
Including Gesture-based Interaction in Capability Design

Tool

Otto Parra-González1, 2, Sergio España1, Oscar Pastor1

1 Universitat Politècnica de València, Cami de Vera, 46022, Valencia, Spain

2 Universidad de Cuenca, Av. 12 de Abril y A. Cueva, Cuenca, Ecuador

otpargon@upv.es, sergio.espana@dsic.upv.es, opastor@dsic.upv.es

Abstract. Currently, the process of definition of custom gestures and the

inclusion of gesture-based interaction in user interfaces of information systems

is complicated because to the diversity of devices, software platforms and

development tools available. In order to help to resolve this situation we had

proposed gestUI, a model-driven method, whose objectives are custom gesture

definition and gesture-based user interface source code generation. This paper

describes gestUI using the “Template for the Documentation of Method

Components in CaaS” and it demonstrates the application of gestUI in order to

include gesture-based interaction in the tool support called Capability Design

Tool (CDT) of CaaS project.

Keywords. Gesture-based interaction, capability, information systems, user

interaction, model-driven method

1 Introduction

Currently, there are some types of devices that the users employ (e.g., mobile phone,

tablet, notebook), in conjunction with this devices, there are some types of interaction

(e.g., gesture-based, gaze-based, voice-based interaction) [1] that the users have

available. One of the more widespread types of interaction is gesture-based

interaction.

Interfaces supporting gesture-based interaction have been reported to be more

challenging to implement and test than traditional mouse and pointer interfaces [2].

Gesture-based interaction is supported at the source code level (typically third-

generation languages) [3]. This comprises a great coding and maintenance effort

when multiple platforms are targeted, has a negative impact on reusability and

portability, and complicates the definition of new gestures. Some of these challenges

can be tackled by following a Model-driven Development (MDD) approach provided

that gestures and gesture-based interaction can be modelled and that it is possible to

automatically generate the software components that support them.

mailto:otpargon@upv.es
mailto:sergio.espana@dsic.upv.es
mailto:opastor@dsic.upv.es

We had proposed gestUI [4], a model-driven method for gesture-based information

systems user interface development, which is intended to allow software engineers to

focus on the key aspects of gesture-based information system interfaces; namely,

defining customized gestures and specifying gesture-based interaction.

Capability is the ability and capacity that enable an enterprise to achieve a business

goal in a certain context [5]. Capability-driven development (CDD) is a novel

paradigm where services are customised on the basis of the essential business

capabilities and delivery is adjusted according to the current context [6]. The CDD

methodology [7] for capability-driven design and development will consist of various

components addressing different modelling aspects, such as context modelling,

business services modelling, pattern modelling or capability modelling [7]. This

methodology considers the definition of method components. A method component

should consists of concepts, a procedure and a notation. Each procedure has input,

output, and tool support [8].

In order to support CDD, the CaaS project has planned the following components [9]:

- CDD methodology: an agile methodology for identification, design and

delivery of context aware business models. The notion of capability is

formalised by means of a metamodel containing the following elements:

goal, key performance indicator (KPI), context, capacity and, ability.

- Capability delivery patterns: they are generic organisational design and

business process which can be easily adapted, reused, and executed.

- CDD environment: tool support for design and runtime of CDD solutions. Its

first release is called Capability Design Tool (CDT), it is designed as an

integrated development environment built on the Eclipse Framework, using

the Eclipse Modelling Framework (EMF) technologies. This tool supports

capability modelling according to the capability metamodel including

context modelling and goal, process and concepts models

The contributions of this paper are: (i) the description of the method gestUI by means

of the “Template for the Documentation of Method Components in CaaS” and, (ii) the

demonstration of use of gestUI with the aim to include gesture-based interaction in a

CASE tool, in this case, Capability Design Tool (CDT).

The remainder of this paper is organized as follows. Section 2 contains the state of the

art. Section 3 describes gestUI. Section 4 includes a description of Capability Design

Tool (CDT). Section 5 contains details of the application of the method gestUI in a

CASE tool, in this case CDT of CaaS project. The paper ends with some conclusions

and future work in Section 6.

