
Some Thoughts on Using Annotated Su�x Trees
for Natural Language Processing

Ekaterina Chernyak

National Research University – Higher School of Economics
Moscow, Russia
echernyak@hse.ru

Abstract. The paper defines an annotated su�x tree (AST) - a data
structure used to calculate and store the frequencies of all the fragments
of the given string or a collection of strings. The AST is associated with
a string to text scoring, which takes all fuzzy matches into account.
We show how the AST and the AST scoring can be used for Natural
Language Processing tasks.
Keywords: text representation, annotated su�x tree, text summariza-
tion, text categorization

1 Introduction

Natural Language Processing tasks require a text being represented by a sort
of a formal structure to be processed by a computer. The most popular text
representation is the Vector Space Model (VSM), designed by Salton [1]. The
idea of the VSM is simple: given a collection of texts, represent every text as a
vector in a space of terms. A term is a word itself or a lemmatized word or the
stem of a word or any other meaningful part of the word. The VSM is widely
used in any kind of Natural Language Processing tasks. The few exceptions are
machine translation or text generation, when word order is important, while
the VSM completely loses it. For these purposes Ponte and Croft introduced the
language model [2], which is based on calculating the probability of the sequence
of n words or characters, so-called n-grams. There is one more approach to text
representation, which is based on su�x trees and su�x arrays. Originally the
su�x tree was developed for fuzzy string matching and indexing [3]. However
there appear to be several application of su�x trees to Natural Language Pro-
cessing. One of them is document clustering, presented in [4]. When some sort
of probability estimators of the paths in the su�x tree are introduced, it can be
used as a language model for machine translation [5] and information retrieval
[6].

In this paper we are going to concentrate on the so-called annotated su�x
tree (AST), introduced in [8]. We will present the data structure itself and several
Natural Language Processing tasks where the AST representation is successfully
used. We are not going to make any comparisons to other text representation
models, but will show that using the AST approach helps to overcome some

In: P. Cellier, T. Charnois, A. Hotho, S. Matwin, M.-F. Moens, Y. Toussaint (Eds.): Proceedings of
DMNLP, Workshop at ECML/PKDD, Nancy, France, 2014.
Copyright c� by the paper’s authors. Copying only for private and academic purposes.

2

exciting problems. The paper is organized as follows: the Section 2 presents
the definition of the AST and the algorithm for the AST construction, Sections
from 3 to 7 present exciting applications of the AST (almost all developed with
author’s contribution), Section 8 lists some future application, Section 9 suggests
how to compare the AST scoring to other approaches, Section 10 is devoted to
the AST scoring implementation. Section 11 concludes.

The project is being developed by the “Methods of web corpus collection,
analysis and visualisation” research and study group under guidance of prof. B.
Mirkin (grant 15 - 05 - 0041 of Academic Fund Program).

2 Annotated su�x tree

2.1 Definition

The su�x tree is a data structure used for storing of and searching for strings of
characters and their fragments [3]. When the su�x tree representation is used,
the text is considered as a set of strings, where a string may be any significant
part of the text, like a word, a word or character n-gram or even a whole sentence.
An annotated su�x tree (AST) is a su�x tree whose nodes (not edges!) are
annotated by the frequencies of the strings fragments.

An annotated su�x tree (see Figure 1)[7] is a data structure used for com-
puting and storing all fragments of the text and their frequencies. It is a rooted
tree in which:

– Every node corresponds to one character
– Every node is labeled by the frequency of the text fragment encoded by the

path from the root to the node.

2.2 AST construction

Our algorithm for constructing an AST is a modification of the well-known
algorithm for constructing su�x trees [3]. The algorithm is based on finding
su�xes and prefixes of a string. Formally, the i-th su�x of the sting is the
substring, which starts at i-th character of the string. The i-th prefix of the
string is the substring, that ends on the i-th character of the string. The AST
is built in an iterative way. For each string, its su�xes are added to the AST
one-by-one starting from an empty set representing the root. To add a su�x to
the AST, first check, whether there is already a match, that is, a path in the
AST that encodes / reads the whole su�x or its prefix. If such a match exists, we
add 1 to all the frequencies in the match and append new nodes with frequencies
1 to the last node in the match, if it does not cover the whole su�x. If there is
no match, we create a new chain of nodes in the AST from the root with the
frequencies 1.

