Pedagogical agent models for massive online education

Matthew Yee-King and Mark d’Inverno
Department of Computing, Goldsmiths College
London, UK
m.yee-king@gold.ac.uk

Abstract

The effective implementation of Massively Open
Online Courses poses fascinating challenges. We
address two such challenges using an agent based
approach, employing formal specifications to artic-
ulate an agent design which can later be used for
software development. The challenges addressed
are: 1) How can a learner be provided with a
personalised learning experience? 2) How can a
learner make best use of the heterogenous com-
munity of humans and agents who co-habit the
virtual learning environment? We present formal
specifications for an open learner model, a learning
environment, learning plans and a personal learn-
ing agent. The open learner model represents the
learner as having current and desired skills and
knowledge and past and present learning plans. The
learning environment is an online platform afford-
ing learning tasks which can be carried out by indi-
viduals or communities of users and agents. Tasks
are connected together into learning plans, with pre
and post conditions. We demonstrate how the per-
sonal learning agent can find learning plans and
propose social connections for its user within a
system which affords a dynamic set of learning
plans and a range of human/ agent social relation-
ships, such as learner-teacher, learner-learner and
producer-commentator.

1 Introduction

2012 has been referred to as the ‘year of the MOOC’, the
massive, open, online course [Pappano, 2012]. Indeed one
of the authors of this paper was part of a team which deliv-
ered a course to an enrolled student body of around 160,000
in 2013 and 2014. The obvious problem with MOOC:s is that
there is a very high student to tutor ratio. This means it is not
feasible to provide students with direct tutor support when
they have problems with their learning and complex assess-
ments which cannot be automated become impractical. The
current solutions seem to be the use of forums and other so-
cial media wherein peer support can take place, and the use
of peer assessment techniques such as calibrated peer assess-
ment [Koller and Ng,]. Running our MOOC, we noticed that

the forum seemed to be an inefficient tool through which stu-
dents could find information, where the same questions would
be asked and answered repeatedly, and where the constant
churn pushed old answers away.! It was not clear if anyone
would bother to answer a given question, or who would be
the ideal person to answer it. Regarding the assessment, there
was a tendency to assess others’ work superficially - to simply
fulfil the most basic requirements of the peer assessment task.
This was probably an instance of strategic learning, where the
learner does the minimum to meet the apparent requirements.
Another problem is a high drop out rate on courses. For ex-
ample, we had around 10% of our 150.000 students still active
at the end of our MOOCs; Norvig and Thrun’s famous Stan-
ford AI CS211 course in 2011 went from 160,000 enrolments
to 20,000 completions [Rodriguez, 2012]. These figures im-
prove if we instead consider the number of students actively
accessing learning materials at the start of the course; in our
case, 100.000 becomes 36,000. So motivation to complete
the course is another area that needs work.

But how might one motivate a learner, given the particular
characteristics of a MOOC, i.e. the high learner to teacher ra-
tio, the presence of a large, heterogeneous peer group, the
distance, as opposed to on-campus learning aspect and so
on? Might motivation be amplified by leveraging the learner’s
peers - the social network? What might a ‘networked learner’
gain from being part of an active learning community? How
can the learner be made aware of the structure and members
of the community, and how that might help them achieve their
learning goals?

In summary, guidance for learners, feedback to learners (on
their work) and general learner motivation are areas for im-
provement for MOOCs. These are the key points we aim to
address in our wider research work. In this paper we present
our work on a representative component of this: the inven-
tion of a type of pedagogical agent called a personal learning
agent which can provide a more intuitive and efficient route
through the learning materials and information, and which
can help the learner to explore the network of other learners
to find help or to provide help and feedback to others.

'this is somewhat alleviated by up-and down-voting of questions
and answers but this is far from perfect

Pedagogical agents There is a significant literature around
pedagogical agents and there are many questions one might
ask when considering the design of pedagogical agents.