2 State of the Art

This section presents a related literature review of gesture-based human-computer

interaction.

Vanderdonckt [10] describes in his work a set of variables associated to the

development of user interfaces, one of which contemplates interaction devices and

styles. Interaction styles include the gesture recognition. He points out that an abstract

user interface is independent of any interaction modality [11] so that an explicit

reference to a specific type of interaction style is not considered.

The authors of [12] include a report related with user interface plasticity and MDE, in

which three information spaces are defined: the user model, environment model, and

platform model. The platform model considers the possible interactions that can be

included in a user interface. This report also includes a description of models that

have been defined with the aim of creating user interfaces. It also mentions the variety

of interaction modalities currently available thanks to the diversity of technological

spaces that can be included in the definition of concrete user interfaces.

Calvary et al. in [13] describe the relation between MDE and HCI in implementing

user interfaces. In this context, they introduce the models contained in a number of

frameworks (e g., UsiXML, CTTe), one being the interaction model considered in the

process of defining user interfaces. However, the interaction modality is not

considered.

Carvalho et al. describe in their work [14] the gesture-based interaction in domotic

environments considering three dimensions: people, gesture mode of interaction and

domotics. They grouped the gestural interaction as perceptual and non-perceptual and

they describe some types of applications in the field of domotics that employs these

two types of interaction. In order to identify and discuss the HCI-related aspects and

challenges of multimodal interaction, they propose a socio-technical framework of

multimodal interaction in the context of intelligent domotics. The framework consists

of the main dimensions technology, modes of interaction, and people.

Our proposal considers a model-driven method to define custom multi-strokes

gestures using the fingers of the user, it also consist of a process to include gesture-

based interaction in user interfaces of information systems.

3 gestUI

3.1 Describing gestUI

gestUI [4] is a user-driven and iterative method that follows the MDD paradigm [15].

The main artefacts are models that conform to the Model-Driven Architecture [16], a

generic framework of modelling layers that ranges from abstract specifications to the

software code. gestUI permits to define multi-strokes gestures, obtaining the gesture

catalogue model and, using model transformations to obtain the source code of

interfaces including gesture-based interaction (Fig. 1).

Applying model-driven development method the results obtained with gestUI are:

─ Model-driven gesture catalogue which contains the definition of gestures using

XML. This definition is platform-independent and it can be imported in

frameworks that employ gestures as input in their process.

─ Source code to include in the specification of user interface in order to include

gesture-based interaction in the user interface of information systems. The

method produces source code in the selected technology containing the

definition of gesture-based interaction.

Fig. 1. Method proposed

3.2 Method components

Considering the “Template for the Documentation of Method Components in CaaS”

we describe gestUI by means of following method components:

a. Method component to define customised gestures: it permits the definition of

customised gestures in order to obtain a platform-independent gesture

catalogue to include in the specification of the user interaction of an

information system.

b. Method component to generate platform-specific gesture specification: it

permits stakeholders to obtain gestures specification according to the

platform specified by them. The process includes a model-to-text

transformation with the aim of produce a platform-specific gesture

catalogue.

c. Method component to design gesture-based interaction: it consists of the

specification of the relation between gestures and actions contained in an

information system. A parsing process is executed on the user interface

source code to determine the actions in such user interface that will be

associated with previously defined gestures.

d. Method component to generate gesture-based interface. It is added source

code in the user interface source code containing the gesture-based

interaction.

e. Method component to test gestures. This component permits to test the

defined previously gestures. If the user is not according with the definition of

a gesture, it is possible redefine the gesture.

The method components have an execution sequence that permits obtain some

products: gesture-catalogue model, gesture-based interaction model, platform-specific

gesture specification, and gesture-based interface. Each product that is obtained in a

method component is the input to other method component, as shown in Fig. 2.

