
Capability Patterns as the Enablers for Model-based

Development of Business Context-aware Applications

Janis Stirna1, Jelena Zdravkovic1, Martin Henkel1, Janis Kampars2

1Department of Computer and Systems Sciences, Stockholm University, Forum 100,

SE-16440, Kista, Sweden

[js, jelenaz, martinh]@dsv.su.se
2Information Technology Institute, Riga Technical University

Kalku iela 1, Riga, Latvia

Janis.Kampars@rtu.lv

Abstract. Lately the notion of capability has emerged in information system

engineering as the means to support development of context dependent

organizational solutions and supporting IT applications. To this end a

Capability Driven Development (CDD) approach has been proposed. As key

part of CDD is the concept of patterns that is used to support the capability

design from existing solutions as well as the adjustment of the capability

delivery at run-time. A pattern template and meta-model is presented together

with the CDD lifecycle that incorporates pattern development and use. The

initial experiences of use of the patterns as part of CDD at three industrial use

cases are also presented.

Key words: Enterprise Modeling, Capability Modeling, Patterns.

1 Introduction

Enterprises are facing the need to adapt their businesses according to various

situations in which their applications need to be used. To answer this challenge an EU

FP7 project “Capability as a Service in digital enterprises” (CaaS) has been initiated

[1]. The aim of CaaS is support of the capture and analysis of changing business

context in design of information systems (IS) using the capability notion.

In the specification and design of services using business planning as the baseline,

capability is seen as a fundamental abstraction to describe what a core business does

[2] and, in particular, as an ability and capacity for an enterprise to deliver value,

either to customers or shareholders, right beneath the business strategy [3, 4]. The

key rationale behind a capability driven approach to software development is to make

IS designs more accessible to business stakeholders by enabling them to use the

capability notion to describe their business needs more efficiently.

An important problem in the prevailing Model Driven Development (MDD)

paradigm for IS development mostly relies on the models defined on a relatively low

abstraction level. In contrast, Enterprise Modeling (EM) captures organizational

knowledge and provides the necessary motivation and input for designing IS.

According to practitioners [5], EM needs to be placed in the context of solving

problems, which, due to today’s geo-political situations and monetary crises, are

becoming more complex, and more dynamic. Hence the organization needs to have a

high discipline to bring EM and its IS solutions just-in-time and just-enough.

Dynamics of business requires support from modeling and IS; at the same time that

dynamics prevents optimal use of modeling because organizations cannot really

match the pace of change with a right approach to EM. Models are often large and

complex, expensive and taking lot of effort to produce. And hence they are not

matching the dynamics of the organizational change; even in the best case when a

valuable artifact is produced, it is typically not aligned with dynamics and therefore

not used. That means the investment is lost and the business will not do such an

investment again [5]

A solution to the described problem is in the CaaS project initiative seen by

integrating the principle of reuse and execution of software patterns with the principle

of sharing best practices of organizational patterns [6, 7]. Hence, capability patterns

are organizational design proposals that can be executed, adapted, and reused. The

patterns can thus represent reusable solutions in terms of business process, services,

resources, roles and supporting IT components (e.g. code fragments, web service

definitions) for delivering a specific type of capability in a given context. They can

be adapted and reused. The main objective of the capability pattern notion is to

facilitate enterprise-size components carrying a software solution for an

organizational problem in a given business context, in both the design and run times.

The rest of the paper is organized as follows. Section 2 briefly describes the origin

and existing pattern efforts within the IS engineering discipline, and the Capability

Meta-Model. Section 3 starts by describing the content of the capability pattern and

further describes the life cycle for Capability Driven Development (CDD) from the

capability pattern perspective. Section 4 presents our experiences of using developing

patterns as part of CDD at three industrial use cases as part of the CaaS project.

Section 5 provides concluding remarks and issues of future work.

2 Theoretical Foundations and Related Work

In this section brief overviews of the topics and the results related to the research of

this paper are presented.

2.1 Pattern Origin and Use

In the process of capturing, packaging, storing, and sharing knowledge we are

frequently faced with questions such as: how should this piece of best practice or

experience be represented, is it of any value, what can it be used for, when can it be

used and by whom. These questions address the two main aspects of a knowledge

artifact – what is the problem it addresses and what is the solution it provides [8].