What is the purpose of the agent and is it pro-active, re-
active, conversational or argumentative? Skiar et al. present
a review of work where agents are used to supporting learn-
ing [Sklar and Richards, 2006]. The researchers define three
main trends in the field: pedagogical agents, peer learning
agents and demonstrating agents. According to Soliman and
Guetl, Intelligent Pedagogical Agents (IPAs) can help learn-
ers by ‘providing narrations ... creating adaptive dialogues
with the learner to improve learning situations, provide guid-
ance, resolve difficulties, and improve motivation’ [Soliman
and Guetl, 2010]. Quirino et al. implemented a case based
reasoning driven IPA for training medical students. They de-
fine the following important characteristics: domain-specific
knowledge, autonomy, communicability, learning, reactivity
and pro-activity, social skills, customisation, and learning
abilities [Quirino et al., 2009]. Magus et al. describe a math
tutoring game which includes a conversational agent [Mag-
nus et al., 2010]. They have explored aspects of the visual
embodiment of the agent as well as its conversational capa-
bilities. The conversation can occur in a a focused, on topic
mode mediated through multiple choice questions and a free,
off topic mode. Agents capable of argumentation have ap-
peared in the education technology literature. In 2009, Tao et
al. presented a pilot study where agents and learners engaged
in learning through argumentation around the topic of food
chains (e.g. tiger eats sheep eats grass) [Tao et al., 2009].
The user interacts with the agent through keyboard, mouse
and text to speech conversion (agent talks to learner) and the
agent is capable of engaging in various types of dialogue. The
researchers found preliminary evidence that the learners en-
joyed interacting with the arguing agent.

Is the agent an animated character? Lester et al. tri-
alled a 3D animated character with 100 middle school chil-
dren. They discuss the persona effect, which encompasses
the agent’s encouragement (of learners), utility, credibility,
and clarity, and which is much enhanced by the use of an
animated character [Lester et al., 1997]. In a subsequent sur-
vey of animated pedagogical agents, Johnson et al. provide a
list of technical issues for designers of animated pedagogical
agents to consider: interface to the environment, behavioural
building blocks, behaviour control. believability, emotion,
platform and networking Issues [Johnson ef al., 2000].

How competent is the agent and what is its role? Xiao et
al. empirically assessed the effect of pedagogical agent com-
petency where learners were learning how to use a text editor
supported by pedagogical agents with varying competency at
the task [Xiao er al., 2004]. Allowing users to choose the
competency of their agent improved objective performance.
Kim and Baylor present a study investigating the value of
pedagogical agents as learning companions (PALs) with de-
liberately varying competency levels and interaction modes.
They conclude that ‘PALs should be designed as highly com-
petent for learning contexts in which instructional goals focus
on knowledge and skill acquisition...in contexts where learn-
ers’ self-efficacy beliefs in the task are a major concern, less
competent PALs could be more effective’[Kim and Baylor,

2006]. Baylor et al. present an initial study where agents
take on different roles when supporting learners: Motivator,
Expert, or Mentor. More knowledgeable agents were more
credible and seemed to transfer more knowledge but motivat-
ing agents were more engaging [Baylor and Group, 2003].

What are the requirements for a pedagogical agent in a
large scale, social learning context? Leading towards our
interest in social learning, in [Spoelstra and Sklar, 2007],
an agent based approach is used to simulate interactions be-
tween learners within a group. A parameterised learner model
is presented which includes features such as ability, emo-
tion, motivation (inc. competitiveness), learning rate, under-
standing, ‘likeliness to help’ and progress. Instances of the
model are run in simulation and characteristics observed in
real groups of learners are observed, such as the importance
of group composition, team size and team rewards.

Research questions We have discussed our wider research
goals in the introduction: better pathways to and through in-
formation for learners, better feedback to learners (on their
work) and increasing learner motivation. In this paper, we
will address the following questions which fall within this
wider remit: How might one formally specify a human
learner to allow operations upon that information by an au-
tonomous agent? What kind of operations might be useful,
given the wider research goals?

