
Advances in integrating statistical inference

Nicos Angelopoulos1 Samer Abdallah2 and Georgios Giamas1

1 Department of Surgery and Cancer, Division of Cancer, Imperial College London,
Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK.

2 Department of Computer Science, University College London Gower Street,
London WC1E 6BT, UK.

Abstract. We present recent developments on the syntax of Real, a li-
brary for interfacing two Prolog systems to the statistical language R.
We focus on the changes in Prolog syntax within SWI-Prolog that ac-
commodate greater syntactic integration, enhanced user experience and
improved features for web-services. We recount the full syntax and func-
tionality of Real as well as presenting sister packages which include Pro-
log code interfacing a number of common and useful tasks that can be
delegated to R. We argue that Real is a powerful extension to logic
programming, providing access to a popular statistical system that has
complementary strengths in areas such as machine learning, statistical
inference and visualisation. Furthermore, Real has a central role to play
in the uptake of computational biology and bioinformatics as application
areas for research in logic programming.

1 Introduction

Real is a low level interface between Prolog and R (Angelopoulos et al., 2013).
It enables the user to call R functions on Prolog data and communicate the
results back to the logic system. The library works on two open source systems:
YAP (Costa et al., 2012) and SWI-Prolog (Wielemaker et al., 2012) whose C
language interface is compatible (Wielemaker and Costa, 2011). Since its first
introduction Real has evolved and has exerted some influence in advances to
Prolog syntax. Furthermore, it has been used in a number of projects and in
the process acquired a number of sister libraries that depend on it to deliver
Prolog interfaces to useful tasks that can be best be dealt by existing R code.
Real has thus be shown to be a useful and well integrated Prolog library that
can provide access to the wealth of open source code available in R which is
often accompanied by published scientific papers.

Here we focus on describing the full syntax of Real 1.4 and its role in recent
developments with syntactic changes in SWI-7. The changes in both systems
have made the integration of R code into Prolog more natural and unobtrusive.
Changes in the library itself had to be made to accommodate transition to the
new Prolog syntax while preserving compatibility with traditional implementa-
tions.

Real gives access to R libraries that can complement Prolog’s weaknesses in
areas such as statistical inference and visualisation. With the library installed it

9

is straight forward with a basic grasp of R to call its functions on Prolog data.
However for users with no prior exposure to R there still might be a barrier. To
address this, and in order to increase general usability of the library a number
of sister packages have been developed. We highlight some of the predicates that
enable access to R code without any knowledge of R.

Central application areas in the inception of Real and its recent advances, has
been the areas of bioinformatics and computational biology. The sister libraries
we describe here have evolved in addressing real world bioinformatics tasks in
the context of a variety of projects: (Zhang et al., 2015; MacIntyre et al., 2015;
Stebbing et al., 2015). The main thesis of this paper is that Prolog can play a
central role as a unifying platform in research in bioinformatics, taking advantage
of its strong grip in knowledge representation and reasoning and in combinations
with recent advances with Real and web programming (Wielemaker et al., 2008;
Lager and Wielemaker, 2014).

2 Real

Here we first present the innovations of Real 1.4 before we summarise its overall
syntax and usage with particular focus on new features.

2.1 Innovations

In terms of syntax, Real faced three major clashes between Prolog notation and
syntax acceptable to R. Those were the use of ‘.’ in R identifiers, the use of
double quotes (‘ ” ’) to represent strings and the representation of terms with
0 arity ‘foo()’. In previous versions the library was able to bypass those by
employing a number of indirect techniques concentrating on keeping as faithful
as possible to the original syntax. Briefly,

– operator ‘..’ was used to construct arity 2 terms that were behind the scenes
converted to a Prolog atom interpreted as an R identifier (Prolog term
my..variable was translated to R variable my.variable, my..variable →
my.variable).

