

figuration management. This means that data produced by test activities can update 

the configuration in real time, by direct access to the representation of the developed 
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system in the PLM system. This kind of real-time access and collaboration is not lim-

ited to human intellectual interaction, but can also be used for automated processes 

like regression tests. PLM systems typically do not manage development data such as 

software development data and test automation for complex embedded systems today. 

As the complexity of systems increases, the industry has no choice but to improve 

their handling of low level data and also improve the handling of high level Systems 

Engineering data in their PLM systems. In this reality, challenges arise to connect 

these two worlds into a holistic data management ecosystem that works on an indus-

trial level; solutions that not only can describe an organization, its information, and 

how the information is connected in one project or one product, but also over time. 

4.1 Tool Interoperability & Data exchange 

Intra-organizational communication across different groups, domains, and disciplines 

is a major challenge for many organizations. While fragmented data management 

strategies have tried to address this challenge, they often give rise to new types of 

complexity in form of consistency problems and major rework instead of reuse, by 

dividing the data into silos; no matter if the silo is a file or a database.  

Inter-organizational communication such as supplier management and customer 

management is another important aspect of most development and manufacturing 

processes. The medium for this communication is often files. In this reality, data 

management tools pack the relevant data into collections of files such as requirements 

or test specifications. These files are sent to the supplier and are either processed in 

their existing form or unpacked into receiving tools on the supplier side. Depending 

on the tools involved and the nature of the data, these supplier interaction files have 

different levels of formalism. Packing and unpacking data creates challenges to keep 

the data correct and consistent during round-trips. 

An alternative to packing data to files and unpacking on the receiver’s side is that 

customers and suppliers use the same tool or use tools that use the same formalism for 

their data (for example EAST-ADL
7
 or AUTOSAR) or even tools with formalisms 

that are transformable to each other. In this case the data can theoretically be ex-

changed with finer granularity than file. However, even this approach results in in-

consistency in the data, as the root problem is duplication of data on a storage level 

and not the format or type of data. Duplication of data cuts the relationship between 

the data and the context that gives rise to it and the context in which it was created. 

The disconnection limits the ability to keep the data consistent and coherent and it 

makes the data unanalyzable for any foreseeable future until big data analysis meth-

ods become advanced enough. 

One of the characteristics of complex systems, like embedded systems, is the mul-

titude of aspects that need concern during development. The classical (minimal) 

Product Data management (PDM) approach is to manage the main product structure 

of the system, where detailed data is kept as proprietary, black box representations for 

each block in the structure. This solution is established and functioning for CAD data 

                                                           
7  http://www.east-adl.info/ 
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of mechanical systems. While, for complex multi-disciplinary systems the product or 

module structure is one of the least important structure to be managed. Other more or 

equally important structures or viewpoints are, to mention a few: 

 Connectivity – interfaces between components defining responsibilities between 

them 

 Interaction – how the component interact through the interfaces in order to achieve 

desired functional properties. 

 Allocation – how functionality or responsibility is allocated to the physical struc-

ture 

 Dependability – how the system components and requirements fulfill the safety 

goals of the system 

 Requirements – how the properties of the system components and derived re-

quirements fulfill product requirements 

 Test and verification – the implementation status of the system as proven by test 

To enable interoperability of tools involved in the development process all the above 

structures must be open. Open means that they must be visible and accessible. More-

over their semantics must be defined. One efficient approach to achieve this is to 

share a common meta model, accepted by the product domain. The level of required 

interoperability, from the needed viewpoints (listed above), defines the level of granu-

larity of this openness, and a coherent domain specific definition of this openness for 

embedded (automotive) systems has been defined in the EAST-ADL meta model. The 

common formalism is also the cornerstone of the OSLC architecture.  

4.2 Challenges in connecting tools and silos 

As already discussed, linking distributed data in a way that is useful in an industrial 

context is a major challenge. Service-oriented architectures such as OSLC provide a 

possible first step of integration. In this step, loose links between two silos are creat-

ed. The source tool (Consumer) can retrieve specific data from an OSLC service con-

nected to a target tool (Provider) by providing the address to the desired data. This 

link can then be stored on the consumer side to establish a standing relationship with 

the provider.  

Shallow links and deeper contexts. These links can only be used for navigation. 

For instance, while it is useful to see what requirement a test comes from, it is not 

possible to see the connection between a requirement and design or implementation 

items while standing in a test tool. In other words, a limitation with these links be-

tween silos is that an item can only be aware of the links it directly owns and there-

fore the depth of the visible links from the perspective of each item and tool is one 

(connecting only two silos at a time). These links per se can therefore not be used to 

generate reports or analysis on deeper contexts or structures.  
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Consistency and up-to-date data. In a distributed linking architecture, links are di-

rected. Information about the target item and about the link are stored in the consumer 

tool. In this situation if the target item is deleted the link will be invalid. 

Furthermore, there are no standard versioning concepts across tools. Many tools 

lack any versioning and configuration concepts at all. The rest of the tools handle 

these concepts in a heterogeneous way. For example, if there is a new version availa-

ble of the target item, the consumer should be notified of the change. 