2 Agent requirements

We will begin by framing the agent specification presented
later with some requirements for the functionality of the
agent. There are 4 key requirements: to store learner state,
to report learner state, to find learning plans and to pro-
pose social connections. Each of these requirements has sub-
requirements, as listed below:

1. Storing learner state:

(a) Storing the goals of a person

(b) Interpret the goals into desired skills and knowl-
edge

(c) Storing a person’s current skills and knowledge

(d) Storing a person’s current and previous plans

2. Reporting learner state:

(a) Reporting current state of goals and plans
(b) Reporting current state of knowledge and skills

(c) Reporting status of data/ content provided to and
from the community i.e. plans, feedback, feedback
agents, trust model

3. Plan finding:
(a) Propose plans whose pre-conditions match current
skills and knowledge

(b) Propose plans whose post-conditions (goals) match
a persons goals

(c) Generate evaluation data for plans based on users

(d) Propose plans which are successful, i.e. verified
post conditions

4. Agent finding:

(a) Propose social relationships/ connections to peo-
ple with similar goals/ skills/ knowledge (potential
peers, potential as they must actively agree to con-
nect to make a social relationship)

(b) Propose connections to people with similar (musi-
cal/ geographical/ etc.) data

(c) Propose connections to people who have related but
superior skills and knowledge (potential tutors), or
teaching goals. (I want to increase others’ knowl-
edge of scales on the guitar). These people might
be able to assign plans, for example.

3 Formal specification

In this section we will use the specification language Z to
develop the models of our agents, following the methodol-
ogy developed by Luck and d’Inverno [D’Inverno and Luck,
2003; Luck and D’Inverno, 1995].

Learner model

We begin our description by introducing our learner model.
The purpose of the learner model is to represent various as-
pects of a person operating within our learning environment.
There are two fypes which users of the system might want to
learn about or teach about. The specification remains neutral
about how they are encoded but this encoding might include
free text descriptions or formulae in predicate calculous, for
example.

[Skill, Knowledge]

As an example, a user might have the skill of playing the C
major scale and the knowledge which includes being able to
state which notes are in the scale of C major.

We then define Proficiency as the combination of skills
and knowledge, representing all that a person would poten-
tially wish to learn in music.

Proficiency := skills{(Skill)) | knowledge{{ Knowledge))

A particular person can be given a score which is an eval-
uation of their learning level regarding a particular skill or
knowledge element:

Score ==

Learning environment

We continue the description with some details about the
learning environment which learners, teachers and agents
will inhabit. For the purposes of our wider research, it is
specialised for music education, and it is designed around
a social, blended learning pedagogy wherein people upload
recordings of themselves playing instruments and other me-
dia items. Discussion and feedback can occur around the up-
loaded items. Within the environment, people and agents can
carry out tasks, where a task is something to be undertaken.

[Task]

We have identified 9 distinct tasks which can be carried out
within our learning environment.

TaskType ::= Practice | Listen | Makemusic |
Upload | Share | Annotate |
Question | Answer | Visualise

Earlier, we mentioned that feedback might be provided
about a media item. For the time being we define feedback as
a given set. It is possible to define feedback in terms of con-
structive and evaluative praise and criticism. However, these
are our first attempts at defining feedback and we will remain
neutral for the time being.

[Feedback]

We define evaluate to be a function which maps an profi-
ciency to a natural number, e.g. ‘I have evaluated the way you
have played C major as scoring a 5’.

\ evaluateproficiency : Proficiency — N

In the system the community may evaluate many different
aspects, such as feedback for example.

| evaluatefeedback : Feedback — N

Goals, Beliefs and Plans

As with the definition of the SMART Agent Frame-
work [D’Inverno and Luck, 2003] we take a goal to be a state
of affairs in the world that is to be achieved (by some agent).

