
Beyond Information Silos

Challenges in Integrating Industrial Model-based Data

Ali Shahrokni, Jan Söderberg

ali.shahrokni@systemite.se, jan.soderberg@systemite.se

Abstract.

Fragmented data management is commonplace for handling development

and production data in large organizations today. While automated configura-

tion and build mechanisms have made the implementation data more integrated,

on higher levels of abstraction data is still fragmented into silos such as files or

isolated databases. In the recent years, many companies, including a large num-

ber of automotive corporations, have realized the potential of integrating high-

level data when it comes to saving cost, lowering time to market, increasing the

efficiency of the processes, and increasing the quality of products. To achieve

the integration, many initiatives on tool provider level and on standardization

level have started. OSLC is one example of underlying architecture to enable

integration of data that is stored in a distributed fashion. Systemite has more

than 15 years of experience in central integrated data management, largely in

the automotive industry. In this paper, we discuss our experience on some of the

challenges that we have faced during the past years when it comes to integrating

model-based and fine-grained data. Finally, we provide two approaches to

move forward towards open ecosystems for tool interoperability.

Keywords: Model-based information management, tool interoperability, inte-

grated information management, OSLC, meta modeling

1 Introduction

In most industries the predominant way of managing the complexity of product and

process data during development is still the use of a file based approach, where data is

fragmented into multitudes of computer files. As the amount of data increases and the

nature of the products and processes become more complex, a new and separate type

of complexity emerges from this file based approach that is not related to the com-

plexity of the product and the organization. This complexity is a result of the scattered

data. Finding the correct and up to date data in a large organization with thousands of

documents can be a cumbersome task that can consume 14-30% of an engineer’s time

[1, 2, 3]. Finding the right version of the right data with a high confidence in the sea

of data produced by parallel projects and historic data is often an impossible task. At

the same time, using incorrect and obsolete data will produce inconsistencies that

decrease the quality of the product or raise the verification costs.

mailto:ali.shahrokni@systemite.se

As the products, processes, and development and manufacturing data becomes

more complex, the cost of fragmenting data into files or other silos increases. This

cost will rise as a result of difficulties to keep the data up to date in several files or

several databases. At the same time organizations need to perform increasingly ad-

vanced analysis over the silo border, not the least as a result of external requirements

such as safety standards or legal requirements. Another need from a process perspec-

tive is to have a realistic and correct view of the progress of large projects that is

based on more reliable data than estimations. The need and the trend is clear that or-

ganizations are moving more towards generation of reports, analysis, visualization,

and views of data instead of manually creating them.

An example that stresses the need for efficient data management is testing of large

systems. The challenge here is that the results of several processes meet and touch in

the testing activities; the test cases, the specifications that are used as references for

the test cases, the artifacts comprising the System Under Test, the test environment

and equipment to mention the most important. The realization of individual artifacts is

typically uncorrelated, on the scale of time relevant for testing activities: new artifacts

arrive every day, requirements and test cases constantly change, and regression tests

have to be performed daily. The rate of change means that formal waterfall, baseline

based configuration management is not effective nor efficient, since there will be

many changes included within each iteration, between each formal baseline. This rate

of change means that the test data representing the developed system will change

frequently. This also means that defining configurations based on labels and perform-

ing check-out, check-in, and merge operations required for file based configuration

management is not adequate.

These are just a few of the challenges that organizations are facing and all of these

challenges point to the need for traversing the data not only inside one information

silo, but over the borders of the silos (tools, files, databases). Therefore, there are

many industrial initiatives to facilitate the interoperability between tools. The

CRYSTAL project
1
 is one of these initiatives. Crystal aims at standardizing interoper-

ability between tools and integration of product and process information relying on

the architecture of Open Services for Lifecycle Collaboration (OSLC)
2
. OSLC is an

open community that exists to define specifications and mechanisms to integrate dis-

joint tools and workflows. The purpose of the integration is to save time and money

through integrating data in different tools with the aim to keep the data more con-

sistent and transparent over the borders of different tools. The underlying mechanism

in OSLC is inspired by the web architecture in the sense that it is distributed and link

based.