Following this definition, pattern based approaches have established themselves in

software programming, software design, data modeling, and in systems analysis, see

e.g. [9, 10] with the common objective to capture, store and communicate reusable

artifacts, such as fragments of code or diagrams.

The pattern concept has been further extended and applied in organizational

development and knowledge management under the term organizational patterns [11].

According to this principle, patterns have been successfully applied in a number of

projects for knowledge sharing purposes,

As for the EM discipline, its projects create a great deal of models. They have

various purposes, e.g. some are created only to capture a particular idea or document

the discussion of the stakeholders while others document a specific business design,

for instance, as business processes, service coordination, or data structures. The

majority of models are created in a design situation and once completed they reflect

good solutions and best practices for dealing with a specific business problem or

corporate intention, some of which can be captured and represented as patterns.

In section 3 we will explain the use of patterns within the CDD – their content and

the use differ from / go beyond existing pattern proposals in the way that a) their

granularity and the scope corresponds to another enterprise notion, i.e. capability, b)

their life-cycle spans from business analysis, through design, and to run-time when

upon monitoring the patterns are replaced, added, removed or adapted.

2.2 Capability Meta-model

The theoretical and methodological foundation for pattern use in capability-oriented

software applications is provided by the core capability meta-model (CMM) in Figure

1, and in details presented in [12]. CMM is developed on the basis of requirements

from the industrial project partners, and related research on capabilities. Within

Capability Driven Development (CDD), patterns are envisioned as reusable solutions

for reaching business goals under specific situational context. Individually, they are

intended to describe best practices for businesses, and in a collection to form a

repository of capability delivery patterns.

In brief, the meta-model has three main sections: a) Enterprise model representing

organizational designs with Goals, KPIs, Processes (with concretizations as Process

Variants) and Resources; b) Context represented with Context Situation instantiating

a set of elements (such as Context Element, Range, and Set) under which the

solutions should be applied, including Context Indicators for measuring the context

properties (Measuring Property); and c) Patterns for delivering Capability by reusable

solutions for reaching Goals under different Context Situations.

Fig. 1. A core meta-model for supporting Capability Driven Development.

The Pattern component describes an actual solution for realizing a Capability. Each

pattern describes how a certain Capability is to be delivered within a certain Context

Situation and what Processes Variants and Resources are needed to support a Context

Set. Pattern consists of Patterns: Pattern may represent a complete solution or it can

consist of several “sub-patterns” each of them focusing on a specific part of the

solution. At runtime patterns are used according to the Context Situations

representing a set of actual context values with their Measurable Properties. The

Context KPIs are used to monitor at runtime whether the capability realization

through patterns is still valid for the current context situation. If a capability pattern is

not valid, then the capability realization should be dynamically adjusted, for example

by applying a different pattern.

3 Pattern Representation and Way of Working

The purpose of including patterns in the CDD approach is to capture and represent

reusable knowledge in the model form that can be used for capability design and

delivery. This section will discuss the form used to represented patterns, including an

elaborated meta-model for concepts that are specific to patterns (section 3.1), and the

way of working with patterns with respect to the CDD lifecycle (section 3.2).

3.1 Pattern Structure and Meta-model

Patterns are typically described according to a pattern template. We have chosen a

template that is fairly simple and consists of a few fields that are commonly used in

pattern descriptions (see Table 1). The information represented in this template is also

represented in the meta-model (see Fig. 1); terms highlighted in Courier refer to

concepts in the meta-model

The components of the pattern need to be linked with the rest of the components in

the CDD meta-model as shown in figure below. It shows how the different

components of the pattern template are connected to other elements in the CDD. More

specifically, the solution body can be a business process model fragment (Process

Variant) or a fragment of another model type. If the Solution Body is a

process model fragment then gateways are used as Process Variant

Variation Points. For other model types there is a possibility to specify a

generic Capability Delivery Variation Point. At this stage of the

project the variation points are specified in the Capability Design Tool, but at later

stages they will be linked to executable services in the Capability Delivery

Application, as well as with Capability Adjustments that will be performed

by the Capability Navigation Application according to the actual Context

Element Values at run-time.

