
Bringing Agility into Linked Data Development: ∗

An Industrial Use Case in Logistics Domain

Pinar Gocebe Oguz Dikenelli
Ege University

gocebepinar@gmail.com
odikenelli@gmail.com

Nuri Umut Kose
BIMAR Information Technologies

umut.kose@bimar.com.tr

Abstract
Logistics is a complex industry where many different types of com-
panies collaborate in order to transport containers to the last point.
One of the most important problem in logistics domain is obser-
vation and monitoring of container life cycle where each step of
the container transportation may be performed by different com-
pany. Thus, observing and monitoring of the container’s life cy-
cle in real time become a challenging engineering task. In this re-
search, Linked Data development infrastructure has been used to
implement dynamic container observation and monitoring system
for ARKAS company which is the leading logistics company in
Turkey. During the development of the system, it has been observed
that agile practices like feature/story oriented development, test first
development and usage of Agile Architecture approach improves
the product and project management quality. So, a new methodol-
ogy has been proposed based on these practices for Linked Data
development.

Keywords Linked Data Development Methodology, Agile Ana-
lytics, Agile Architecture

1. Introduction
Logistics is a complex industry where many different types of roles
such as shipping agency company(ies), port/ship operator(s), land,
rail and air transportation companies collaborate in order to trans-
port a container to a destination. These companies require a collab-
oration infrastructure in order to resume the whole transportation
process seamlessly. This collaboration infrastructure should pro-
vide an integration environment for the information systems of the
companies in order to manage all sub-transportations and needs to
be open in a sense that it should to be easy to be able to add/remove
company(ies) into the process. In addition to the integration of the
information systems, monitoring of the process is also critical for
the effective management of the process. For instance, important
events like delay in the completion of the land transport, starting

∗ This work is funded by the Republic of Turkey Ministry of Science,
Industry and Technology

Copyright is held by the author/owner(s).
WWW2015 Workshop: Linked Data on the Web (LDOW2015).

of the discharging operation at the port can be very critical for the
roles that are participated in the process.

This paper introduces an implemented architecture based on
Linked Data infrastructure for the well known logistics problem
“Observation and Monitoring of Container Life Cycle”. Applica-
tion is developed within the ARKAS Holding which is one of
Turkey’s leading logistics and transportations company. It oper-
ates in different fields such as sea, land, rail, air transportation, ship
operations and port operations. Therefore, executing “Observation
and Monitoring of Container Life Cycle” problem in real time is a
challenging engineering task since all sub-transportations may run
in parallel on different software systems of different companies.
The end goal is to have managers and customers be able to track
the container transportation life cycle.

In the last decade, EDI-based standards (EDIFACT, RosettaNet,
STEP, AnsiX12), XML standard and Service Oriented Architecture
(SOA) approaches are used for solving the integration problems of
logistics industry[1, 2]. These standards provide common syntax
for data representation. SOA provides an application integration in-
frastructure between different companies via web services. In the
EDI-based standards, messages are pushed among the organiza-
tions on a predefined time and these messages are translated into
suitable format for receiver or sender organization in order to pro-
vide communication. However, these technologies are not sufficient
to ultimately solve the integration challenges in large enterprises. In
the SOA approaches, the most important problem is connectivity
[3]. Identifiers (ID) of the data which are stored in the database are
acknowledge inside of the systems and they lose their meaning in
the other systems. Finding the operation of a web service that will
be called by the identifier is constructed into the software appli-
cation logic. This is elaborated application logic when considering
the complexity of the logistics industry. EDI-based standards are
not suitable for real-time applications since data may be outdated
when information is updated and this is not directly send in an mes-
sage. Also, too many conversion is needed when organizations are
used different types of EDI formats.

Linked Data infrastructure seems like an appropriate technical
solution for the requirements of the logistics industry, since it pro-
vides an integration environment which is more flexible, extensible
and open to the exterior when necessary. Linked Data standards
and infrastructure are prevalently used to integrate enterprise in-
formation and business processes[4–6]. In Linked Data based in-
tegration, identifiers (URI) is not only known in system-wide, but
also known in web-wide and the data which is represented with
these URIs is reachable from HTTP protocol. Thus, all data sources
within the company and/or on the web can be connected with each
other creating a huge knowledge base and software systems can
use this knowledge base independently from each other. Therefore,
Linked Data technologies propose a new solution to dynamic, dis-



tributed and complex nature of the “Observation and Monitoring of
Container Life Cycle” problem specifically and logistics domain in
general.

During the development of the aforementioned “Observation
and Monitoring of Container Life Cycle” application, the devel-
opment team defined a development methodology. Since, the de-
velopment team has a long time experience in Agile Development,
the proposed methodology brings agile practices into the Linked
Data development. The Methodology called as BLOB(A Method-
ology to Bring Agility into Linked Open Data Development for
Businesses) has evolved through the iterations of the development.
Its final version which is overviewed within the paper has following
contributions:

• Feature/story oriented Linked Data development.
• Introducing Agile Architecture[7] approach to Linked Data de-

velopment.
• Applying test first approach to Linked Data development.

At the moment, “Observation and Monitoring of Container Life
Cycle” application is operational and tested by customer operation
unit of ARKAS holding. The paper introduces how the application
and its architecture evolved through the iterations of the proposed
methodology.

2. The Problem : Observation and Monitoring of
Container Life Cycle

In the logistics industry, customers’ loads are transported to a final
destination from a start location within containers. Through this
transportation, containers are proccessed in a variety of work ar-
eas such as port, warehouse, land, rail and air. For instance, let us
consider a company that wants to send its load to customers in Mu-
nich/Germany from Manisa/Turkey. This company is aggreed with
a forwarder company for the transportation. This transportation is
planned as a four-stage; a land transportation from Manisa to Izmir
Alsancak port, a maritime transportation from Izmir Alsancak port
to Piraeus port of Athens, a maritime transportation from Pireaus to
Venice port and a land transportation from Venice port to Munich.
Also, it takes approximately 10 days and there is not an interface to
get information about the transportation.