[Goal]

The way that goals (or, equally, learning outcomes) are
achieved is through a workflow of tasks: a sequence of tasks
that have to be completed in order. We do not specify here
who determines whether the tasks have been accomplished
successfully or not because in general this could be a mixture
of the system, the user themselves, the community and/or a
teacher. Plans are typically specified in terms of what must be
true before they can be adopted, what is true after they have
been successfully completed, and the kinds of actions (or in
our language tasks) that have to be completed in order. Next
we define a plan to be a set of preconditions (the skills and
knowledge an agent must have before undertaking the plan)
and a set of post conditions (the new set of skills and knowl-
edge the agent will have after the plan). The predicate part
of the schema states that the intersection of the pre and post
conditions is necessarily empty.

Plan
pre : P Proficiency

post : P Proficiency
workflow : seq Task

pre N post = {}

In specifying this system, it is useful to be able to assert
that an element is optional. The following definitions pro-
vide for a new type, optional[T], for any existing type, T,
which consists of the empty set and singleton sets containing
elements of 7. The predicates, defined and undefined test
whether an element of optional[T] is defined (i.e. contains
an element of type T') or not (i.e. is the empty set), and the

function, the, extracts the element from a defined member of
optional[T.

optional[X] == {zs :PX | #zs < 1}

= [X]
defined _, undefined _ : P(optional[X])
the : optional[X] + X

Vs : optional[X] e
defined xs < #1s = 1 A
undefined xs < #xs = 0
Vs : optional[X] | defined zs o
thexs = (uz: X |z € xs)

Bool ::= True | False

Using this definition we can now specify the state of a plan.
The state of a plan can be thought of as a running instance of
a plan during the lifetime of a user’s activity. It means that
the plan has been adopted to achieve a goal. In order to spec-
ify this we keep the information contained in the specifica-
tion of a plan using schema inclusion. We also state that if
the plan has been started but not finished there will be a cur-
rent task that the agent is currently undergoing. The predicate
part states that the current task must have been defined in the
workflow of the plan. By also defining a flag called finished
we can specify a plan state as follows.

— PlanInstance
Plan

current : optional| Task]
finished : Bool

thecurrent € (ran workflow)

The initial plan state (for any state schema the initial state
should be specified in Z) is where the plan has just been pro-
posed or adopted by a user.

—_Initial PlanInstance
PlanInstance

undefined current
finished = False

We are now in a position to define four specific sub-types
of the plan state as follows.

1. Proposed Plan. A plan which has been selected to
achieve a goal but which has not been started by the
agent. As no task has been started the current task is
set to undefined.

ProposedPlan
InitialPlanInstance

2. Active Plan. A plan which is ongoing. It has not been
completed and the current task is set to defined.

__ActivePlan
PlanInstance

defined current
finished = False

3. FailedPlan. This is a plan which has a defined task but
a flag set to finished. For example, this represents a sit-
uation where one of the tasks in the workflow of a plan
is too difficult for the user and the plan is abandoned by
the user.

__FailedPlan
PlanInstance

definedcurrent
finished = True

4. Completed Plan. The flag finished is set to true and the
current task becomes undefined.

__ CompletedPlan
PlanInstance

undefined current
finished = True

There are several operations that we could specify at the
level of the plan but the key one is finish task. Either this
leads to the plan being completed or the current place in the
work flow moves to the next task.

In the first case the specification looks like this:

__ FinishTask1
APlanInstance

current = {last(workflow)}
finished = False

undefined current’
finished' = False

In the second case like this:

__FinishTask2
APlanInstance

current # {last(workflow)}

finished = False

current’ = {workflow((workflow™ (the current)) + 1)}
finished' = False

The other is to instantiate a plan which essentially means
creating a PlanInstance in its initial state from a Plan.

instantiateplan : Plan — InitialPlanInstance

Vp : Plan; ps : InitialPlanInstance
| ps = instantiateplan(p) e
ps.pre = p.pre A ps.post
= p.post A\ ps.workflow = p.workflow

The (almost) inverse function of this is a function which
takes any PlanInstance and returns the plan.

recoverplan : PlanInstance — Plan

YV p : Plan; ps: PlanInstance | p = recoverplan(ps) e
ps.pre = p.pre N\
ps.post = p.post A ps.workflow = p.workflow

Beliefs

This is a representation of what the agent knows and what it
can do. Again we remain neutral on the representation.