6 E. Chernyak

3

Fig. 1. An AST for string “mining“.

2.3 AST relevance measure

To use an AST to score the string to text relevance we first build an AST for a
text. Next we match the string to the AST to estimate the relevance.

A procedure for computing string-to-text relevance score:

Input: string and AST for a given text.
Output: the AST scoring.

1. The string is represented by the set of its su�xes;
2. Every su�x is matched to the AST starting from the root. To estimate the

match we use the average conditional probability of the next symbol:

score(match(suffix, ast)) =
P

node2match

�(
f(node)

f(parent(node))

|suffix|) ,

where f(node) is the frequency of the matching node, f(parent(node)) is
it’s parent frequency, and |suffix| is the length of the su�x;

3. The relevance of the string is evaluated by averaging the scores of all su�xes:

relevance(string, text) = SCORE(string, ast) =

=

P
suffix

score(match(suffix, ast))

|string| ,

where |string| is the length of the string.

Note, that “score” is found by applying a scaling function to convert a match
score into the relevance evaluation. There are three useful scaling functions,
according to experiments in [8] for spam classification:

Some Thoughts on Using Annotated Su�x Trees for Natural Language Processing 7

4

– Identity function: �(x) = x

– Logit function:

�(x) = log
x

1� x
= log x� log(1� x)

– Root function �(x) =
p
x

The identity scaling stands for the conditional probability of characters averaged
over matching fragments (CPAMF).

Consider an example to illustrate the described method. Let us construct
an the for the string “mining”. This string has six su�xes: “mining”, “ining”,
“ning”, “ing”, “ng”, and “g’ . We start with the first su�x and add it to the
empty AST as a chain of nodes with the frequencies equal to unity. To add the
next su�x, we need to check whether there is any match, i.e. whether there is
such a path in the AST starting at its root that encodes / reads a prefix of
“ining”. Since there is no match between existing nodes and the second su�x,
we add it to the root as a chain of nodes with the frequencies equal to unity.
We repeat this step until a match is found: a prefix of the fourth su�x “ing”
matches the second su�x “ining”: two first letters, “in”, coincide. Hence we add
1 to the frequency of each of these nodes and add a new child node “g” to the
leaf node “n” (see Figure 1). The next su�x “ng” matches the third su�x and
we repeat the same actions: increase the frequency of the matched nodes and
add a new child node that does not match. The last su�x does not match any
path in the AST, so again we add it to the AST’s root as a single node with
its frequency equal to unity. Now let us calculate the relevance score for string
“dining” using the AST in Figure 1. There are six su�xes of the string “dining”:
‘dining”, “ining”, “ning”, “ing”, “ng”, and “g’ . Each of them is aligned with an
AST path starting from the root. The scorings of the su�xes are presented in
Table 1.

Table 1. Computing the string “dining” score

Su�x Match Score
“dining” None 0

“ining” “ining” 1/1+1/1+1/2+2/2+2/6
5 = 0.76

“ning” “ning” 1/1+1/1+1/2+2/6
4 = 0.71

“ing” “ing” 1/2+2/2+2/6
3 = 0.61

“ng” “ng” 1/2+2/6
2 = 0.41

“g” “g” 1/6
1 = 0.16

We have used the identity scaling function to score all 6 su�xes of the string
“dining”. Now, to get the final CPAMF relevance value we sum and average

8 E. Chernyak

5

them:

relevance(dining,mining) =
0 + 0.76 + 0.71 + 0.61 + 0.41 + 0.16

6
=

=
2.65

6
= 0.44

In spite of the fact that “dining” di↵ers from “mining” by just one character,
the total score, 0.44, is less than unity. This is not only because the trivial su�x
“dining” contributes 0 to the sum, but also because conditional probabilities get
smaller for the shorter su�xes.