Throughout the transportation, customers want to learn exact
status and position of the transported loads and this problem is
dealed in wireless network and RFID studies[36, 38, 39] from the
viewpoint of hardware. But, these studies is related with only posi-
tion and status of the cotainers. They are not interested with links
of container with other concepts in the domain. In our case, cus-
tomers only takes information by calling customer operation unit
of ARKAS. All transportation companies use their special informa-
tion technologies and infrastructures. Furthermore, there is not an
integration environment between the systems of these companies.
Any latency in the transportation process is affected all other re-
lated transportations. Therefore, transportation must be constantly
monitored by directly calling companies in charge and this brings
too much operational load to customer operation unit employees.
In this research, we aim to solve the “Observation and Monitoring
of Container Life Cycle” problem of the logistics industry by us-
ing Linked Data infrastructre. For this purpose, following two main
requirements of the industry are performed;

1. Providing an Integration Environment
Transportation history of the container which is distributed into
the different software systems should be integrated.

2. Monitoring Containers

Events of the container transportation in different work areas
should be monitoring and customers should be informed about
transportation status.

3. Overview of the Methodology
It is well understood that agility is the good approach to cope with
changing business and architectural requirements in software de-
velopment. Not only software development, but also business in-
telligence and analytics implementations benefit the agile style of
development as proposed in [8]. The proposed methodology takes
some practices from agile software development, agile analytics
like Scrum[9] and XP[10] such as feature/story oriented devel-
opment, test first approach[11], customer involvement and con-
tinuous integration[12]. Scrum infrastructure is used to managed
project with self-organized team dynamics and iterative life cycle.
Linked Data environment changes constantly by occurenses of new
data sources, new links and changes in ontologies. This highly dy-
namic environment may cause changes in business and architec-
tural requirements. Thus, agile practices used within the linked data
methodoloy makes the methodology suitable for highly dynamic
environment of Linked Data application development.

Linked Data development is very young domain where criti-
cal tools and architectural patterns are constantly evolving. Also,
changes in business requirements and/or Linked Data environment
may affect the initial architectural assumptions. Thus, development
team should observe the evolution and the performance of the ar-
chitecture throughout the development. Observation of the arhitec-
ture evaluation throughout the methodology is clearly defined in
Agile Architecture approach [7]. As defined in Agile Architecture
approach, the proposed methodology sets the architectural style and
evaluation criterias at the beginning of the each iteration and vali-
dates the architectural assumptions at the end of the iteration.

Linked Data development requires some specific tasks as de-
fined in various Linked Data development methodologies[13–16].
Also, Ontology Modelling literature has a long history with many
proposed and used methodologies[17–21]. The proposed method-
ology takes the required tasks from Linked Data development and
Ontology Modelling approaches and combines them with agile
practices within a iterative life cycle. The methodology is evolved
through the four iterations of the application development which
took more than a year and each iteration contains small sprints
which took between 2 and 4 weeks. During the iterations, it is
clearly understood that we need to define test first approach by
identifying test case modelling and testing points in the life cycle.
Another critical observation is the neccessity of parallel execution
of Linked Data Environment Implementation and Application De-
velopment cycles. Linked Data Environment Implementation cycle
includes all the activities related with data perspective. On the other
hand, Application Development cycle includes software develop-
ment activities on the top of the generated linked data. In Figure1,
inner cycle of the methodology represents the Application Devel-
opment cycle and the outher one represents Linked Data Environ-
ment Implementation cycle.

3.1 Analysis
In the analysis activity, application requirements are identified and
managed by product owner by incorporating with necessary project
stakeholders like customer role(s) and development team mem-
ber(s). As a first step of the analysis, main goals of the applica-
tions are identified and for each main goal new user stories are de-
fined to satisfy the goal. The critical aspect of the analysis phase
from the linked data perspective is the identification of the data
sources that require for the user story. The data sources are iden-
tified by development team and attached to the “Application Re-
quirement Card” (ARC). The second critical differences from the



Figure 1. BLOB: A Methodology to Bring Agility into Linked
Open Data Development for Businesses

classical user story definition is the competency question section
of the card. Competency questions is the well known approach in
the ontology development literature [17, 19–21] in order to limit
the scope of the ontology and validate the developed ontology [37].
In our case, competency questions are drived by considering the
linked view of the data sources and validation of the user stories
through the this linked view. These competency questions are the
main sources of the user story validation test cases. Analysis activ-
ity is not part of the iterations and can be executed when necces-
sary. Product owner observes the evolution of the implementation,
collaborates with customer constantly and may define new goals,
refined existing goals and/or define new ARC(s) for new or exist-
ing goals according to situation. These ARC(s) are maintained in
the ARC backlog.

The ARCs are defined for each story including the following
parts;

• ID: Identifier of the ARC
• Application Goal: Includes intended use of the application. It

lends assistance to draw the boundaries of the application.
• Selected Data sources the story: Data sources that will be con-

verted to Linked Data and be consumed by the application.
They can be relational databases, documents, web pages etc.

• User Stories: Senarios of use from the viewpoint of end-users
in order to implement the defined feature of the goal.

• Competency Questions: Questions to validate the story.

3.2 Iteration Requirement Specification
Iteration Requirement Specification (IRS) is a planning activity.
ARCs that are maintained in the ARC backlog are prioritized ac-
cording to their business value and included data sources. Consid-
ering the data sources in story prioritization is critical in terms of
Linked Data development. If more than one sources are included in
the story, this situation affects the Linked Data Generation, Link-
ing and also Architecture Identification activities. Properties of core
Linked Data architecture depends on publishing and integration de-
cisions on different data sources. Thus, inclusion of more than one
data source is critical in terms of establishing and evaluating core
architecture in early iterations. Thus, at the end of the IRS activity
development team decides the stories for the iteration depending on
the business and architectural perspective.