[Belief]

The Personal Learning Agent
In the schema below we have the following definitions:

1. An agent has a set of goals at any stage which we call
desires (typically these are associated with learning out-
comes as described earlier in the document).

2. An agent has a set of beliefs. These refer to the informa-
tion which is stored about what the user knows or what
the user can do (skills).

3. An agent has an interpret function which takes a goal
and returns a set of proficiencies (skills and knowledge).
Note that the complexity of this function may vary as in
some cases goals may be expressed as a set of proficien-
cies directly and so this function becomes a simple iden-
tity function. However, in other situations this function
has to take a free text description and turn it into a set
of proficiencies. Clearly, in general no automatic pro-
cess can do this and such an operation will often be left
to the community. In which case we specify the agent’s
interpret function as a partial function.

4. An agent has a similar interpret function for beliefs
which maps its beliefs to a set of machine readable
(skills and knowledge).

5. intdesires is a set of proficiencies which can then be
used by the agent and the community to plan. Note
then, that interpreteddesires is made up of the auto-
matic function interpret of the agent, possibly the au-
tomatic interpretation of other agents, but also from hu-
man users in the music learning community.

6. intbeliefs is the analagous set of proficiencies which the
agent has recorded as known or accomplished by the
agent.

7. It is not unreasonable to suggest that all tasks are not
available to a user at all times and so the agent can record
which tasks are currently available to a user. (If a user
is offline, upload is not an available task. If a newcomer
joins a community then possibly they do not feel like
giving any feedback and so the agent can record that the
user is currently not offering this task.).

8. Then we define the set of plans which the agent knows
about (possibility learned from other agents). This is
where the agent contains its procedural knowledge about
what plans work in what situations to achieve which de-
sired proficiency.

9. The agent maintains a record of all of the plans that have
been completed and all of those which have failed.

10. There is a record of the intentions. This is a mapping
from a set of proficiencies (this set may only have one
proficiency in it of course) to the plan instance which
the agent has adopted to attain those proficiencies.

11.

12.

13.

Finally, we record all those interpreted desires for which
the agent has no active plan.

There are also two dummy variables that we can use
(which can be calculated from the variables described
so far but which aid us in the readability of the specifi-
cation)

We define a variable to store the tasks that the agent is
currently involved in (currenttasks) which can be cal-
culated as the union of the tasks from the current plans.

We define a variable to store the current plan instances
of the agent

Next we consider the constraints on the state of a personal
learning agent

1.

The interpreted desires are the result of applying the in-
terpret desire function to the desires.

The interpreted beliefs are the result of applying the in-
terpret desire function to the beliefs.

The intersection between interpreted desires and inter-
preted beliefs is an empty set, (in other words you can’t
desire a proficiency you already have).

If there is a plan for a subset of proficiencies then those
proficiencies must be contained in the the interpreted de-
sires.

. If there is a plan for one subset of proficiencies and a

plan for another distinct set of proficiencies then their
intersection is empty.

The unplanned desires are those interpreted desires for
which there is no intention.

. The current tasks are calculated from iterating the cur-

rent plans and accumulating the current tasks for each
plan.

The current plans are calculated by taking the range of
the intentions.

:[X’ Y]
map : (X = Y) — (seq X) — (seq Y)
mapset : (X - V)= (PX)— (PY)
Vi X—=>Y;2:X; zs,ys :seq X o

map f () = () A

map f (z) = (f z) A

map f (zs "~ ys) = map f s~ map f ys
Vi X =Y, zs:PXe

mapset f xs = {z : xs o fz}

__ PersonalLearningAgent
desires : P Goal
beliefs : P Belief
interpretdes : Goal + P Proficiency
interpretbel : Belief + P Proficiency
intdesires : P Proficiency
intbeliefs : P Proficiency
availabletasks : P TaskType
plandatabase : P Plan
completedplans, failedplans : P Plan
intentions : (P Proficiency) + PlanInstance
unplannedintdesires : P Proficiency