– operator + on non numerical values was used to convert atoms and code
lists to strings (+foo→ ”foo”)

– with the newly, at the time, introduced block operator ‘()’ it was possible to
parse foo‘()′ as foo()

With Real in mind, SWI-7 (Wielemaker, 2014) introduced syntax that le-
galised all of the above constructs, as well as the implementation of lists as
primary data structures (as oppose to ./2 terms). Dots in atoms and the use of
double quotes are now controlled by global flags, the former’s default being off
and the latter’s being on. Real has been adapted to utilise the new changes in
a backwards compatible manner. All of the following are now valid Real syntax
mapping to the corresponding R constructs, proviso of the appropriate global
flags been enabled,

Advances in integrating statistical inference

10

– func.foo(a,b,c)
– write.csv(”to file.csv”, x)
– foo()

Under the bonnet, list representations were additionally generalised to ac-
commodate the new data type. Also in the C interface, Real 1.4 includes im-
provements in that it can be employed within a web-service, thus allowing the
R-server thread to be an arbitrary one. This is of particular interest, as in itself
R is single threaded.

A final innovation at the syntactic level has been the introduction of ‘NA’
values in the interface. In R, NA values stand for not available or unknown value
placeholders. Prolog does not internally support such values, but the interface
enables mapping of such values within arithmetic vectors and matrices to ’$NaN’.
When passing numeric data from Prolog to R in addition to $NaN, the empty
atom (‘’) is also translated to R ’s NA value.

Taken together these innovations allow a tighter and smoother integration
of R code and enable Prolog programmers to tap in the wealth of statistical
functions implemented in R.

2.2 Communication with R

The bulk of the communication with R is via a single predicate ← /2 which is
also defined as an infix operator. This is an alternative assignment operator in R.
Within Real it can be used to transfer data between R and Prolog, to apply, in
an in-line fashion, R functions to Prolog data as well as destructively assigning
values to R variables. Disambiguation clearly distinguishes the different modes,
which can be summarised by:

+Rexpr ← +Rexpr
−PlV ar ← +Rexpr
+Rexpr ← +PlData

When the LHS of the operator is a uninstantiated variable, the second mode
is assumed, where the value of Rexpr is passed to PlV ar after it has been
evaluated in R. When the RHS is a c/n term or a list then the third mode is
applied and the data in the RHS is transferred to the LHS Rexpr (usually an R
variable).

The following examples show how to: transfer Prolog data to R and back
(1), transfer Prolog data to R and get the result of applying a function to the
data in the new R variable (2) and demonstrating how to apply an R function
on Prolog data without the use of an explicit R variable (3).

?− a← [1, 2, 3], A← a. (1)

A = [1, 2, 3].

Advances in integrating statistical inference

11

Indicator Operator Symbol Description

r/1 <- ← evaluate R expression (no return value)
r/2 <- ← main communication to R library
r new/1 <<- և argument is a fresh v̊ariable
<<-/2 <<- և r/2 but with error if R variable exists
r call/2 <-C++O ← ++ r/1,2 with options (O)
r library/1 load R library in a hookable manner
r start/0 start the connection to R
r stop/0 stop the connection to R
r remove/1 remove R variable
r thread loop/0 start an R thread server
r serve/0 serve all R expressions on queue thread

Table 1. Library’s main predicates

?− a← [1, 2, 3],Mean← mean(a). (2)

Mean = 2.0.

?−Mean← mean([1, 2, 3]). (3)

Mean = 2.0.

2.3 Real’s predicates

Real 1.4 adopts the convention of a uniform prefix to all the library predicates.
The full list of Real ’s predicates along with the associated operators and brief
descriptions are shown in Table 1. New additions include a hookable locator for
R libraries, web server support, intuitive syntax for non-destructive assignment
and a generic predicate for mixing Prolog and R options and directing output
to graphic devices.

With new predicate r library/1 the user can load the standard R libraries
in their local installation. In addition, the predicate can be directed to user
specified locations where local, possibly, changed sources of such libraries can be
loaded preferentially. The flexibility allows for (a) specific code to be loaded only
known to Real thus living the remainder of the R installation intact, and (b)
user code that can be made available and can work either with the distributed
version while having extra functionality when used with the altered sources.