3.3 Linked Data Environment Implementation Cycle
3.3.1 Architecture Identification
Architecture Identification activity is first step of the architectural
agility. Firstly, user stories of the ARC(s) that are selected in the
previous activity are analyzed to identify the architectural pattern(s)
depending on the architectural requirement of the application. From
test first perspective, test planning for architecture evaluation are
defined in this activity. Architecture evaluation is conducted by two
levels of testing. The first level focuses on the retrieving perfor-
mance of generated Linked Data and the other level focuses on
the evaluation of selected quality attibutes[22] like performance,
scalability, availability etc for the final application. The first level
is applied in the Linked Data Generation and/or Linking activity
and second level is applied in Validation&Verification activity. At
this point, data retrieving criterias, quality attributes and their ex-
pected boundaries are identified and documented as initial architec-
ture evaluation test plan.

There are three well known architectural patterns for consuming
Linked Data according to application requirements: the On-The-
Fly Dereferencing pattern, the Crawling Pattern and the Query Fed-
eration Pattern [23]. On-The-Fly Dereferencing pattern conceptual-
izes the web as graph of documents which contains dereferanceble
URIs. Thus, an application executes a query by accessing a RDF
file by dereferencing the URL address then follows the URI links
by parsing the received file on-the-fly[24]. In the Crawling Pattern,
web of data is constantly crawled by dereferencing URLs, follow-
ing links and integrating the discovered data on the local site. Query
Federation Pattern is based on dividing a complex query into sub-
queries and distributing sub-queries to relevant datasets. Query fed-
eration requires accessing datasets via SPARQL endpoints in order
to execute sub-queries on distributed data sources.

All of them have disadvantages and advantages while mak-
ing architectural decision should take into account. In On-The-Fly
Dereferencing pattern, complex operations are very slow because
of dereferencing thousands of URIs in the background, but stale
data is never processed. The main advantage of the crawling pat-
tern is performance. Applications can use high volume of inte-
grated data in much higher performance than other patterns. On the
other hand, the main disadvantage of this pattern is data staling and
complexity of automatic linking of data on the fly. Query Federa-
tion pattern enables applications to work with current data without
needing to replicate complete data sources locally. On the other
hand, the main problem of this pattern is performance of the com-
plex queries especially when query needs to join data from large
number of data sources.



Also, there are a wide range of Linked Data Design Patterns
for modelling, publishing and consuming in the literature [25]. De-
velopment team or data publishers can be use appropriate pattern
or mixture of these patterns. However selection of these patterns
is related with different factors that affect architectural decisions
such as number of data sources, data freshness level, application re-
sponse time and ability to discover new sources at runtime. Devel-
opment team makes architectural identification decision(s) based
on the selected quality attributes and all of these factors.

3.3.2 Ontology Modelling
In the Ontology Modelling activity, concepts of domain and rela-
tionships between these concepts are modelled and implemented
in a formal language. Ontology Modelling activity is inspired from
the following literature [17–21, 26–28]. This activity is composed
of Conceptualizing, Ontology Implementation, Integration/ Modu-
larization and Test Case Generation sub-activities. Figure 2 shows
that ontology modelling lifecycle.

Figure 2. Ontology Modelling Life Cycle.

Conceptualizing
Conceptualizing is a common activity in any ontology modelling
methodology[17–19]. Main goal of the Conceptualizing activity is
construction a conceptual model of domain knowledge. Domain
experts and ontology engineers analyze data sources of ARC(s)
which are selected in the IRS phase and prepare a rough list of
terms, then the terms which are out of the goal scope that belongs
to the selected ARC(s) are eliminated. Ontology engineers and
domain experts prepare a Lexicon of Terms document that contains
a list of domain concepts and then create a Controlled Lexicon
with explanations of the concepts. These explanations lend to find
additional concepts. Also, Domain-Property-Range and Concept-
Instance tables are prepared in order to simplify following ontology
modelling sub-activities. The former table represents relationships
between source and target terms and the latter represents instances
of concepts.

Ontology Implementation
Ontology Implementation activity defines a formal ontology model
from the defined conceptual model and implement it with a on-
tology modelling language. First sub-activity of the Ontology Im-
plementation step is Reusability. Reusability aims to reuse known
and accepted ontologies on the web. Ontology engineers try to find
an ontology in semantic web search engines such as Swoogle1,

1 http://swoogle.umbc.edu/

Sindice2, Watson3 and so on. If there is a ontology that overlaps
outputs of conceptualizing activity, this ontology is taken as input
to the following activities.

If there is not a suitable ontology, Building Concept Hierarchy
sub-activity is taken place. In this activity, ontology engineers vali-
date taxonomies of terms in the Domain-Property-Range Table ac-
cording to OntoClean Methodology [26]. After the hierarchy vali-
dation, Design-Pattern Implementation sub-activity uses the ontol-
ogy design patterns in the literature[27] and structure of the ontol-
ogy is improved based on the selected pattern(s). Finally, the ontol-
ogy is implemented with a formal language such as RDFs, OWL
by using capabilities of an ontology development environment. For
example, TopBraid Composer4, Protege5, WebProtege6.

Integration/ Modularization
Main goal of the Integration/ Modularization activity is achieving
reuse, maintainability, and evolution for large ontologies. Inspiring
from the ANEMONE[28], we examined the conceptual links be-
tween concepts which are generated in the previous iterations and
the concepts of this iteration. After that, ontology is divided into
modules or common concepts of modules are integrated into a new
ontology module.