currenttasks : P Task
currentplaninstances : P PlanInstance

intdesires = | J(mapset interpretdes desires)
intbeliefs = | J(mapset interpretbel beliefs)
intdesires N intbeliefs = ()
U(dom intentions) C intdesires
V psl, ps2 : P Proficiency |
(ps1 # ps2) A ({psl,ps2} C
(dom intentions)) e
pslNps2 ={}

currenttasks = {t : Task; ps : PlanInstance |
ps € (ranintentions) e the ps.current}
currentplaninstances = ran intentions

Plan Finding

Plan finding is the process of taking a set of candidate plans
and selecting those whose preconditions are met and where at
least some subset of the postconditions are desired.

For this operation we assume the input of a set of candidate
plans. Again we do not specify whether these come from the
agent (i.e. the agent’s database of plans), other agents in the
community, from the user or from other users. In general,
candidate plans with be a synthesis of the users and the agents
of users working together.

For now we will suppose that suitable plans have all pre-
conditions satisfied and it is the case that both: (a) none of
the postconditions are things which the user is already pro-
ficient in (b) all of the postconditions are current interpreted
desires of the user. In the schema below SuitablePlans is
generated which satisfies this constraint and from these one
plan adoptedplan is selected. The state of the agent is then
updated such that its current plans include a mapping from the
pre-conditions of the plan (which are necessarily interpreted
desires for which no plan exists).

__ FindandAdoptPlan
PossiblePlans? : P Plan
SuitablePlans! : P Plan
adoptedplan : Plan
A PersonalLearningAgent

SuitablePlans! = {ps : PossiblePlans? |
(ps.pre C intbeliefs) A

adoptedplan € SuitablePlans!

intentions’ = intentions U
{(adoptedplan.post,
instantiateplan(adoptedplan))}

It would be a simple matter to add more detail to this
schema including choosing the plan with the highest rating
for example, or a plan which has completed successfully in
the community the most number of times, or making sure the
plan has not failed in the users history, or that the plan has
not failed in the community with users which have similar
profiles as defined by the personal learning agent. In general,
the plan finding system requirements, and this specification
alongside it, will develop as we gain experience of how the

unplannedintdesires = | J(dom intentions) \ intdesiresSyStem is used.

Plan Completion
The very simplest way this could happen is as follows:

1. Because of a successfully completed task a plan instance
becomes an element of CompletedPlan.

2. The post conditions are added to the interpreted beliefs
(these may in turn be reverse ineterprered into beliefs
which can then be seen by the community).

3. Any post conditions that were formerly desires are now
removed from interpreted desires (these may in turn be
reverse interprered into beliefs which can then be seen
by the community).

4. The completed plans function is updated with the plan
that has just successfully completed.

__CompletePlan
completedplan? : CompletedPlan
A PersonalLearningAgent

completedplan? € (ran intentions)

intentions’ = intentions & { completedplan?}

intdesires’ = intdesires \ completedplan?.post

intbeliefs’ = intbeliefs U completedplan?.post

completedplans’ = completedplans U
{recoverplan completedplan?}

However, this process will not be automatic in general
within the system. In general, the user (or other users in the
community) will be asked to evaluate the plan. There may be
several ways in which this can happen. For example, a simple
score could be given but in general each user who is evaluat-
ing the plan considers each of the post conditions (or another
member of the community does) to work out whether they are
now proficiencies (interpreted beliefs), whether they have not

(ps.post N unplannedintdesires) = {} o ps}

been met and so are still interpreted desires, or whether they
have not been met but are not desires. Indeed the evaluating
user could rank each of the postconditions with a score and
the agent may also wish to keep a snap shot of the agent’s
state for future comparison by the community.

Community of Music Learning
Agent finding

Now we move to defining a community of learners each of
which has one and only one personal learning agent.
First we define the set of all users.