Table 1. Pattern template used for CDD

Name of

the field

Purpose of the field

Name: Each pattern should have a name that reflects the problem/solution

that it addresses. Names of patterns are also used for indexing

purposes.

Problem: Describes the issues that the pattern wishes to address within the

given context and forces.

Context: Describes the preconditions under which the problem and the

proposed solution seem to occur. This can initially be expressed in

free text and later represented by creating a Context Set that

encompasses the permitted Context Element Ranges of

Context Elements that influence the applicability and

variability of the solution proposed by the Pattern.

Solution: Describes how to solve the problem and to achieve the desired

result. The solution field consists of a textual solution

description and a Solution Body in the form of a model

fragment. Currently we focus of Process Variants expressed

using the BPMN. The Process Variants may also contain

Variation Points. Other model types are also possible to use

in order to represent the solution

Usage

Guidelines:

Presents a set of usage tips to the potential user of the pattern about

how the pattern can be tailored to fit into particular situations or to

meet specific needs of an organization. As well as how the

Solution Body should be integrated with an existing capability

design.

Keywords: A few keywords are defined for each pattern in order to facilitate

search and retrieval.

Adjustment

algorithms:
Links to specific Capability Adjustments for a specific

Variation Aspect.

Fig. 2. Elaboration of the meta-model components of related to specifying pattern.

We illustrate the above meta-model with a pattern example from one of the use

cases of the CaaS project at company Fresh T Limited, UK (FreshTL). The overall

capability is to ensure maritime compliance of ships of one of FreshTL’s customers.

The capability requires a process for maritime compliance (process 1, in Fig. 3). In a

development situation this process can be taken from a pattern repository and used as

best practice to deliver the capability. It is dependent on a number of external factors

(context) one of them is if the ship is in an environmentally sensitive or protected

geographic area. In such cases the process for generic compliance should be changed

with a specific process addressing environmental compliance. This adjustment is

depended on context element (CE) “area”. Hence, the applicability of the pattern that

provides the process variant for rule compliance for emissions and environmental

compliance is determined by CE: area and CE range: Environmentally sensitive or

protected. The connection between the main process used for capability delivery and

the process variant is achieved via variations aspects (VA) that determine which

context elements determine choosing which patterns.

Fig. 3. Example of pattern use for specifying a design for adjusting according to context.

3.2 Pattern Creation, Use, and Update

The overall Capability Driven Development (CDD) process includes three cycles (see

Fig. 4): 1) capability design; 2) capability delivery; and 3) capability

refinement/updating. As explained in section 2, capability delivery patterns are the

solutions for delivering capabilities meant to be sufficiently general and reusable in

long-term.

 Figure 4 and the text below explain how the patterns are created, used and updated

within the CDD process.

The capability development cycle starts with Enterprise Modeling, i.e. by a

business request for a new capability - the request might be initiated by strategic

business planning, changes in context, or discovery of new business opportunities

requiring reconfiguration of existing or the creation of new goals, business processes,

and other EM elements. This is followed with a formalized definition of requested

capabilities and definition of the relevant contexts according to CMM (section 2).

Fig. 4. A life-cycle for CDD with a focus on the pattern’s perspective.

For a capability that is successfully defined, its delivery is then specified by a

capability pattern assigned either by selecting it from a pattern repository or by

creating a new pattern. A prototype of the repository is illustrated in section 4. A new

pattern is created following its model-based structure in details presented in the next

section. The candidate pattern can be composite, i.e. include other patterns (see

CMM, Figure 1) – this means that the pattern modeler has to match the needed

capability to its exact solution; for instance a capability “Maritime Compliance

Capability” would require a matching capability pattern, which can in turn be

composite, i.e. containing aggregated patterns such as “Rule Compliance Pattern for

vessel’s cargo”, “Rule Compliance for emissions and environment”, “Rule

Compliance Pattern for medical issues” etc.

The capability designed is assessed by evaluation of the pattern for its business and

technical feasibility. If capability delivery is deemed feasible, business structures and

software development enabling capability delivery are put forward.