Test Case Generation
Ontology Modelling activity focuses on the data sources that de-
fined in the ARC(s) and generates the metadata part of the ontol-
ogy for the focused data source. This activity also identifies linking
requirement(s) between the ontologies in metadata level. At this
point, it is possible to define test cases in the ontological level
to validate consistency and competency of the developed ontolo-
gies and the linking requirement(s). The main source to define test
cases is the competency questions that defined in Analysis activity.
These questions are refined based on the knowledge of the devel-
oped ontologies and linking requirement(s). Also, new competency
questions may be added , if they are needed. These competency
questions are transfered to the real SPARQL queries to validate that
developed ontology satisfies the execution of the competency ques-
tions. These queries are saved as an ontological test cases for the
ARC(s) at hand.

3.3.3 Linked Data Generation
Linked Data generation activity is related to generate linked data
from selected data sources according to the ontology model(s).
The data generation process differs according to being whether
data sources structured (e.g. databases), semi-structured (e.g. XML,
XLS, CVS, etc.), or un-structured (e.g. HTML, XHTML, etc.).

Structured data is mapped directly to the ontologies via RDB2RDF
convertors as D2RQ7 or Ultrawrap8. Also, “RDB2RDF Mapping
Patterns”[29]can be used in creation of R2RML9 mappings that
are used by RDB2RDF converters. Semi-structured data sources
are proccesssed by using toolsets such as tripliser10 or Google Re-
fine RDF Extension11 that allow to convertion according to par-

2 http://sindice.com/search
3 http://watson.kmi.open.ac.uk/WatsonWUI/
4 http://www.topquadrant.com/tools/modeling-topbraid-composer-
standard-edition/
5 http://protege.stanford.edu/
6 http://protegewiki.stanford.edu/wiki/WebProtege
7 http://sw.cs.technion.ac.il/d2rq/tutorial
8 http://capsenta.com/#section-ultrawrap
9 http://www.w3.org/TR/r2rml/
10 http://daverog.github.io/tripliser/
11 http://refine.deri.ie/

http://swoogle.umbc.edu/
http://sindice.com/search
http://watson.kmi.open.ac.uk/WatsonWUI/
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
http://protege.stanford.edu/
http://protegewiki.stanford.edu/wiki/WebProtege
http://sw.cs.technion.ac.il/d2rq/tutorial
http://capsenta.com/#section-ultrawrap


ticular instructions. Except for RDF converters, Natural Language
Processing (NLP) methods such as tagging can be used to acquire
data from un-structured data sources.

Test case(s) to validate the ontologies are generated in the pre-
vious activity (Test Case Generation sub-activity of the Ontology
Modelling). At this point, instance data is generated for the devel-
oped ontologies. Thus, it is possible to verify that real data sources
are correctly transformed to the ontological instances. For this
purpose, test automation script(s) that uses generated test case(s)
(SPARQL queries) are written to verify that expected results is
equals to the results of the SPARQL queries and these script(s) are
included into Continuous Integration (CI) infrastructure.

3.3.4 Linking
One of the most important principles of Linked Data is Linking. In
this activity, connections are established between data sources in
manually or automatically. For this purpose, SILK12 and LIMES13

link discovery frameworks can be used in order to automatise this
process. If unstructured sources like text will be linked, tools such
as Dbpedia Spotlight14 can be used. Also, another method is using
same URIs at ontological level to establish links manually between
sources.

Similar to Linked Data Generation activity, in this activity test
automation script(s) of the SPARQL queries that contains linking
requirements are written and integrated into CI infrastructure.

3.4 Application Development Cycle
3.4.1 Initial Visual Development
Linked Data visualization can be a complex and time consuming
task depending on the size of the visualized content. So, it is critical
to start the application development cycle at the beginning of the
iteration. Firstly, a visual interface draft is identified considering the
ARC(s) requirements. Then, team evaluates the different layouts
of the selected visualization infrastructure(s) and produces new
interface design examples for the working ARC(s). These examples
are discussed with the customer and then initial visual design is
decided for the iteration.

3.4.2 Mock Data Generation
Application does not only include user interface design compo-
nents, it also includes data integration layer to handle the data com-
ing from the Linked Data side. Real Linked Data is generated at
the end of the Linking sub-activity of the Linked Data Environ-
ment Implementation cycle. But, application development should
not wait till linked data generation and should continue seamlessly.
Thus, development team participate into Ontology Modelling activ-
ity and/or cooperate with the ontology modelling team to develop
mock linked data repository as the ontologies occures. These mock
repositories give chance to work on the data integration layer of the
visual design and also improve the visual components further.

3.4.3 Integration with Mock Data
In this activity, visual design and data integration layer of the
design is completed by using generated mock repositories. Since,
all visualization is fully functional development team can start to
define accaptence test senarios. Competency questions defined in
Analysis activity and refined in the Ontology Modelling activity
are used to shape acceptance test senarios. Since, these senarios
are defined considering the implemented visual design, developer

12 http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/
13 http://aksw.org/Projects/LIMES.html
14 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki

team implement visual test automation scripts for each senario and
integrate these senarios into CI infrastructure.

3.4.4 Integration with Real Data
In the final sub-activity of application development cycle, visual
design and data integration layer of the visual design are connected
with real generated Linked Data sources. Final implementation is
tested with visual test scripts and whole application becomes ready
for Validation&Verification activity.

3.5 Validation & Verification
Visual test automation script(s) and architecture evaluation test
plan(s) are inputs of the Validation&Verification activity. All visual
application test scripts are evaluated with customer and develop-
ment team together to validate that these script(s) cover all ARC(s)
requirements in the iteration. Then, architecture evaluation test(s)
are created according to architecture evaluation test plan(s). The
iteration is ended when all the defined tests are passed.