3 Spam filtering

The definition of the AST presented above was for first time introduced by Pam-
papathi, Mirkin and Levene in [7] for spam filtering. The AST was used as a
representation tool for every class (spam and ham). By introducing a procedure
for scoring the class AST they developed a classifier that beats the Naive Bayes
classifier in a series of experiments on standard datasets. The success of ASTs
in domain of email filtering was due to the notion of match permutation nor-
malization, which allowed to take into account some intentional typos developed
by spamers to pass over spam filters. Match permutation normalization is in a a
sense analogous to the edit distance [10] that if frequently implemented in spam
filters [11].

4 Research paper categorization

The problem of text categorization is formulated as follows. Given a collection
of documents and a domain taxonomy, annotate a document with relevant tax-
onomy topics. A taxonomy is a rooted tree, such that every node corresponds
to a (taxonomy) topic of the domain. The taxonomy generalizes the relation “is
– a” or “is a part of”.

There are two basic approaches to the problem of text categorization: su-
pervised and unsupervised. Supervised approaches give high precision values
when applied to web document categorization [12], but may fail when applied
to research paper categorization, since the research taxonomies, such as ACM
Computing Classification System [13], are seldom revised and the supervised
techniques may overfit [14]. The unsupervised approaches to text categorization
are based on information retrieval – like idea: given the set of taxonomy topics,
let us find those research papers that are relevant to every topic. The question
for researcher is the following: what kind of the relevance model and measure
to choose? In [15] we experimentally compared cosine relevance function, which
measures the cosine between tf � idf vectors in Vector Space Model [1], BM25,
based on the probabilistic relevance framework, and the AST scoring, introduced
above. These three relevance measures where applied to a relatively small dataset

Some Thoughts on Using Annotated Su�x Trees for Natural Language Processing 9

6

of 244 articles, published in ACM journals and the current version of ACM Com-
puting Classification System. The AST scoring outperforms cosine and BM25
measures, by being more robust and taking not crisp but fuzzy measures into ac-
count. The next step in this research direction would be testing the AST scoring
versus w-shingling procedure [17], which is also a fuzzy matching technique that
requires text preprocessing, such stemming or lemmatization. However there is
no need in stemming or lemmatization to apply the AST scoring.

5 Taxonomy refinement

Taxonomies are widely used to represent, maintain and store domain knowledge,
see, for example SNOMED [18] or ACM CCS [13]. Domain taxonomy construc-
tion is a di�cult task and a number of researchers have come out with idea of
taxonomy refinement. The idea of taxonomy refinement is the following: having
one taxonomy or upper levers of taxonomy refine it with topics extracted from
additional sources such as other taxonomies, web search or Wikipedia. We fol-
lowed this strategy and developed a two-step approach to taxonomy refinement,
presented in more details in [21]. We concentrated on taxonomies of probability
theory and mathematical statistics (PTMS) and numerical mathematics (NM),
both in Russian. On a first step an expert sets manually the upper layers of tax-
onomy. On the second step these upper layers are refined by Wikipedia category
tree and the articles, belonging to this tree, from the same domain. In this study
the AST scoring is used several times:

– To clear the Wikipedia data from noise;
– To assign the remaining Wikipedia categories to the taxonomy topics;
– To form the intermediate layers of the taxonomy by using Wikipedia sub-

categories;
– To use Wikipedia articles in each of the added category nodes as its leaves.

The Wikipedia data is rather noisy: there some articles that are stubs or irrele-
vant to parental categories (the categories, they belong to) and the more so there
are subcategories (of a category) that are irrelevant to the parental categories.
For example, we found the article “ROC curve” be irrelevant to the category
“Regression analysis” and the category “Accidentally killed” to the category
“Randomness”. To define what article is irrelevant we exploit the AST scoring
twice:

– We scored the title of the article to the text of the article to detect stubs;
– We scored the title of the parental category to the text of the article to detect

irrelevant category.

If the value of the scoring function is less than a threshold we decided that the
article is irrelevant. Usually we set the threshold at 0.2. To assign the remaining
Wikipedia categories to the taxonomy topics we score the taxonomy topics to all
the articles in the category merged into one text. Next we found the maximum
value of the scoring function and assigned the category to the corresponding

10 E. Chernyak

7

taxonomy topic. Finally, we score the title of parental categories to the articles
of the subcategories, merged into one. If the subcategory to category scoring
is higher than the subcategory to taxonomy topic, the subcategory remains on
the intermediate layer of the refined taxonomy tree under its parental category.
Finally, the articles left after clearing from noise became leaves in the refined
taxonomy tree. The quality of achieved PTMS and NM taxonomies is di�cult
to evaluate computationally, so the design of the user study is an open question.