Real is inherently single threaded. To support the use of Real in multi-
threaded applications, in particular in web servers built on SWI Prolog’s HTTP
libraries (Wielemaker et al., 2008),Real 1.4 allows a single designatedReal server
thread to be started, which then takes over the task of executing or evaluating

Advances in integrating statistical inference

12

R commands or expressions. Then, when the←/1 and←/2 predicates are used
on any other thread, the requests are redirected to the Real server thread and
the results awaited. Communication is handled synchronously using SWI Prolog
queues.

This system was implemented to support an application in the area of large
scale computational musicology, the Digital Music Laboratory, which is built on
SWI-Prolog’s semantic web server Cliopatria. Here, Real is used both for gen-
eral numerical computations and the generation of high-quality scalable vector
graphics. In comparison with previous versions of the system which used Mat-
lab’s engine API to communicate with a separate Matlab process, the lower over-
head of communicating with Real ’s in-process embedded R yields much better
performance when numerous relatively small computations are required.

As R supports destructive assignment, it can be the case that the programmer
might unwittingly overwrite variables already in the working space. To ease and
provide visual cues of the fact that a variable is fresh in a specific context, we
introduced operators և/2 and և/1 and predicate r new/1. The first ensures
that its first argument (an R variable) did not exist prior to assigning to it some
new values. The second removes its arguments from the R work-space and the
third fails if its argument is already a known R variable.

Integral to the R language design and practice is the use of options that con-
trol the details of function calls. These are = pairs of argument name to values,
which more often than not do not have to be present at invocation. When not
present, default values supplied by the function developers are used. Similarly
but not as widely used is the use of list of terms that control calls to Prolog pred-
icates. By convention an options list is placed at the last argument of a predicate
and commonly contains a number of single arity terms. Real now provides a uni-
form way to marry the two conventions and a flexible way of handling options
addressed to Prolog predicates accessing R functions. In addition, a number of
standard tasks have been incorporated to a new interface predicate:

r call(Func,Opts).

which can also be accessed as

← Func ++ Opts

Func is a compound term which is translated to an R function call and
Opts can be a combination of: (a) =/2 terms, which are added to Func, (b)
options controlling r call/2 ’s own execution and (c) Prolog style options which
can influence the caller’s behaviour but are ignored in the R call. Some of r call/2
options are:

rvar(Rvar) when given call becomes: Rvar ← Fcall
rmv(Rmv=false) removes Rvar after end of call
stem(Stem=real plot) stem to use for output files
outputs(Outs=false) a list of output devices
debug(Dbg=false) sets debug(real) for the duration of call
fcall(FinCall) returns the term constructed after =/2 additions
post call(Post) call this after the function call

Advances in integrating statistical inference

13

a

b

0 2 4 6

as.factor(pos)
3
2
1

0

2

4

6

a b

x

y

legend

1

2

3

main

Fig. 1. ggplot2 based bar plots. Left: with default options. Right: a number of options
have altered elements of the plot.

3 Associated packages

3.1 b real

b real is a library based on Real which contains a collection of predicates that
aim to provide a Prolog based interface to a number of simple tasks. The target
audience is Prolog users that have no previous experience with R. The predicates
described here can use the basic functionality of the underlying R functions and
can adjust some of the behaviour entirely in Prolog, while allowing arbitrary
option passing to users with some familiarity with R.

Bar plots are basic plots that can present comparative information in a in-
tuitive manner. Here we present a Prolog interface to ggplot2 (Wickham, 2009).
In its most general form, predicate gg bar plot/2 displays a number of grouped
measurements such as, for instance, the cpu-timings of a number of machine
learning algorithms ran on a number of datasets. The following query, produces
the plot in the LHS of Fig. 3.1.

?− Pairs = [a− [1, 2, 3], b− [2, 4, 6]], gg bar plot(Pairs, []). (4)

ggplot2 is a complex piece of software able to display many types of plots while
gg bar plot/2 only accessing the bar plotting part. Within this, a number of plot
elements can be controlled with Prolog options passed in the second argument.
The following query changes elements such as the colour of the drawing pen
(black) the labels (x,y and main), legend title and fill colours, producing the
plot in the RHS of Fig. 3.1.