Fig. 2. Method components

The method component “Definition of gestures” contains a process to define gestures

in order to conform a gesture catalogue model. The information of the procedure of

this method component is: (1) Input: set of strokes defined by coordinates (X, Y) and

a timestamp; (2) Output: a platform-independent gestures catalogue; (3) Tool

support: a user interface where the user draws a gesture.

The procedure of this method component comprises of different work steps to be

performed:

 The user sketches one or more strokes using his/her finger on the screen.

These strokes are stored in a data structure, conforming a gesture catalogue

model.

 If the gesture is according to the requirements of the user/system, then the

gesture is saved.

 The set of gestures that have been sketched by the user defines the gesture

catalogue model, which is conforms to gesture metamodel (see Fig. 3).

The next method component is called “Generation of platform-specific gesture

specification”. With this method component the platform-specific gesture

specification is obtained by means of a model transformation. The information of the

procedure of this method component is: (1) Input: the platform-independent gesture

catalogue, the target platform and target folder; (2) Output: the platform-specific

gesture specification; (3) Tool support: a model transformation.

Fig. 3. Gesture catalogue metamodel

The different work steps to be performed in the procedure are:

 The user specifies a set of gestures that will conform the platform-specific

gesture catalogue. The gestures are selected from a repository containing

gestures previously defined.

 Then, the user specifies the target platform in order to apply transformation

rules to obtain the specific solution.

 Finally, the user specifies the target folder where the gesture catalogue will

be stored.

Other method component is called “Design of gesture-based interaction”. In order to

obtain this design, gestUI requires the specification of a user interface where actions

(commands) will be executed using gestures. This method component applies a

parsing process on the user interface source code with the aim of analyse it to obtain

actions included in this code (e g., actions defined using structure “action perform” in

Java). Then, the user defines the correspondence between gestures and actions

selecting the gestures contained in the catalogue and specifying the action to execute

by means of this gesture.

The information of the procedure of this method component is: (1) Input: user

interface source code; (2) Output: the definition of the correspondence gesture-

action; (3) Tool support: a user interface where the user specify the input to this

procedure.

The different work steps to be performed in this method component are:

 The user specifies a user interface source code, for instance, source code in

Java containing “action listener” which specify actions to execute.

 Parsing the source code in order to find actions included, e.g., actions

defined in the “action listener” contained in the source code.

 The user define a correspondence between actions and gestures previously

selected from the gesture catalogue model.

The method component called “Generation of gesture-based interface” permits the

generation of source code of user interface considering gesture-based interaction. The

information of the procedure of this method component is: (1) Input: user interface

source code, correspondence gesture-action; (2) Output: user interface source code

containing gesture-based interaction; (3) Tool support: a user interface where the

user specify the input to this procedure.

The different work steps to be performed in this method component are:

 The user interface source code is specified in order to include gesture-based

interaction specification.

 The correspondence gesture-action is specified.

 A process is executed in order to analyse the source code and to insert the

source code related with the actions and the gestures defined previously. The

output of this process is the source code of the user interface containing the

gesture-based interaction.

The last method component, called “Testing gestures”, permits that the users test the

gestures defined with this method by means of an existent framework (e. g., iGesture,

$N, quill). In this case, as first step, the gesture catalogue, previously defined using

gestUI, is imported in the framework, then in the next step, the user employs the

functionalities available in the framework in order to test the gestures.

The information of the procedure of this method component is: (1) Input: gesture

catalogue obtained by means of a model transformation; (2) Output: information

about the gesture testing process; (3) Tool support: an existent framework to test the

gesture catalogue.

The different work steps to be performed in this method component are:

 A gesture catalogue defined by means of gestUI is the input to this

procedure.

 The gesture catalogue is imported in the framework selected to test the

gestures.

 The user employs the gestures defined to do some tasks in the framework.

 If each gesture satisfies the requirements of the user, then the gesture is

confirmed in the catalogue.

 Else, the user requires the definition of a new gesture in order to replace the

gesture that doesn’t satisfy the requirements of the user.