6 Text summarization

Automatic text summarisation is one of the key tasks in natural language pro-
cessing. There are two main approaches to text summarisation, called abstractive
and extractive approaches [22].

According to the abstractive approach, the summary of a text is another text,
but much shorter, generated automatically to make the semantic representation
of the text. According to extractive approach, the summary of a text is nothing
else, but some important parts of the given text, such as a set of important
sentences.

The extractive summarisation problem can be formulated in the following
way. Given a text T that is a sequence of sentences S that consists of words V ,
select a subset of the sentences S⇤ that are important in T . Therefore we need
to define:

– what importance of a sentence is;
– how to measure importance of the sentence; Hence we need to introduce

a function, importance(s), which measures the importance of a sentence.
The higher importance is, the better. Next step is to build the summary.
Let us rank all the sentences according the values of importance. Suppose
we look for the summary that consists of five sentence. Hence we take the
five sentences with the highest values of importance and call them top-5
sentences according to importance. Generally, the summary of the text are
the top-N sentences according to importance and N is set manually.

The best results for this statement of the problem are achieved by Mihalcea
and Tarau [23], where importance(s) is introduced as PageRank type function
[24] without any kind of additional grammar, syntax or semantic information.
The main idea of the suggested TextRank algorithm is to represent a text as a
directed graph, where nodes stand for sentences and edges connect sequential
sentences. The edges are weighted with sentence similarity. When PageRank is
applied to this graph, every node receives its rank that is to be interpreted as the
importance of the sentence, so that importance(s) = PageRank(s

node

), where
s
node

is the node corresponding to sentence s.
To measure similarity of the sentences the authors of TextRank algorithm

suggest to use the basic VSM (Vector Space Model) scheme. First every sentence
is represented as a vector in space of words or stems. Next cosine similarity
between those vectors is computed. We can use the AST scoring as well for

Some Thoughts on Using Annotated Su�x Trees for Natural Language Processing 11

8

scoring the similarity between two sentences. To do this we have to introduce
the common tree technique.

6.1 Constructing common subtree for two ASTs

To estimate the similarity between two sentences we find the common subtree
of the corresponding ASTs. We do the depth-first search for the common chains
of nodes that start from the root of the both ASTs. After the common subtree
is constructed we need to annotate and score it. We annotate every node of
the common subtree with the averaged frequency of the corresponding nodes in
initial ASTs. Consider for example two ASTs for strings “mining” and “dinner”
(see Fig. 1 and Fig. 2, correspondingly). There are two common chains: “I N” and
“N”, the first one consists of two nodes, the second one consists of a single node.
Both this chains form the common subtree. Let us annotate it. The frequency
of the node “I” is equal to 2 in the first AST and to 1 in the second. Hence, the
frequency of this node in the common subtree equals to 2+1

2 = 1.5. In the same
way we annotate the node “N” that follows after the node “I” with 2+1

2 = 1.5
and the node “N” on the first level with 2+2

2 = 2. The root is annotated with
the sum of the frequencies of the first level nodes that is 1.5 + 2 = 3.5.

6.2 Scoring common subtree

The score of the subtree is the sum of scores of every chain of nodes. The score
of the path is the averaged sum of the conditional probabilities of the nodes,
where conditional probability of the node is the frequency of the node divided
by the frequency of its parent. For example, the conditional probability of the
node “G:1” on the third level of the AST on Fig. 1 is 1/2. Let us continue with
the example of “mining” and “dinner”. There are two chains in their common
subtree: “I N” and “N”. The score of “I N” chain is (1.5/1.5 + 1.5/3.5)/2 =
0.71, since there are 2 nodes in the chain. The score of one node chain “N” is
1.5/3.5 = 0.42. The score of the whole subtree is (0.71 + 0.42) = 1.13.