[User]

— Community
community : P User
agents : User = PersonalLearningAgent

community = dom agents

To this we can define all kinds of social relationships. For
example, peer and teacher and others as they become useful.
It is up to the designer of the system to state what the con-
straints are on any such relationships. To provide examples
(not necessarily ones we would subscribe to) of how this is
done we state that if user] is a peer of user2 then user2 is a
peer of userl and, in addition, if user2 is a teacher of userl
then userl cannot be a teacher of user2. Another example
would be the idea of a fan who would always adopt the ad-
vice of another.

__SocialRelationships
peer, teacher : User <+ User
fans : User < User

Vul,u2: User o (ul,u2) €
peer = (u2,ul) € peer
Vul,u2: User o (ul,u2) €
teacher = (u2,ul) ¢ teacher

Using these schemas it then becomes possible to ask agents
to start to look for users who have similar profiles as stated in
the requirements detailed earlier in this document. In order to
refine the search to include (for example) looking for agents
who have a motivation to teach, we will need to develop the
specification to define ways in which agents can broadcast
that they are able to teach certain plans. This will come in
later versions of this specification.

4 Concluding remarks

No one could have predicted the rise in technologies for fa-
cilitating different kinds of online social behaviour. Despite
a sometimes limited scope of interact possibilities (such as
liking, or rating content), huge numbers of us choose to so-
cialise in this way. More and more technology platforms are
being released, aiming to encourage us to spend our social
time on them. Not only that, but we are now seeing a whole
range of such systems that encourage us to spend our learning
time on them, making use of a range of techniques to allow

the learning experience to be less isolated and more social,
particularly around the idea of peer feedback and assessment.

Given this explosion of systems for social experiences in-
cluding social learning experiences, it is perhaps a little sur-
prising that the multi-agent systems (MAS) community, with
all its rich work on agency, coordination, norms and regu-
lated social behaviour has not been more involved in taking
up the challenge of trying to understand the science of such
systems and in turn bringing that understanding into well-
defined methodologies for designing compelling systems.

In this paper, we have shown that it is possible to use a stan-
dard agent-based formal specification methodology to model
various aspects of a social learning environment. Building
on that we have shown how such an architecture can be used
to solve problems in these environments, such as selecting
learning plans and selecting other users of interest. In paral-
lel to this formal modelling work, we are building real social
learning environments and trialling them at scale in our own
institution and beyond, as part of a research programme in-
vestigating social learning. Now we have systems with users
and data, we are investigating how our agent concepts can
be operationalised to solve real problems within our systems.
Our work is significant because we are bridging the theory/
practice divide.

Relating the theory and practice of sociological agent sys-
tems to the design of socio-technical systems more generally
also enables us in future work to consider a range of questions
about how the scientific social multi-agent approach that the
MAS has developed for 25 years or more can be applied to the
analysis and design of systems such as ours. Questions that
quickly present themselves are: could we start to map out the
space of such systems relating technology to sociality in a
useful way? Could we start to provide platforms and design
methodologies for building such systems in the future using
a regulated MAS approach? Indeed these are some of the
questions we are investigating with partners on our research
project.

This paper is our first foray into these woods in describing
an agent-based approach to the design of a community of hu-
man and learning agents working in the common interests of
learning how to play musical instruments together. We hope
that we will increasingly see the huge body of work that has
been developed in our community over the last 25 years or so
become mainstream in the analysis, design and specification
of future instances of such systems.

Acknowledgments

The work reported in this paper is part of the PRAISE
(Practice and Performance Analysis Inspiring Social Educa-
tion) project which is funded under the EU FP7 Technol-
ogy Enhanced Learning programme, grant agreement number
318770.