Systemite is a company with more than 15 years of experience in integrated data

management. The company has an extensive experience in managing development

data in the embedded and especially the automotive industry. Systemite provides a

product called SystemWeaver is a model-based data management tool where all data

that is stored or linked exists in a context and is integrated with its surrounding. The

1 http://www.crystal-artemis.eu/
2 http://open-services.net/

cornerstone and basic philosophy of SystemWeaver is to keep data integrated, tracea-

ble, and consistent while it provides a real-time and high performance platform for

engineers and developers to enter and view data in its context in contrast to fragment-

ing data in different databases based on the type of data (for instance requirements

and tests). At the same time the collaborative, high performance and scalability aspect

are essential parts of the SystemWeaver platform. In our opinion, neglecting any of

these aspects renders an industrial solution a liability rather than a resource as the

quantity and complexity of data and organizations increase.

As the industry moves towards more integrated strategies for data management, we

want to discuss some of the challenges in the area of data and share our experience on

some of the obstacles that the industry needs to overcome to unleash more of the po-

tentials of integrated data management.

2 Structured Data Management

The idea to manage system and product models in structured databases is not new. In

the early 80's there were the CASE tools that relied on a centralized data dictionary or

database server to manage and give access to the model data, which was typically

developed according to some structured analysis and design methodology. (Example:

Teamwork3). These tools were typically expensive and required the use of networked

so called workstations, the high spec computers of the time. The high cost limited the

use of the tools to specific, high margin industries such as military or aerospace. The

arrival of PCs that offered low cost computing power coincided with the development

of object oriented (OO) methods and tools such as Rational ROSE4. Frameworks of

the 90s that relied on centralized data dictionaries, like the AD/Cycle of IBM or the

open standard PCTE5 (Portable Common Tools Environment) were never used wide-

ly and were all ousted by the new object oriented tools running on the inexpensive

PCs. A common feature of most of this type of tools, apart from being OO, was that

they relied on storing and managing the model in computer files. This made the tools

accessible when used in small projects, but the use of computer files also introduces

the complications described in this paper. Throughout this period software develop-

ment has remained a file based affair. Even modern ALM (Application Lifecycle

Management) solutions manage the program source code as computer files, although

information like change requests and configurations are managed with a database

approach.

A common industrial method to deal with complexity is to minimize dependencies

and interactions between subsystems, so that these can be largely developed inde-

pendently. This practice of development on the sub system level leads to problems

like sub-optimization, since analysis on the system level becomes difficult when all

data is hidden on the sub system level. Any changes that need to break the subsystem

barrier also tend to be very difficult to handle, calling for negotiation between sepa-

3 Keysight Technologies
4 IBM
5 ISO/IEC 13719-1

rate development teams. Integration is not done until the subsystems have been devel-

oped, leading to late discovery of integration problems.

A special characteristic of configuration management of software is that the focus

of the system generation (build) process is to compile and link single executables. It is

indeed possible to extend the generation process to higher levels to collections of

executables. However, since these higher level configurations do not have any specif-

ic semantics, from the perspective of the single executable and its software, they are

rarely, if ever, used. Even when the development is according to concepts that support

system level description and composability aspects, like AUTOSAR
6
, the detailed

development is today done on the subsystem (Electronic Control Unit) level. A reason

for this is the lack of tool support for collaboration, configuration management and

integration of data on the system level. Data is instead managed in multitudes of com-

puter files, according to state-of-the-art software development practice. Another rea-

son for the late integration is that the organizations responsible for the development of

systems (and subsystems) are themselves organized in a way similar to the structure

of the fragmented data. If you organize your system according to the technology re-

quired for the different parts, you probably have a development organization made up

in the same way. This can even mean that there is actually no one in the organization

responsible for the system level aspects. If the development of the subsystems is done

by separate corporations, which is common in the automotive world, this situation

gets even more accentuated.

3 Fragmented Data Management

According to our experience, file based data management is by far the most common

way of handling data in the industry. This also applies to industries such as automo-

tive that are more mature in data management. One reason for the spread of the file

based approach is that many development tools still store their data in files, and the

scale of individual development activities is small enough to be carried out in the

traditional approach. However, the growing scale of systems like automotive elec-

tric/electronic systems combined with tight schedules in large development projects,

and the need for integration and collaboration between different development activi-

ties has made the traditional approaches less feasible.