The collection for experiments was made of 400 articles from Russian news
portal called Gazeta.ru. The articles were marked up in a special way, so that
some of sentences were highlighted because of being more important. This high-
lighting was done either by the author of the article or by the editor on the basis
of their own ideas. In our experiments we considered those sentences as the sum-
mary of the article. We tried to reproduce these summaries using TextRank with
cosine similarity measure and AST scoring.

Using this algorithm allowed us to gain around 0.05 points of precision ac-
cording to cosine baseline on our own collection of Russian newspaper texts.
This is a great figure for Natural Language Processing task, taking into account
that the baseline precision of the cosine measure was very low. The fact that
the precision is so low can be explained by some lack of consistency in the con-
structed collection: the authors of the articles use di↵erent strategies to highlight
the important sentences. The text collection is heterogeneous: in some articles

12 E. Chernyak

9

Fig. 2. An AST for string “dinner”.

Fig. 3. Common subtree of ASTs for stings “mining” and “dinner”.

there are 10 or more sentences highlighted, in some only the first one. More
details of this experiment are presented in [25].

7 Association rule extraction

Several research group develop di↵erent approaches to extraction and visualiza-
tion of association rules from text collections [26, 27]. Association rule is a rule
X =) Y , where both X and Y are sets of concepts, possibly a singleton,
and the implication means some sort of co-occurrence relation. An association
rule has two important features, called support and confidence. When the rule is
extracted from the text collection, the support of the set X support(X) usually
stands for the proportion of the documents where concepts X occur and the
confidence of the association rule confidence(X =) Y) stands for conditional
probability of Y given X. The majority of approaches to association rule ex-
traction share the following idea in common: the concepts should be extracted
from the text collection. Using the fuzzy AST scoring we can diminish this lim-
itation and produce the rules on the set of concepts provided by a user. In [28]
we presented a so-called “conceptual map”, which is a graph of association rules
X =) Y . To make the visualization easy we restricted ourselves only to single
item sets, so that |X| = |Y | = 1. We analyzed a collection of Russian language

Some Thoughts on Using Annotated Su�x Trees for Natural Language Processing 13

10

newspaper articles on business and the concepts were provided by a domain ex-
pert. We used the AST scoring to score every concept k

i

to every text from the
collection. Next we formed F (k

i

) the set of articles, to which the concept k
i

relevant (i.e. the scoring is higher than a threshold, usually 0.2). Finally, there

was a rule k
i

=) k
j

if the ratio F (k
i

)\F (k
j

)
F (k

i

) was higher than the predefined

confidence threshold. An example of conceptual map (translated into English)
can be found on Fig. 4.

Fig. 4. A conceptual map

This conceptual map may serve as a tool for text analysis: it reveals some
hidden relations between concepts and it can be easy visualized as a graph. Of
course, to estimate the power of conceptual maps we have to conduct an user
study.

8 Future work

In the following sections we will briefly present some Natural Language Process-
ing tasks, where AST scoring might be used.

8.1 Plagiarism detection

Ordinary su�x trees are widely used for plagiarism detection [29]. The common
subtree technique can also be used in this case. Suppose we have two texts,

14 E. Chernyak

11

construct two individual ASTs and the common AST. The size of the common
AST will show how much these texts share in come. Scoring the common AST
allows to measure how significant coinciding parts are. With no doubts, the
common AST can be used for indexing of coinciding parts of the texts. Hence, it
inherits advantages of ordinary su�x trees with some additional functionality.

8.2 Compound splitting

Splitting compounds, such as German compounds, is necessary for machine
translation and information retrieval. The splitting is usually conducted accord-
ing to some morphological or probabilistic models [30]. We have a hypothesis
that scoring prefixes of compound words to the AST, constructed from the col-
lection of simple words, will allow to split compounds without using additional
morphological knowledge. The main research in this direction is the design of
the collection of simple words.

8.3 Profanity filtering

The Russian profanity language is rich and complex and has a complex deriva-
tion, usually based on adding prefixes (such as “za”, “pro”, “vy”, etc). New
words appear almost every month, so it is di�cult to maintain a profanity dic-
tionary. Profanity filtering is an important part of Russian Text or Web mining,
specially since some special limitations on using profanity were introduced. The
task is to find words in a text that are profane and, for example, to replace them
with star symbols “***”. Note, that Russian derivative includes also a variety
of endings, so lematization or stemming should be used. Since Porter stemmer
[31] does not cope with prefixes, it can be easily replaced by some sort of the
AST-scoring.