References

[Baylor and Group, 2003] Amy L Baylor and PALS (Peda-
gogical Agent Learning Systems) Research Group. The
impact of three pedagogical agent roles. In Proceedings of
the second international joint conference on Autonomous

MuSiC Tracks €4 Profile
Circle

Synth Club 23rd August 2013 session 1 ¢

Communities

Users Help Feedback Logout

& Comment W Tag I Attach a file

00:00:00

> o omtla—ammmman wpoe o — -

- White noise freshens up the
texture

mariano, 45 days ago, 0 replies

Figure 1: The music discussion user interface

agents and multiagent systems, AAMAS 03, pages 928—
929, New York, NY, USA, 2003. ACM.

[D’Inverno and Luck, 2003] Mark D’Inverno and Michael
Luck. Understanding agent systems. Springer, 2003.

[Johnson et al., 2000] W. Lewis Johnson, Jeff W. Rickel, and
James C. Lester. Animated pedagogical agents: Face-to-
face interaction in interactive learning environments. In-
ternational Journal of .. . , pages 47-78, 2000.

[Kim and Baylor, 2006] Yanghee Kim and AL Baylor. Ped-
agogical agents as learning companions: The role of agent
competency and type of interaction. Educational Technol-
0gy Research and Development, 54(3):223-243, 2006.

[Koller and Ng,] Daphne Koller and Andrew Ng. The On-
line Revolution : Education at Scale. Technical report,
Stanford University.

[Lester et al., 1997] JC Lester, SA Converse, and SE Kahler.
The persona effect: affective impact of animated pedagog-
ical agents. In CHI 97 Conference on Human Factors in
Computing Systems, Atlanta, 1997.

[Luck and D’Inverno, 1995] Michael Luck and Mark
D’Inverno. A formal framework for agency and auton-
omy. Proceedings of the first international conference on
Multi-Agent Systems, 254260, 1995.

[Magnus et al., 2010] H Magnus, S Annika, and S Bjoérn.
Building a Social Conversational Pedagogical Agent-
Design Challenges and Methodological Approaches. In
Diana Perez-Marin and Ismael Pascual-Nieto, editors, Di-
ana Perez-Marin (Editor), Ismael Pascual-Nieto (Editor),
pages 128-155. IGI Global, 2010.

[Pappano, 2012] Laura Pappano. The year of the MOOC.
The New York Times, 2(12):2012, 2012.

[Quirino et al., 2009] E Quirino, F Paraguacu, and B Jacinto.
SSDCVA: Support System to the Diagnostic of Cerebral
Vascular Accident For Physiotherapy Students. In 22nd
IEEE International Symposium on Computer-Based Med-
ical Systems, CBMS, pages 2-5, 2009.

[Rodriguez, 2012] O Rodriguez. MOOCs and the Al-
Stanford like Courses: two successful and distinct course
formats for massive open online courses. European Jour-
nal of Open, Distance, and E-Learning, 2012.

[Sklar and Richards, 2006] Elizabeth Sklar and Debbie
Richards. The use of agents in human learning systems.
In Proceedings of the fifth international joint conference

on Autonomous agents and multiagent systems, AAMAS
’06, pages 767-774, New York, NY, USA, 2006. ACM.

[Soliman and Guetl, 2010] M Soliman and Christian Guetl.
Intelligent pedagogical agents in immersive virtual learn-
ing environments: A review. In MIPRO, 2010 Proceedings
of the 33rd International Convention. IEEE Computer So-
ciety Press, 2010.

[Spoelstra and Sklar, 2007] Maartje Spoelstra and Elizabeth
Sklar. Using simulation to model and understand group
learning. In Proc. AAMAS 07 Workshop on Agent Based
Systems for Human Learning and Entertainment, 2007.

[Tao et al., 2009] Xuehong Tao, YL Theng, and Nicola Yel-
land. Learning through argumentation with cognitive vir-
tual companions. In C Fulford and George Siemens, ed-
itors, Proceedings of World Conference on Educational

Multimedia, Hypermedia and Telecommunications3179-
3194, pages 3179-3194, 2009.

[Xiao et al., 2004] Jun Xiao, John Stasko, and Richard
Catrambone. An Empirical Study of the Effect of
Agent Competence on User Performance and Perception.
In Third International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 178—185, 2004.