4. Overview of the Methodology Implementation
In the Analysis activity, two main goals were identified by stake-
holders as “Monitoring of the Container Transportation” (mon-
itoring goal) and “Observation of the Container Transportation
History” (observation goal). During the discussion, it was under-
stood that primary customer for the system is customer operation
unit employees. At this point, user stories were generated from the
customer perspective. For the observation goal, stories generally fo-
cused on knowledge about the sub-transportations in the container
transportation life cycle. For instance, a user story was defined as
“As a customer, I want to learn history of the specific booking in a
known port”. When stories were analyzed, it was seen by the devel-
opment team, many stories required knowledge from different data
sources. For example, to drive booking knowledge in a known port,
knowledge of the agency and port data sources were needed. For
the monitoring goal, stories generally define the monitoring rules
like “As a customer, I want to learn specific container is loaded to
a specific ship”. Thus, main senarios of these goals, their compe-
tency questions and data sources were defined as ARC(s) and added
to the backlog. Figure 3 is represented an example ARC.

Figure 3. Application Requirement Card for First Iteration.

4.1 Overwiew of Iteration 1
In the IRS activity, customer indicated that observation goal is
more urgent for their daily operations. Thus, it was understood
that ARC(s) of these goal has higher priority. The development



team outlined the criticality of the agency and port data sources,
since these sources contains major part of the whole container
transportation life cycle. Therefore, ARC(s) included these sources
were selected for this iteration.

The development team proceeded to Architecture Identification
activity and decided to use Query Federation pattern to avoid the
stale data problem. Since, agency and port data sources are stored
in different relational databases, the development team decided to
use RDB2RDF tool for Linked Data generation as seen in Figure
3. After architecture evaluation test plan(s) were defined, federated
query response time (max 0.5 second) was taken as a base criteria to
evaluate retrieving performance of generated Linked Data. Also, a
load test (max 1second response time for each concurrent 20 users)
was planned to evaluate performance and scalability of the final
application.

Figure 4. Architecture of First Iteration.

Ontology Modelling activity started after the Architecture Iden-
tification. After the initial conceptualizing effort, the development
team began to search logistics ontologies that proposed in the lit-
erature. One of these studies aims to plan military transportation
domain with different transportation types[30]. However, this study
have not scrutinize intimately the transportation field and focuses
on planning and scheduling. In study [31], events and actions that
are occured in the logistics processes of enterprises are defined, but
transportation process is not detailed. In[32–34], an OWL ontol-
ogy for the formal representation of logistics services defined and
OWL-S usage is examplified for service oriented logistics opera-
tions. iCargo15 and CASSANDRA16 projects are tried to integrate
data which comes from different sources and whereupon require-
ments such as transportation risk assessment and energy conserva-
tion are performed[35]. However, the proposed ontologies is not
available for public use. Thus, the development team decided to
develop required ontologies from scratch. To this end, in this step
the ontologies which represent port and agency data sources were

15 http://i-cargo.eu/
16 http://www.cassandra-project.eu

generated by applying the previously defined ontology modelling
activities.

In the Linked Data Generation activity, data sources were con-
verted into RDF format by using an RDB2RDF tool according to
developed ontologies and published in a local server. These conver-
tions were defined in R2RML language by applying mapping pat-
terns in [29]. After the Linked Data generation of port and agency
sources, the development team immediately started to Linking ac-
tivity(without any testing of individual sources). Since, there are
unique fields in the agency and port systems such as booking, con-
tainer and bill of lading numbers, we did not use an automatic link
discovery tool. Linking of these sources were done by making URIs
of them same in ontological level.

Since, reponse time of the federated query execution was se-
lected as Linked Data generation evaluation criteria in Architecture
Identification activity. The development team started to rework on
competency questions of the selected ARC(s), revised existing ones
and added new questions. Then, these questions were converted
to SPARQL queries (some minor changes required in ontology
model) and executed over the generated linked data. Unfortunately,
architecture did not satisfy the identified performance limit in the
Architecture Identification activity. The development team tried to
improve query response time by using different toolsets such as
Ultrawrap, D2RQ and Oracle Spatial and Graph17. Also, ontology
model(s) were changed to simplfy the complex mapping(s). But,
query performance was still away of expected 0.5 second and on-
tology structure became unrealistic from domain perspective. Thus,
the development team decided to terminate the iteration and began
to new one.

4.1.1 Lesson Learned
• Since, learning of Linked Data development knowledge set

takes time and prevent the smooth flow of activities within the
iteration, plan an education for the development team about
the Linked Data technologies including ontology modelling,
R2RML mappings, SPARQL (as a minimum set).

• Testing of Linked Data generation is conducted at the end of
Linking activity. Some SPARQL queries require changes in
ontologies and causes to return Ontology Modelling activity
again. So, as a general rule develop test cases and execute tests
when neccessary knowledge is ready. In this case, comptency
questions can be revised and SPARQL queries can be gener-
ated at the end of the Ontology Modelling activity (method-
ology cycle was revised according to this observation). Also,
seperate these test cases for single data source(s) and federation
in Ontology Modelling activity and apply them in Linked Data
Generation and Linking activities seperately.

• Integrating architecture identification and evaluation of the
identified architecture within the development life cycle is a
good idea.

4.2 Overview of the Iteration 2
After experiencing the limitations of the Query Federation Pattern,
the development team started to this iteration with a clear goal of
changing the Linked Data architecture. Also, the development team
selected a new ARC for observation goal which includes warehouse
data source. This selection aimed to implement whole methodology
life cycle and improve experiences and apply the learned lessons.
In the Architecture Identification activity, the development team de-
cided to use Crawling Pattern which crawls internal data sources of
the company to solve the observed performance problems. At this
point, solving stale data problem of the Crawling Pattern became

17 http://www.oracle.com/technetwork/database/options/spatialandgraph

http://i-cargo.eu/
http://www.cassandra-project.eu
http://www.oracle.com/technetwork/database/options/spatialandgraph


a problem. For this purpose, the development team decided to use
a Change Data Capture(CDC)18 tool and transforming each event
that comes from CDC tool to the RDF instances of the ontolo-
gies. The development team decided to choose high performance
commercial CDC tool and it was planned to develop a Integration
Module for transforming CDC events. Also, an open source queue
implementation was selected to synchronize the CDC tool and In-
tegration Module. It was also decided to store generated RDF in
a central RDF store. General architectural view of this iteration is
shown in 5. There was no change in the evaluation criteria of the
architecture. Thus, architecture evaluation test plan was kept same.