In traditional file based development individual artifacts are defined in separate

files. File based versioning can keep track of changes and versions of such files, while

also offering basic configuration support, usually using some label mechanism, where

different files in a configuration are tagged with a label representing the configura-

tion. A limitation with this approach is that the actual system configuration has to be

built outside the versioning system, using some build script/mechanism, like the tradi-

tional ‘make’ command for software. This approach works well for development of

software where an individual developer can develop a module of the software con-

tained in a file, for a period of hours or days. For a complex system, or system-of-

6 http://www.autosar.org/

system context, this level of granularity and level of collaboration becomes a bottle-

neck.

Many companies use tools for managing specific types of data such as require-

ments, tests, designs, or change requests. These tools are another source of fragmenta-

tion as they operate under the paradigm of information silos. Information silos have

no or limited connection to their surrounding and are not aware of their organizational

context. We call this approach silo-based information management tools. The data in

these tools is stored on a finer granularity level than a file, which enables configura-

tion and version management on a more detailed level than a file. Organizations use

these tools increasingly to manage their data.

4 Integrated Data Management

As systems and systems of systems become larger and more complex, organizations

realize the significance and difficulty of keeping data consistent. Data is produced and

developed in teams that are spread geographically, and work across different disci-

plines and domains. These teams still need to have a shared understanding of the

product and the organization. At the same time the data changes increasingly rapidly.

In this reality, duplicating data creates inconsistencies unless advanced mechanisms

are put in place to keep all copies of the data in sync. Also, data does not exist in iso-

lation. Much of the value of the data comes from its context and how it is connected

to other data. Hence, linking data sources instead of copying them is a natural solu-

tion, and there are clear trends, for instance the OSLC initiative, suggesting that in-

dustrial tool vendors are moving in this direction. IBM’s Jazz platform and PTC In-

tegrity are examples of this trend.

A few of the advantages of contextual and longitudinal traceability of data is to:

 trace the data back to the rationale and why it was created. This is important to

assess the validity of data in a new context,

 see how a component, product, or process has changed over time. Organizing his-

toric data is not only important in order to improve the future work, but it is in

many cases valid since that data describes products that are still operating and be-

ing used in the market,

 see how a component is connected in a specific context,

 analyze the different uses of a component in different products,

 analyze the impact of the change to a component or requirements or any data in the

whole organization

On a higher abstraction level one common solution to hold the data together and

linked is to use a Product Lifecycle Management (PLM) approach where data is man-

aged in a coherent framework. In this approach the actual system configuration, for

example as defined by requirements, test cases and test results, is explicit in the PLM

system, with no need for a separate build process like the one used in software con-

figuration management. This means that data produced by test activities can update

the configuration in real time, by direct access to the representation of the developed

system in the PLM system. This kind of real-time access and collaboration is not lim-

ited to human intellectual interaction, but can also be used for automated processes

like regression tests. PLM systems typically do not manage development data such as

software development data and test automation for complex embedded systems today.

As the complexity of systems increases, the industry has no choice but to improve

their handling of low level data and also improve the handling of high level Systems

Engineering data in their PLM systems. In this reality, challenges arise to connect

these two worlds into a holistic data management ecosystem that works on an indus-

trial level; solutions that not only can describe an organization, its information, and

how the information is connected in one project or one product, but also over time.

4.1 Tool Interoperability & Data exchange

Intra-organizational communication across different groups, domains, and disciplines

is a major challenge for many organizations. While fragmented data management

strategies have tried to address this challenge, they often give rise to new types of

complexity in form of consistency problems and major rework instead of reuse, by

dividing the data into silos; no matter if the silo is a file or a database.

Inter-organizational communication such as supplier management and customer

management is another important aspect of most development and manufacturing

processes. The medium for this communication is often files. In this reality, data

management tools pack the relevant data into collections of files such as requirements

or test specifications. These files are sent to the supplier and are either processed in

their existing form or unpacked into receiving tools on the supplier side. Depending

on the tools involved and the nature of the data, these supplier interaction files have

different levels of formalism. Packing and unpacking data creates challenges to keep

the data correct and consistent during round-trips.