9 Comparison to other approaches

Cosine measure on tfidf vectors is a traditional baseline in majority of Natural
Language Processing tasks and is easily overcame by any sort of more robust
and fuzzy similarity or relevance measure, such as w-shingling [17], super shin-
gles [32], mega shingles [33] and character n-grams [34]. The main future research
concentrates on drawing comparison between these fuzzy measure and AST scor-
ing.

10 Implementation

Mikhail Dubov’s implementation of AST construction and scoring is based on
su�x arrays, which makes it space and time e�cient. It is available at https:
//github.com/msdubov/AST-text-analysis. It can be used as console utility
or as a Python library.

Some Thoughts on Using Annotated Su�x Trees for Natural Language Processing 15

12

11 Conclusion

In this paper the notion of annotated su�x tree is defined. The annotated su�x
trees are used by several research groups and in the paper several finished, run-
ning or future projects are presented. The annotated su�x tree is a simple but
powerful tool for scoring di↵erent types of relevance or similarity. This paper
may sound light weighted and to make it more theoretical, we will conclude by
provided some insights on probabilistic or morphological origins of ASTs. From
one point of view, we have a strong feeling that it can proved that the AST or
the common AST is a string kernel, thus it can be used to generate features for
text classification / categorization or to measure similarity. From another point
of view, the AST is a sort of supervised stemmer, that can be used to generate
terms more e�ciently than model-based stemmers.

12 Acknowledgments

I am deeply grateful to my supervisor Dr. Boris Mirkin for an oppurtunity to
learn from him and to work under his guidance for so long and to my colleagues
Mikhail Dubov, Maxim Yakovlev, Vera Provotorova and Dmitry Ilvovsky for
collaboration.

References

1. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing and Management, Vol.2, no 5, pp. 513-523, 1998.

2. Ponte, J. M., and Croft B.W.. A language modeling approach to information re-
trieval. In Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, pp. 275-281. ACM, 1998.

3. Gusfield D., Algorithms on Strings, Trees, and Sequences, Cambridge University
Press, 1997.

4. Zamir O., Etzioni, O. Web document clustering: A feasibility demonstration. Pro-
ceedings of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 46-54. ACM, 1998.

5. Kennington C.R., Kay M. , Friedrich. A.. Su�x Trees as Language Models. In
LREC, pp. 446-453. 2012.

6. Huang J.H., Powers D.. Su�x tree based approach for chinese information retrieval.
Intelligent Systems Design and Applications, 2008. ISDA’08. Eighth International
Conference on, vol. 3, pp. 393-397. IEEE, 2008.

7. Pampapathi R., Mirkin B., Levene M., A su�x tree approach to anti-spam email
filtering, Machine Learning, 2006, Vol. 65, no.1, pp. 309-338.

8. Chernyak E.L., Chugunova O.N., Mirkin B.G., Annotated su�x tree method for
measuring degree of string to text belongingness, Business Informatics, 2012. Vol.
21, no.3, pp. 31-41 (in Russian).

9. Chernyak E.L., Chugunova O.N., Askarova J.A., Nascimento S., Mirkin B.G., Ab-
stracting concepts from text documents by using an ontology, in Proceedings of the
1st International Workshop on Concept Discovery in Unstructured Data. 2011, pp.
21-31.

16 E. Chernyak

13

10. Levenshtein, V. I., Binary codes capable of correcting deletions, insertions, and
reversal. Soviet Physics Doklady Vol.10, no 8, pp. 707710.

11. Tretyakov K., Machine learning techniques in spam filtering. Data Mining Problem-
oriented Seminar, MTAT, vol. 3, no. 177, pp. 60-79. 2004.

12. M. Ceci and D. Malerba Classifying web documents in a hierarchy of categories:
a comprehensive study. Journal of Intelligent Information Systems, Vol. 28, no. 1,
pp. 37-78, 2007.