4 Capability Design Tool (CDT)

The tool support for design and runtime of solutions based on Capability Driven

Development (CDD) is called Capability Design Tool (CDT) (see Fig. 4, left), it is

designed as an integrated development environment built on the Eclipse Framework,

using the Eclipse Modelling Framework (EMF) technologies. This tool supports

capability modelling according to the capability metamodel including context

modelling and goal, process and concepts models.

Fig. 4. CDT (left) and Goal Model palette (right)

CDT permits draw goal model, context model, CDD model, concept model. In this

paper, we consider goal model in order to define the gesture catalogue to apply gestUI

to define gestures. The elements of the palette corresponding to the goal model are

shown in Fig. 4 (right).

5 Applying the method

gestUI can be applied in any information system with the aim of include gesture-

based interaction in the user interface. In this paper, we consider CDT in order to

apply this method to include gesture-based interaction in its user interface to draw

goal diagrams.

The first step is the definition of gesture catalogue. In Table 1 we show an excerpt of

the gesture catalogue definition in order to apply gestUI to draw goals models in

CDT.

Table 1. Excerpt of gesture catalogue

Element Action Gesture Element Action Gesture

Goal create Goal

U create Cause

Constraint create

Constraint

P create Problem

Therefore, employing the procedure specified in the first method component the user

defines a set of gestures in order to execute actions in CDT. Then, using a user

interface, the user employs his/her finger to sketch strokes which define a gesture, see

Fig. 5.

Fig. 5. Gesture sketched by the user

Fig. 6. A gesture catalogue

Then, according to the description of this method component the output of the

procedure is the set of gestures conforms to the gesture catalogue model (see Fig. 6),

each gesture is defined as a set of strokes with points defined by coordinates (X, Y)

and the corresponding timestamp.

Then, considering as input this gesture catalogue model and applying a model

transformation we obtain a platform-specific gesture catalogue. In Fig. 7 is shown an

excerpt of set of gestures according to the initial definition of gestures.

Fig. 7. A platform-specific gesture catalogue

The next method component is used to define the gesture-based interaction by means

of the specification of the correspondence gesture-action, which is dependent on the

function of the information system. In Table 1, it is specified the actions to execute

using gestures defined.

The last method component permits the automatic generation of the source code

including the gesture-based interaction with the customised gestures. In this case, we

require as input the source code of the user interface, the specific-platform gesture

catalogue. Then, the user select a gesture contained in the catalogue and an action

defined in the user interface source code in order to define the correspondence

gesture-action.

Fig. 8. Applying the gesture-based interaction in CDT

Finally, the process has finished and the CASE tool called Capability Design Tool

(CDT) has included the gesture-based interaction which can be used to draw goal

models (Fig. 8).

6 Conclusions and Future Work

gestUI, a model-driven method for developing multi-stroke gesture-based user

interfaces is described in this paper using the “Template for the Documentation of

Method Components in CaaS”. We demonstrate the application of the method and

supporting tools in the CASE tool called Capability Design Tool (CDT) which is built

using Graphiti (an Eclipse framework with the structure of a plug-in) that is used to

draw diagrams. We produced the ‘Platform-specific gesture specification’ for this

CASE tool in order to illustrate the multiplatform capability of the approach. The

gestures were successfully recognised using $N as a gesture recognizer. Then, we

automatically generated the final gesture-based interface components and integrated

them into the user interface.

Some advantages of gestUI are: (i) its platform independence enabled by the model-

driven development paradigm, (ii) the convenience of including user-defined symbols

and (iii) its iterative and user driven approach.

Future work will be developed along the following lines: (i) to include a feature to

that the user can define gestures according to his/her preferences during the execution

of the information system, (ii) developing a Technical Action Research in order to

validate this method in the “Capability as a Service for Digital Enterprises” Project

(CaaS project).

Acknowledgments

Otto Parra is grateful to his supervisors Sergio España and Óscar Pastor for their

invaluable support and advice. This work has been supported by Secretaría Nacional

de Educación, Ciencia y Tecnología (SENESCYT) and Universidad de Cuenca of

Ecuador, and received financial support from Generalitat Valenciana under Project

IDEO (PROMETEOII/2014/039).