Figure 5. Architecture of Second Iteration.

In the Ontology Modelling activity, the development team
started to define warehouse ontology model considering previous
experiences. Thus, test cases were generated at the end of this ac-
tivity. The development team revised and extended competency
questions of the selected ARC and tried to write SPARQL version
of these questions in order to validate adequateness of the gen-
erated ontology model. After the successfully defining SPARQL
queries of competency questions, the development team is started
to Linked Data Generation activity. In this activity, R2RML map-
ping of the warehouse source was created and all converted RDF
is stored to central RDF store. Then, generated warehouse data
was tested by using generated test cases. Also, agency and port
data were converted using previously defined mappings and stored
in the central RDF store. In order to solve stale data problem,
the development team started to implement an Integration Mod-
ule. In this module, CDC tool handles changes that occur in the
internal relational data sources simultaneous without overload. It
sends each change to a java message queue (CDC Queue) using
a pre-defined XML format. Integration Module is responsible for
consuming XML change messages from CDC Queue. Change mes-
sages are converted to RDF triples and RDF store is updated ac-
cording to found triples. However, it was realized that Integration
Module should work concurently in a scalable environment, since
these data sources produces approximately three million message
per day. In order to handle these message traffic, the development

18 http://en.wikipedia.org/wiki/Change_data_capture

team decided to use AKKA infrastructure19 whis is highly scal-
able event driven agent system to manage concurrency, parallelism
and fault tolerance. Each update actor in the Integration Module is
an AKKA agent which handles XML messages in the queue and
converts them to the RDF triple and updates RDF store. AKKA
infrastructure of the Integration Module is represented in Figure 6.

In the Linking activity, linking was not required because of the
establishing links in the ontological level. Thus, only correctness of
the links between warehouse RDF data and previously generated
RDF data were tested in this activity.

Figure 6. AKKA Infrastructure of the Integration Module

After the successful verification of the generated Linked Data,
the development team started to build a visual interface for observa-
tion of the container transportation. According to discussions with
the customer, the development team identified a visual interface de-
sign and select a suitable visualization tecnique and tool. But, im-
plementation of this interface took too long and it was not finished
in the planned iteration time limits.

4.2.1 Lesson Learned
• Generation of test cases and making tests in the Ontology Mod-

elling, Linked Data Generation and Linking activities are good
idea.

• Implementing a visual interface after the Linked Data gener-
ation causes delay in product delivery and decreases motiva-
tion of the project stakeholders. Thus, application development
should be a parallel process with Linked Data generation (Ap-
plication Development cycle is added to the methodology).

4.3 Overview of the Iteration 3
In this iteration, the development team selected a new ARC for
monitoring goal. Also, an additional ARC was added which in-
cludes an external data source (owned by external land transporta-
tion company) to the application, since customers wanted to ob-
serve history of the transportation life cycle with an external com-
pany. In the Architecture Identification activity, the development

19 http://akka.io/

http://en.wikipedia.org/wiki/Change_data_capture


team decided to implement a hybrid architecture which uses Crawl-
ing pattern for the internal sources of ARKAS and Query Federa-
tion pattern for the external land transportation company, since cus-
tomer indicated that monitoring events of external company is not a
high priority task from business perspective. For handling monitor-
ing in architectural level, team thought to use another AKKA agent
organization with separate queue mechanism. In this architecture,
change events are transferred to new AKKA organization by the
first organization and new organization agent’s creates events by
applying monitoring rules. Team planned a new load test to verify
monitoring with maximum daily messages and decided to observe
the real systems’ CDC events to formulate the size of the load test.

After the IRS activity, the application development team started
to design a visual interface for the monitoring goal in the design a
visual interface for the monitoring goal in the parallel with Archi-
tecture Identification activity. The application development team
worked on visual designs with the customer. In the Ontology Mod-
elling activity, a simple core land transportation ontology was gen-
erated which is similar to the relational database schema of external
company and test case(s) were generated. Also, the ontology mod-
elling team worked with the application developers for generation
of mock data in parallel. The application development team inte-
grated this mock data with visual interface while Linked Data Gen-
eration activity was implementing. Also, visual acceptance test(s)
were generated and added to the CI infrastructure. In the Linked
Data Generation activity R2RML mapping of the land transporta-
tion source was defined and RDF data of the company published
using an endpoint. Also, generated Linked Data was tested by ap-
plying previously generated test cases(s) and found errors were
fixed. After the Linked Data generation, the application develop-
ment team integrated visual application with real generated Linked
Data and updated visual test(s).

In this iteration, the application was shaped around to notify
user when related transportation events are occurred and represent
external land transportation history in addition to previously im-
plemented user interface. In order to catch transportation events
the development team began to implement the Monitoring Module
which includes the new AKKA organization. Monitoring Module
responsible for catching all events in the transportation life cycle
according to changed RDF triples that are explored by Integration
Module. In this module, monitoring AKKA actors try to find af-
fected transportation rules according to changes and serve them to
user interface. User interface notifies users about transportation sta-
tus in real time. Each change may be matched with multiple rules.
Final architecture of the application is represented in Figure 7. At
the end of the iteration developed application verified in Valida-
tion&Verification activity. Acceptance test(s) and load test(s) were
evaluated with customer and product owner and iteration was fin-
ished successfully.