An alternative to packing data to files and unpacking on the receiver’s side is that

customers and suppliers use the same tool or use tools that use the same formalism for

their data (for example EAST-ADL
7
 or AUTOSAR) or even tools with formalisms

that are transformable to each other. In this case the data can theoretically be ex-

changed with finer granularity than file. However, even this approach results in in-

consistency in the data, as the root problem is duplication of data on a storage level

and not the format or type of data. Duplication of data cuts the relationship between

the data and the context that gives rise to it and the context in which it was created.

The disconnection limits the ability to keep the data consistent and coherent and it

makes the data unanalyzable for any foreseeable future until big data analysis meth-

ods become advanced enough.

One of the characteristics of complex systems, like embedded systems, is the mul-

titude of aspects that need concern during development. The classical (minimal)

Product Data management (PDM) approach is to manage the main product structure

of the system, where detailed data is kept as proprietary, black box representations for

each block in the structure. This solution is established and functioning for CAD data

7 http://www.east-adl.info/

of mechanical systems. While, for complex multi-disciplinary systems the product or

module structure is one of the least important structure to be managed. Other more or

equally important structures or viewpoints are, to mention a few:

 Connectivity – interfaces between components defining responsibilities between

them

 Interaction – how the component interact through the interfaces in order to achieve

desired functional properties.

 Allocation – how functionality or responsibility is allocated to the physical struc-

ture

 Dependability – how the system components and requirements fulfill the safety

goals of the system

 Requirements – how the properties of the system components and derived re-

quirements fulfill product requirements

 Test and verification – the implementation status of the system as proven by test

To enable interoperability of tools involved in the development process all the above

structures must be open. Open means that they must be visible and accessible. More-

over their semantics must be defined. One efficient approach to achieve this is to

share a common meta model, accepted by the product domain. The level of required

interoperability, from the needed viewpoints (listed above), defines the level of granu-

larity of this openness, and a coherent domain specific definition of this openness for

embedded (automotive) systems has been defined in the EAST-ADL meta model. The

common formalism is also the cornerstone of the OSLC architecture.

4.2 Challenges in connecting tools and silos

As already discussed, linking distributed data in a way that is useful in an industrial

context is a major challenge. Service-oriented architectures such as OSLC provide a

possible first step of integration. In this step, loose links between two silos are creat-

ed. The source tool (Consumer) can retrieve specific data from an OSLC service con-

nected to a target tool (Provider) by providing the address to the desired data. This

link can then be stored on the consumer side to establish a standing relationship with

the provider.

Shallow links and deeper contexts. These links can only be used for navigation.

For instance, while it is useful to see what requirement a test comes from, it is not

possible to see the connection between a requirement and design or implementation

items while standing in a test tool. In other words, a limitation with these links be-

tween silos is that an item can only be aware of the links it directly owns and there-

fore the depth of the visible links from the perspective of each item and tool is one

(connecting only two silos at a time). These links per se can therefore not be used to

generate reports or analysis on deeper contexts or structures.

Consistency and up-to-date data. In a distributed linking architecture, links are di-

rected. Information about the target item and about the link are stored in the consumer

tool. In this situation if the target item is deleted the link will be invalid.

Furthermore, there are no standard versioning concepts across tools. Many tools

lack any versioning and configuration concepts at all. The rest of the tools handle

these concepts in a heterogeneous way. For example, if there is a new version availa-

ble of the target item, the consumer should be notified of the change.

Following the same train of thought it is clear that while the concept of weak links

to connect fragmented data is useful from a user’s perspective and enables the user to

navigate quicker between two tools, there are many challenges to keep the links con-

sistent between two silos. If this aspect is not considered creating and maintaining

OSLC-like links can be a costly and inefficient concept in an industrial setting. Links

to growing and live data need frequent updating either by use of bidirectional links

with a notification mechanism or by a centralized data hub that keeps track of all links

between silos.

Semantics and specifications. As mentioned earlier, predefined semantics and meta

models is one solution to agree upon exchange and linking formats. However, in prac-

tice we see the difficulty to agree upon these semantics. Different organizations have

different products and different processes, which leads to the need for different se-

mantics even inside the same domain. AUTOSAR is a good example of this phenom-

enon. Although AUTOSAR is a widely spread standard, different organizations have

different versions and interpretations of AUTOSAR. Organizations want the flexibil-

ity to decide their own processes and formalisms. Meanwhile, too much flexibility

makes the tool integration difficult if not impossible.