A capability delivery application (CDA) is either developed or an existing CDA is

linked to the capability design. This is done by following the development process

used by a company, where the model of the selected capability pattern (if not earlier

developed) provides the model-based requirements for the context data and the

processes (or other model types) that are to be developed and integrated using

company’s technology architectures, platforms and software services.

The delivery cycle starts with the deployment of the CDA in a target environment;

the capability delivery navigation application (CNA) monitors the fulfilment of

capability delivery KPIs. If for the mentioned compliance delivery pattern example a

KPI defined as the number of ships compliant, then, since it must be 100% at all

times, its fulfilment is continuously followed, and in conjunction with possible

changes in the context (for example, near to environmentally protected areas, having

special medical cases on ship).

If capability is not delivered as requested by the KPIs, the delivery adjustment

algorithms are invoked to modify the capability delivery by replacing the pattern in

use, by calculating if the changes are become such to require another capability

pattern or that one or more of other aggregated patterns to support the required KPI

values are needed.

The capability refinement and pattern updating is initiated according upon the

results of capability delivery monitoring and adjustment. These results indicate

validity of selected capability delivery patterns and capability delivery patterns are, if

indicated, updated accordingly. This is considered due to an expected need to account

for additional context factors because typically not all relevant factors (such as all

relevant context elements, or all variation points) can be identified during the first

development iteration. Initially, the run-time adjustment algorithms attempt to modify

execution of the CDA by replacing patterns; if that is not sufficient, the capability

definition is refined, additional elements are included, as well as capability delivery

patterns are redesigned or new patterns added.

4 Experiences of Developing and Applying Patterns for CDD

This section briefly explains the current use of patterns in the CaaS project and

summarizes our experiences at the three industrial use cases, namely

1. At Everis (Spain) for service promotion capability, marriage registration

capability, SOA platform capability

2. Fresh T Limited (UK) for maritime compliance capability

3. SIV AG (Germany) for standard business processes   execution capability.

Patterns have been captured and documented in a web-based pattern repository and

integrated with the Capability Development Tool.

Fig. 5. Example of a pattern opened via the Capability Design Tool

The reason for maintaining a pattern repository within CDD is to enable retrieval

of patterns for understanding business capabilities, and for using them in different

occasions and domains. Reuse through a capability pattern repository intends to

facilitate a systematic practice of designing capabilities, so that their similarities

between business units, organizations and industries can be exploited to achieve

benefits in business performance.

Concerning the use of the pattern template and the meta-model, the current version

of patterns should be seen as an initial version. The fields in the template are complete

but we have not used the modeling approach to connect the representation of context

sets to the actual context elements and relevant variations aspects. This is because at

the initial stages the users did not have a complete view on what context elements

could be available at run-time and how they could influence the capability delivery.

The project has been primarily performing capability design and the capability

delivery processes is only beginning now. As a result the process variants in the

patterns are not yet connected to the variation points and variation aspects. More of

this knowledge will be discovered once the patterns will be connected to the

Capability Delivery Applications and the experiences of the use gathered.

At this stage of the project we have mainly been focusing on the procedural aspects

of capability design and delivery. I.e. the solutions offered by the patterns are

expressed by process variants in all patterns except one that contains a conceptual

model of key concepts of compliance. At later stages we envision developing more

patterns that contain business rules and capability adjustment algorithms.

Concerning the pattern development lifecycle and its alignment with the CDD

lifecycle, the pattern development process was iterative. The candidate patterns were

developed by the use case experts and then suggestions for improvement were

provided by the method experts. For most patterns it took 3-4 iterations to reach a

reasonable level of quality. The main areas that needed improvement were (1) making

the context description specific to pattern application and the variation of the process

that the patterns deals with, as well as (2) the granularity of patterns, i.e. initially the

patterns created were either too large, hence not being suitable for adjustments, or too

atomic, addressing a very small problem.

The CDD process foresees that relevant patterns are selected in during capability

design or that the Capability Navigation Application is able to suggest relevant

patterns for adjustment as part of monitoring the execution context at runtime. At this

stage of the project, there were no patterns available at the time when the capability

design begun. Even if some use case partners had some reusable process models, and

other components that they were reusing in their business applications, consequently,

the current set of patterns is created on the basis on the initial business processes

developed from scratch for the purpose of capability design. Once the pattern

repository becomes more mature and contains a significant amount of patterns for a

specific application sector the capability design will be mostly done by selecting and

configuring existing patterns.