4.3.1 Lesson Learned
• Integration of an external source(s) should be implemented in

the early iterations of the application, since it affects architec-
tural decisions and requires lots of effort to introduce linked
data infrastructure in a new company.

5. Conclusion and Future Works
Currently “Observation and Monitoring of Container Life Cycle”
application is used by customer operation unit of ARKAS hold-
ing. At the end of three iterations, the developed application has
generated ~300 millions RDF triples by integration agency, port
and warehouse data sources of ARKAS. Also, the application han-
dles ~3 millions change messages per day. Customer operation unit
test observation and monitoring features of the application with 20
concurrent users (number of the customer operation unit employ-

Figure 7. Architecture of Third Iteration.

ees). Observation of container life cycle features can be used by
container, booking and bill of lading unique numbers. For instance,
Figure 8 shows history of a booking whose number is “B14170741”
in tree format (This number is correspondence of the resource
whose URI is “http://data.arkas.com/general/booking/B14170741”
and it is same in the RDF data of each participant company). More-
over, the development team is comfortable to work with BLOB
methodology and ready to use it for other linked data project(s).

According to the feedbacks of the employees, It is realized that
new ARCs are necessary to visually define new transportation rules
for monitoring of the transportation life cycle. In this interface,
customers can add/remove/update transportation rules that they
want to follow. Also, role based access management is needed,
since each customer is interested in different information about the
transportation. In the future of the project, these requirements will
be implemented.

Figure 8. User Interface.



6. Acknowledgement
The authors wish to thanks Bimar Information Technologies Ser-
vices, ARKAS holding and their employees Guner Mutlu, Necmi
Sentuna, Gokhan Daghan, Tugkan Tuglular, Burak Bilyay and
Kubra Parkın for their helps. Also, we wish to acknowledge Galak-
siya Information Technologies and Consultancy and its manager
Erdem Eser Ekinci for their contributions to the developed method-
ology.

References
[1] Harleman, R. Improving the Logistic Sectors Efficiency using Service

Oriented Architectures (SOA). In 17th Twente Student Conference on
IT, 2012.

[2] Nurmilaakso, J.M. Adoption of e-business functions and migration
from EDI-based to XML- based e-business frameworks in supply
chain integration. International Journal of Production Economics
113(2), 721-733, 2008.

[3] Loutas, N. Case Study: How Linked Data is transforming eGov-
ernment. European Commission ISA Programme, 2013, Avail-
able at: http://joinup.ec.europa.eu/community/semic/document/case-
study-how-linked-data-transforming-egovernment.

[4] Frischmuth, P., Klímek, J., Auer, S., Tramp, S., Unbehauen, J.,
HolzweiSSig, K. and Marquardt, C.M. Linked Data in Enterprise In-
formation Integration.Semantic Web – Interoperability, Usability, Ap-
plicability an IOS Press Journal, 2012.

[5] Mihindukulasooriya, N., Garcia-Castro, R. and Gutiérrez, M.E.Linked
Data Platform as a novel approach for Enterprise Application Integra-
tion. In the Prooceedings of the 4th COLD Workshop, 2013.

[6] Hu, B. and Svensson, G. A Case Study of Linked Enterprise Data.
In Proceedings of the 9th International Conference on The Semantic
Web, 2010.

[7] Brown, N., Nord, R., Ozkaya, I. Enabling Agility Through Architec-
ture.Software Engineering Institute, 2010.

[8] Collier, K.W. Agile Analytics: A Value-Driven Approach to Business
Intelligence and Data Warehousing (1st ed.). Addison-Wesley Profes-
sional, 2011.

[9] Schwaber, K.Agile Project Management with Scrum.Microsoft Press,
Redmond, WA, USA, 2004.

[10] Beck, K. and Andres, C. Extreme Programming Explained: Embrace
Change (2nd Edition).Addison-Wesley Professional, 2004.

[11] Fraser, S., Beck, K., Caputo, B., Mackinnon, T., Newkirk, J. and
Poole, C. Test driven development (TDD). In Proceedings of the 4th
international conference on Extreme programming and agile processes
in software engineering (XP’03), Michele Marchesi and Giancarlo
Succi (Eds.). Springer-Verlag, Berlin, Heidelberg, 459-462, 2003.

[12] Campos, J., Arcuri, A., Fraser, G. and Abreu, R. Continuous test gen-
eration: enhancing continuous integration with automated test genera-
tion. In Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering (ASE ’14). ACM, New York, NY,
USA, 55-66, 2014.

[13] Auer, S., Bühmann, L., Dirschl, C., Erling, O., Hausenblas, M.,
Isele, R., Lehmann, J., Martin, M., Mendes, P. N., Van Nuffelen, B.,
Stadler, C., Tramp, S. and Williams, H. Managing the life-cycle of
linked data with the LOD2 stack. In Proceedings of the 11th interna-
tional conference on The Semantic Web - Volume Part II (ISWC’12),
Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache,
and Jérôme Euzenat (Eds.), Vol. Part II. Springer-Verlag, Berlin, Hei-
delberg, 1-16, 2012.

[14] Villazon-Terrazas, B., Vilches-Blazquez, L., Corcho, O. and Gomez-
Perez, A.Methodological guidelines for publishing government linked
data linking government data. Linking Government Data, 27–49,
2011.

[15] Hyland, B. and Wood, D.The Joy of Data - A Cookbook for Publishing
Linked Government Data on the Web. Linking Government Data, 3-
26, 2011.

[16] Hausenblas, M. Linked Data Life Cycles. 2011, Available at:
http://www.slideshare.net/mediasemanticweb/linked-data-life-cycles.

[17] Fernandez-Lopez, M., Gomez-Perez, A. and Juristo, N. METHON-
TOLOGY: From Ontological Art Towards Ontological Engineering.
In Proceedings of the AAAI Spring Symposium Series on Ontological
Engineering, 1997.