13. ACM Computing Classification System (ACM CCS), 1998, available at:
http://www.acm.org/about/class/ccs98-html

14. A.P. Santos and F. Rodrigues. Multi-label hierarchical text vlassification using the
ACM taxonomy Proceedings of 14th Portuguese Conference on Artificial Intelli-
gence, pages 553 - 564, Aveiro, Portugal, 2010.

15. Chernyak E. L. An approach to the problem of annotation of research publications,
Proceedings of The Eighth International Conference on Web Search and Data Min-
ing, pp. 429-434.

16. S. Robertson and H. Zaragoza. The probabilistic relevance gramework: BM25 and
beyond. Journal Foundations and Trends in Information Retrieval, Vol.25, no 4.,
pp. 333-389, 2009

17. Manber, Udi. Finding Similar Files in a Large File System. Usenix Winter, vol. 94,
pp. 1-10. 1994.

18. SNOMED CT - Systematized Nomenclature of Medicine Clinincal Terms,
www.ihtsdo.org/snomed-ct/, visited 09.25.14.

19. Van Hage W.R., Katrenko S., Schreiber G., A Method to Combine Linguistic
Ontology-Mapping Techniques, in Proceedings of 4th International Semantic Web
Conference, 2005, pp. 34-39.

20. Grau B.C., Parsia B., Sirin E. Working with Multiple Ontologies on the Semantic
Web, in Proceedings of the 3d International Semantic Web Conference, 2004, pp.
620-634.

21. Chernyak E. L., Mirkin B. G. Refining a Taxonomy by Using Annotated Su�x
Trees and Wikipedia Resources. Annals of Data Science. Vol. 2. No. 1. P. 61-82,
2015.

22. Hahn U., Mani I. The challenges of automatic summarization, Computer, Vol.33,
no.11, pp. 29-36, 2000

23. Mihalcea R., Tarau P. TextRank: bringing order into text. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pp. 404-411,
2004

24. Brin S., Page L. The anatomy of a large-scale hypertextual Web search engine.
Proceedings of the seventh international conference on World Wide Web 7, 107-117,
1998

25. , Chernyak E.L., Yakovlev M.S., Using annotated su�x tree similarity measure for
text summarization (under revision)

26. Pak Chung W., Whitney P., Thomas J.. Visualizing association rules for text
mining. Information Visualization, 1999. Proceedings. 1999 IEEE Symposium on,
pp. 120-123. IEEE, 1999.

27. Mahgoub, H., Rsner, D., Ismail, N., Torkey, F.. A text mining technique using
association rules extraction. International journal of computational intelligence 4,
no. 1, pp. 21-28, 2008.

28. Morenko, E. N., Chernyak E.L., Mirkin B.G.. Conceptual Maps: Construction Over
a Text Collection and Analysis. In Analysis of Images, Social Networks and Texts,
pp. 163-168. Springer International Publishing, 2014.

Some Thoughts on Using Annotated Su�x Trees for Natural Language Processing 17

14

29. Krisztin M., Zaslavsky A., Schmidt, H.. Document overlap detection system for
distributed digital libraries. Proceedings of the fifth ACM conference on Digital
libraries. ACM, 2000.

30. Koehn P., Knight K.. Empirical methods for compound splitting. Proceedings of
the tenth conference on European chapter of the Association for Computational
Linguistics-Volume 1. Association for Computational Linguistics, 2003.

31. Porter, M. F. An algorithm for su�x stripping. Program Vol. 14, no. 3, pp, 130-137
(1980).

32. Chowdhury A., Frieder O., Grossman D., McCabe M.C..”Collection statistics for
fast duplicate document detection. ACM Transactions on Information Systems
(TOIS) Vol. 20, no. 2 ,pp. 171-191 (2002).

33. Conrad J. G., Schriber C.P.. Managing dj vu: Collection building for the identi-
fication of nonidentical duplicate documents. Journal of the American Society for
Information Science and Technology Vol 57, no. 7 pp. 921-932 (2006).

34. Damashek M.. Gauging similarity with n-grams: Language-independent catego-
rization of text. Science Vol. 267, no. 5199, pp 843-848 (1995).

18 E. Chernyak