SystemWeaver has a programmable meta model, which enables us to extend and

integrate specific meta models in a single platform, rather than integrating different

tools. Historically, we have built the interoperability in SystemWeaver, for tool and

process integration, by defining a meta model to be used within SystemWeaver.

By the use of industrially accepted meta models e.g. EAST-ADL and means of

technical integration as offered by OSCL this level of integration can be achieved also

between different tools. Note that provisions for technical integration are not enough

since there must be a shared definition of the semantics of the shared data.

5 Discussion and Conclusion

A common way to solve a big problem is through the reductionist approach of break-

ing the problem down into smaller problems and dealing with them in isolation. Engi-

neers define responsibilities and interfaces of a system early in the project on a high

level in systems engineering. Early definition of interfaces requires simple and man-

ageable interactions between subsystems. This leads to a development process with

less need for integration of development data. Also, often we see that a problem is

never really recognized as a problem until there is first a solution available. We think

there is increasing awareness of the problems associated with fragmentation as dis-

cussed in the paper. A main driver for this awareness is the need for more cost effi-

cient systems with higher performance, systems that require a higher degree of inte-

gration, and optimization of system properties.

In this paper we discussed four main approaches to data management. These four

approaches are presented in Fig. 1. The file based and information silos that lead to

fragmented data are the most commonly used data management paradigms.

Fig. 1. Four approaches to data management

As discussed, there are initiatives and a sense of urgency in the tool provider com-

munity to go beyond fragmented data. This need and urgency is a strong pull from the

customers since the cost and complexity of fragmenting data is becoming clearer as

systems become more complex. One approach to remove the fragmentation is to store

and link all the data in one tool and platform and another is to create an ecosystem

where different tools can coexist and cooperate, similar to the development in the

smart phone app industry. Although the latter alternative seems more feasible and

desirable, an open and distributed approach to tool integration is a large endeavor that

requires many years of research and development. Two research questions that need

to be answered are:

 How to create data links across tools to be able to traverse them in order to gener-

ate specifications and reports, export structured data to other tools, perform differ-

ent types of analysis, and etc. The traversal requires awareness of data links exter-

nal to a single tool.

 Harmonized formalism between tools in order for the links to have semantics and

in order to be able to define structures for the generated specifications, reports and

analysis.

Tool interoperability has all the problems and challenges of classical data round-

tripping (state of the information between export and import). These challenges mani-

fest clearly in a weakly connected silo solution unless elaborate mechanisms are de-

ployed. We can see two main solutions to address these challenges in order to create

an industrial tooling ecosystem:

1. Bidirectional links with notification mechanism to keep the links between two silos

consistent. The reason for bidirectionality is for the target item to be aware of the

link in order to notify the source tool about potential changes.

2. Centralized data hub where there is a central/federal source that is aware of inter-

tool links in an organization. In this case all tools need to notify the central hub

about the relevant data changes and the central hub is in charge of keeping a con-

sistent and up-to-date view of the links.

As discussed in the paper, there are many challenges such as versioning, configura-

tion management, and data consistency that need to be addressed for both of these

solutions to work. For example, when it comes to versioning, a decision is whether to

point to the new version of the item or the old one. There are different types of links

from a versioning perspective. A link that always refers to the latest version of an

item, called floating link in SystemWeaver, or a link that points to a specific version

of an item, called a stable Configuration Management (CM) controlled link.

When these mechanism are in place and the organizations can be confident about the

validity of the links the next step would be to use the created link infrastructure to do

analysis and generate reports, visualizations, and synthesize data. In case of solution

1, there is a need for peer-to-peer mechanism for generating reports that have data

traces deeper than one link. According to our experience at Systemite, the ability to

synthesis data that traverse deep structures is an important enabler for having fully

generated reports and analysis and being confident about the correctness, complete-

ness, and consistency of the generated reports and analysis.

References

1. Robinson, Mark A. "An empirical analysis of engineers' information behaviors. "Journal of

the American Society for Information Science and Technology 61.4 (2010): 640-658.

2. Culley, S. J. "Court, AW, and McMahon, CA, 1992," The information requirements of engi-

neering designers." Engineering Designer 18.3: 21-23.

3. Puttré, M. (1991, October). Product data management. Mechanical Engineering, 113(10),

81–83.