[18] Pinto, H.S., Tempich, C. and Staab, S. Diligent: Towards a fine-
grained methodology for distributed, loosely-controlled and evolving
engingeering of ontologies. In Proceedings of the 16th European
Conference on Artificial Intelligence ECAI, 2004.

[19] De Nicola, A., Missikoff, M. and Navigli, R. A Software Engineering
Approach to Ontology Building.Information Systems 34(2), 258-275,
2009.

[20] Noy, N. F. and McGuinness, D. L. Ontology Development 101:
A Guide to Creating Your First Ontology. 2001, Available at:
http://protege.stanford.edu/publications/ontology_development/ontology101-
noy-mcguinness.html.

[21] Suarez-Figueroa, M., Gomez-Perez, A. and Fernandez-Lopez, M.The
NeOn Methodology for Ontology Engineering. Ontology Engineering
in a Networked World, 9-34, 2012.

[22] Meier, J.D., Homer, A., Taylor, J., Bansode, P., Wall,
L., Boucher, R. and Bogawat., A. How To - De-
sign Using Agile Architecture. 2008, Available at:
http://apparch.codeplex.com/wikipage?title=How%20To%20-
%20Design%20Using%20Agile%20Architecture&referringTitle=How%20Tos.

[23] Heath, T. and Bizer, C. Linked Data: Evolving the Web into a Global
Data Space (1st edition). Synthesis Lectures on the Semantic Web:
Theory and Technology, 1:1, 1-136. Morgan & Claypool, 2011.

[24] Hartig, O., Bizer, C. and Freytag, J.C. Executing SPARQL queries
over theweb of linked data.In International Semantic Web Conference,
pages 293-309, 2009.

[25] Dodds, L. and Davis, I. Linked Data Patterns. 2012, Available at:
http://patterns. dataincubator.org/book/index.html.

[26] Guarino, N. and Welty, C.A. An Overview of OntoClean. Handbook
on Ontologies International Handbooks on Information Systems, 201-
220, 2009.

[27] Presutti, V., Daga, E., Gangemi, A. and Blomqvist, E.eXtreme Design
with Content Ontology Design Patterns. In Proceedings of the Work-
shop on Ontology Patterns WOP, 2009.

[28] Ozacar, T., Ozturk, O. and Unalir, M. O.ANEMONE: An environment
for modular ontology development. Data & Knowledge Engineering
70(6), 504–526, 2011.

[29] Sequeda, J., Priyatna, F. and Villazon-Terrazas, B.Relational Database
to RDF Mapping Patterns. In Proceedings of the Workshop on Ontol-
ogy Patterns WOP, 2012.

[30] Becker, M. and Smith, S. F.An ontology for Multi-Modal Transporta-
tion Planning and Scheduling. Carnegie Mellon University Technical
Report, 1997.

[31] Lian, P., Park, D. and Kwon, H. Design of Logistics Ontology for Se-
mantic Repre- senting of Situation in Logistics. In the Second Work-
shop on Digital Media and its Application in Museum & Heritages,
432-437, 2007.

[32] Hoxha, J., Scheuermann, A. and Bloehdorn, S.An Approach to Formal
and Semantic Representation of Logistics Services. In Proceedings of
the Workshop on Artificial Intelligence and Logistics (AILog) at the
19th European Conference on Artificial Intelligence (ECAI), 2010.

[33] Scheuermann, A. and Hoxha, J.Ontologies for Intelligent Provision of
Logistics Ser- vices. In Proceedings of the 7th International Confer-
ence on Internet and Web Applications and Services, 2012.

[34] Preist, C., Esplugas-Cuadrado, J., Battle, S.A., Grimm, S. and
Williams, S.K.Auto- mated Business-to-Business Integration of a Lo-
gistics Supply Chain Using Seman- tic Web Services Technology. In
Proceedings of the 4th International Conference on the Semantic Web,
2005.



[35] Dalmolen, S., Cornelisse, E., Moonen, H. and Stoter, A. Cargo’s
Digital Shadow - A Blueprint to Enable a Cargo Centric Information
Architecture. In eFreight Con- ference, 2012.

[36] Ahn, S. B. Container tracking and tracing system to enhance global
visibility. In Proceedings of the Eastern Asia Society for Transporta-
tion Studies, vol. 5, 1719 - 1727 pp, 2005.

[37] Bezerra, C., Freitas, F., Santana, F. Evaluating Ontologies with Com-
petency Questions.Web Intelligence (WI) and Intelligent Agent Tech-
nologies (IAT), IEEE/WIC/ACM International Joint Conferences, vol
3, 284-285 pp, 2013.

[38] S.L. Ting, L.X. Wang, W.H. Ip. A study of RFID adoption for vehicle
tracking in a container terminal. Journal of Industrial Engineering &
Management, Vol. 5 Issue 1, 22 p, 2012.

[39] J. K. Siror, G. Liang, K. Pang, H. Sheng and D. Wang.Impact of RFID
Technology on Tracking of Export Goods in Kenya.JCIT 5(9),190-199
pp, 2010.


	Introduction
	The Problem : Observation and Monitoring of Container Life Cycle
	Overview of the Methodology
	Analysis
	Iteration Requirement Specification
	Linked Data Environment Implementation Cycle
	Architecture Identification
	Ontology Modelling
	Linked Data Generation
	Linking 

	Application Development Cycle
	Initial Visual Development 
	Mock Data Generation 
	Integration with Mock Data
	Integration with Real Data 

	Validation & Verification

	Overview of the Methodology Implementation
	Overwiew of Iteration 1
	Lesson Learned

	Overview of the Iteration 2
	Lesson Learned

	Overview of the Iteration 3
	Lesson Learned


	Conclusion and Future Works
	Acknowledgement