References

[1] F. Karray, M. Alemzadeh, J. Abou Saleh and M. Nours Arab, “Human-Computer

Interaction: Overview on State of the Art,” International Journal on Smart

Sensing and Intelligent Systems, vol. 1, no. 1, pp. 137-159, 2008.

[2] M. Hesenius, T. Griebe, S. Gries and V. Gruhn, “Automating UI Tests for

Mobile Applications with Formal Gesture Descriptions,” Proc. of 16th Conf. on

Human-computer interaction with mobile devices & services, pp. 213-222, 2014.

[3] S. H. Khandkar, S. M. Sohan, J. Sillito and F. Maurer, “Tool support for testing

complex multi-touch gestures,” in ACM International Conference on Interactive

Tabletops and Surfaces, ITS'10, NY, USA, 2010.

[4] O. Parra, S. España and O. Pastor, “A Model-driven Method and a Tool for

Developing Gesture-based Information Systems Interface,” in Proceedings of the

CAiSE'15 Forum at the 27th International Conference on Advanced Information

Systems Engineering, Stockholm, Sweden, 2015.

[5] J. Grabis, L. Jokste, G. Bravos, J. Stirna, T. Gonzales, M. Henkel and H. Koc,

“Capability Modeling: Initial Experiences,” Perspectives in Business Informatics

Research: 13th International Conference (BIR 2014), pp. 1-14, 2014.

[6] J. Stirna, J. Grabis, M. Henkel and J. Zdravkovic, “Capability driven

development - An approach to support evolving organizations,” in 5th IFIP WG

8.1 Working Conference on the Practice of Enterprise Modeling (PoEM 2012),

Rostock, Germany, 2012.

[7] K. Sandkuhl and J. Stirna, “CaaS Base Methodology,” UR, 2014.

[8] K. Sandkuhl and J. Stirna, “Template for the Documentation of Method

Components in CaaS,” 2013.

[9] S. España, T. González, J. Grabis, L. Jokste, R. Juanes and F. Valverde,

“Capability-driven development of a SOA platform: a case study,” First

International Workshop on Advances in Services DEsign based on the Notion of

CApability (ASDENCA 2014), vol. Springer LNBIP 178, pp. 100-111, 2014.

[10] J. Vanderdonckt, “A MDA-Compliant Environment for Developing User

Interfaces of Information Systems,” Advanced Information Systems Engineering

LNCS in Computer Science, vol. 3520, pp. 16-31, 2005.

[11] J. Vanderdonckt, “Model-Driven Engineering of User Interfaces: Promises,

Successes, Failures, and Challenges,” in ROCHI'08, Iasi, Romania, 2008.

[12] J. Coutaz and G. Calvary, “HCI and Software Engineering for User Interface

Plasticity,” in The Human-Computer Handbook. Fundamentals, Evolving

Technologies, and Emerging Applications, Julie, A.; Jacko, ed. CRC Press

Taylor and Francis Group, 2012, pp. 1195-1220.

[13] G. Calvary, A. Dery-Pinna, A. Occello, P. Renevier-Gonin and M. Riveill, “At

the Cross-Roads between Human-Computer Interaction and Model-Driven

Engineering,” ARPN Journal of Systems and Software, vol. 4, no. 3, pp. 64-76,

2014.

[14] A. de Carvalho Correia, L. Cunha de Miranda and H. Hornung, “Gesture-based

interaction in domotic environments: State of the art and HCI framework

inspired by the diversity,” in INTERACT'13, Barcelona, Spain, 2013.

[15] R. Picek, “Suitability of Modern Software Development Methodologies for

Model Driven Development,” JIOS, vol. 33, no. 2, pp. 285-295, 2009.

[16] A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven

Architecture : Practice and Promise, USA: Addison-Wesley Prof., 2003.