5 Conclusions and Future Work

In this study we have discussed the use of patterns for supporting Capability Driven

Development of context based business solutions as part of an ongoing EU research

project CaaS. The pattern concept is used to support designing capability delivery

from reusable model fragments. More specifically, we have presented the format and

meta-model used to represent patterns and the way of working with patterns for

developing capability designs. We have also reported initial experiences of

developing patterns as part of the industrial use case work of the project.

The current experiences show the potential of using patterns for capturing reusable

solutions in order to support capability design, as well as to use patterns for

adjustment of capability delivery at run time. Amongst future work issues are, making

the patterns integrated with the Capability Navigation Application for monitoring and

suggesting adjustment, integrating patterns with context modeling and monitoring in

order to support finding of relevant patterns, as well as establishing organizational

processes for pattern capture and feedback at the industrial use case companies.

Acknowledgments. This work has been performed as part of the EU-FP7

funded project no: 611351 CaaS – Capability as a Service in Digital

Enterprises.

References

1. EU FP7 CaaS Project. Capability as a service for digital enterprises. http://caas-project.eu/

2. Ulrich, W. and Rosen, M. The business capability map: Building a foundation for

business/it alignment. Cutter Consortium for Business and Enterprise Architecture (2012)

3. OPENGROUP TOGAF - enterprise architecture methodology, version 9.1,

http://www.opengroup.org/togaf/ (2012)

4. OPENGROUP Archimate - modelling language for enterprise architecture, v2.0,

https://www2.opengroup.org/ogsys/catalog/c118 (2012)

5. Stirna, J., Zdravkovic J., Interview with Sladjan Maras on “Challenges and Needs in

Enterprise Modeling”, Business & Information Systems Engineering, February 2015,

Volume 57, Issue 1, pp 79-81

6. Stirna, J., Grabis, J., Henkel, M., and Zdravkovic, J.: Capability Driven Development – an

Approach to Support Evolving Organizations. In: proc. of IFIP WG8.1 Working Conf. on

the Practice of Enterprise Modeling (PoEM), Springer LNBIP, 117-131 (2012)

7. Zdravkovic, J., Stirna, J., Henkel, M., and Grabis, J. (2013) Modelling Business

Capabilities and Context Dependent Delivery by Cloud Service. In Proc. of CAiSE’2013,

LNCS 7908, 369-383, Springer (2013)

8. Alexander C., (1977). A pattern language, Oxford University Press, New York.

9. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995).Design Patterns: Elements of

Reusable Object-Oriented Software Architecture. Addison Wesley, Reading, MA

10. Fowler, M. (1997), Analysis patterns: Reusable object models, The Addison-Wesley series

in object-oriented software engineering, Addison-Wesley, Menlo Park, Calif.

11. Rolland, C., Stirna, J., Prekas, N., Loucopoulos, P., Persson, A. and Grosz, G. (2000),

“Evaluating a Pattern Approach as an Aid for the Development of Organisational

http://caas-project.eu/
http://www.opengroup.org/togaf/
https://www2.opengroup.org/ogsys/catalog/c118
http://link.springer.com/journal/12599/57/1/page/1

Knowledge: An Empirical Study”, in Wangler, B. and Bergman, L. (Eds.), Advanced

Information Systems Engineering, Lecture Notes in Computer Science, Vol. 1789, Springer

Berlin Heidelberg, Berlin, Heidelberg, pp. 176–191.

12. Bērziša S., Bravos G., Gonzalez T., Czubayko U., España S., Grabis J., Henkel M., Jokste

L., Kampars J., Koç H., Kuhr J., Llorca C., Loucopoulos P., Juanes R., Pastor O., Sandkuhl

K., Simic H., Stirna J., Valverde F., Zdravkovic J. Capability Driven Development: An

Approach to Designing Digital Enterprises, Business & Information Systems Engineering,

February 2015, Volume 57, Issue 1, pp 15-25

http://link.springer.com/journal/12599/57/1/page/1