Following the same train of thought it is clear that while the concept of weak links 

to connect fragmented data is useful from a user’s perspective and enables the user to 

navigate quicker between two tools, there are many challenges to keep the links con-

sistent between two silos. If this aspect is not considered creating and maintaining 

OSLC-like links can be a costly and inefficient concept in an industrial setting. Links 

to growing and live data need frequent updating either by use of bidirectional links 

with a notification mechanism or by a centralized data hub that keeps track of all links 

between silos. 

Semantics and specifications. As mentioned earlier, predefined semantics and meta 

models is one solution to agree upon exchange and linking formats. However, in prac-

tice we see the difficulty to agree upon these semantics. Different organizations have 

different products and different processes, which leads to the need for different se-

mantics even inside the same domain. AUTOSAR is a good example of this phenom-

enon. Although AUTOSAR is a widely spread standard, different organizations have 

different versions and interpretations of AUTOSAR. Organizations want the flexibil-

ity to decide their own processes and formalisms. Meanwhile, too much flexibility 

makes the tool integration difficult if not impossible. 

SystemWeaver has a programmable meta model, which enables us to extend and 

integrate specific meta models in a single platform, rather than integrating different 

tools. Historically, we have built the interoperability in SystemWeaver, for tool and 

process integration, by defining a meta model to be used within SystemWeaver.  

By the use of industrially accepted meta models e.g. EAST-ADL and means of 

technical integration as offered by OSCL this level of integration can be achieved also 

between different tools. Note that provisions for technical integration are not enough 

since there must be a shared definition of the semantics of the shared data. 

5 Discussion and Conclusion 

A common way to solve a big problem is through the reductionist approach of break-

ing the problem down into smaller problems and dealing with them in isolation. Engi-

neers define responsibilities and interfaces of a system early in the project on a high 

level in systems engineering. Early definition of interfaces requires simple and man-

ageable interactions between subsystems. This leads to a development process with 

less need for integration of development data. Also, often we see that a problem is 

never really recognized as a problem until there is first a solution available. We think 

there is increasing awareness of the problems associated with fragmentation as dis-
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cussed in the paper. A main driver for this awareness is the need for more cost effi-

cient systems with higher performance, systems that require a higher degree of inte-

gration, and optimization of system properties. 

In this paper we discussed four main approaches to data management. These four 

approaches are presented in Fig. 1. The file based and information silos that lead to 

fragmented data are the most commonly used data management paradigms. 

 

Fig. 1. Four approaches to data management 

 

 

As discussed, there are initiatives and a sense of urgency in the tool provider com-

munity to go beyond fragmented data. This need and urgency is a strong pull from the 

customers since the cost and complexity of fragmenting data is becoming clearer as 

systems become more complex. One approach to remove the fragmentation is to store 

and link all the data in one tool and platform and another is to create an ecosystem 

where different tools can coexist and cooperate, similar to the development in the 

smart phone app industry. Although the latter alternative seems more feasible and 

desirable, an open and distributed approach to tool integration is a large endeavor that 

requires many years of research and development. Two research questions that need 

to be answered are: 

 How to create data links across tools to be able to traverse them in order to gener-

ate specifications and reports, export structured data to other tools, perform differ-
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ent types of analysis, and etc. The traversal requires awareness of data links exter-

nal to a single tool. 

 Harmonized formalism between tools in order for the links to have semantics and 

in order to be able to define structures for the generated specifications, reports and 

analysis.  

Tool interoperability has all the problems and challenges of classical data round-

tripping (state of the information between export and import). These challenges mani-

fest clearly in a weakly connected silo solution unless elaborate mechanisms are de-

ployed. We can see two main solutions to address these challenges in order to create 

an industrial tooling ecosystem: 

1. Bidirectional links with notification mechanism to keep the links between two silos 

consistent. The reason for bidirectionality is for the target item to be aware of the 

link in order to notify the source tool about potential changes.  

2. Centralized data hub where there is a central/federal source that is aware of inter-

tool links in an organization. In this case all tools need to notify the central hub 

about the relevant data changes and the central hub is in charge of keeping a con-

sistent and up-to-date view of the links. 

As discussed in the paper, there are many challenges such as versioning, configura-

tion management, and data consistency that need to be addressed for both of these 

solutions to work. For example, when it comes to versioning, a decision is whether to 

point to the new version of the item or the old one. There are different types of links 

from a versioning perspective. A link that always refers to the latest version of an 

item, called floating link in SystemWeaver, or a link that points to a specific version 

of an item, called a stable Configuration Management (CM) controlled link. 

When these mechanism are in place and the organizations can be confident about the 

validity of the links the next step would be to use the created link infrastructure to do 

analysis and generate reports, visualizations, and synthesize data. In case of solution 

1, there is a need for peer-to-peer mechanism for generating reports that have data 

traces deeper than one link. According to our experience at Systemite, the ability to 

synthesis data that traverse deep structures is an important enabler for having fully 

generated reports and analysis and being confident about the correctness, complete-

ness, and consistency of the generated reports and analysis. 
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