?− Pairs = [a− [1, 2, 3], b− [2, 4, 6]], (5)

Opts = [geom bar draw colour(black),

f ill colours([”skyblue2”, ”khaki2”, ”#FB9A99”]),

Advances in integrating statistical inference

14

M
a
s
e
ra

ti B
o
ra

C
h
ry

s
le

r Im
p
e
ria

l

L
in

c
o
ln

 C
o
n
tin

e
n
ta

l

C
a
d
illa

c
 F

le
e
tw

o
o
d

H
o
rn

e
t S

p
o
rta

b
o
u
t

P
o
n
tia

c
 F

ire
b
ird

F
o
rd

 P
a
n
te

ra
 L

C
a
m

a
ro

 Z
2
8

D
u
s
te

r 3
6
0

V
a
lia

n
t

H
o
rn

e
t 4

 D
riv

e

A
M

C
 J

a
v
e
lin

D
o
d
g
e
 C

h
a
lle

n
g
e
r

M
e
rc

 4
5
0
S

L
C

M
e
rc

 4
5
0
S

E

M
e
rc

 4
5
0
S

L

H
o
n
d
a
 C

iv
ic

T
o
y
o
ta

 C
o
ro

lla

F
ia

t 1
2
8

F
ia

t X
1
−

9

F
e
rra

ri D
in

o

L
o
tu

s
 E

u
ro

p
a

M
e
rc

 2
3
0

V
o
lv

o
 1

4
2
E

D
a
ts

u
n
 7

1
0

P
o
rs

c
h
e
 9

1
4
−

2

T
o
y
o
ta

 C
o
ro

n
a

M
e
rc

 2
4
0
D

M
a
z
d
a
 R

X
4

M
a
z
d
a
 R

X
4
 W

a
g

M
e
rc

 2
8
0

M
e
rc

 2
8
0
C

horsepower

displacement

100

200

300

400

Fig. 2. Heatmap generation with aheatmap() from package NMF.

flip(false), labels(x, y,main),

legend title(legend)],

gg bar plot(Pairs,Opts).

Heatmap functions are ubiquitous in R. b real provides a Prolog interface to
the aheatmap library. In addition to some simple option mapping aheatmap/2
provides polymorphic support for the first argument which could be a matrix R
variable or a Prolog representation of one. The following code uses the mtcars
example dataset, from which it plots a heatmap of two variables: hp (horsepower)
and disp (displacement).

?−MtC ← as.list(mtcars),memberchk(hp = HP,MtC), (6)

memberchk(disp = Disp,MtC), x← [HP,Disp],

rownames(x)← c(”horsepower”, ”displacement”),

< −aheatmap(x).

3.2 wgraph

R has a number of plotting functions for drawing graphs formed of nodes and
edges. Two of these are igraph() and qgraph(). The latter being based on the
former with some extra options and facilities for grouping nodes. The Prolog
pack wgraph provides a uniform Prolog interface to these R libraries. A plot

Advances in integrating statistical inference

15

1

2

3

4

12

3

4

Fig. 3. Graphs generated by wgraph plot/2. Left: plot uses default rendering with
qgraph() call. Right: render changed to igraph() and a number of options specialised
the output.

with the default renderings can be easily drawn from a list representing the
graph connections and the weights on the edges:

?−G = [1− 2 : 200, 2− 3 : 400, 2− 4 : 300], (7)

wgraph plot(G, []).

A set of Prolog options that control the choice of the drawing function and basic
parameters of the graph, and which work irrespective of the drawing function
can be provided in the second argument of wgraph plot/2. In the following ex-
ample igraph() is passed the size of nodes to use, the degree at which the node
labels should be displayed and the distance of the label from the node edge. The
resulting graph is shown in the RHS of Fig. 3.

?−G = [1− 2 : 200, 2− 3 : 400, 2− 4 : 300], (8)

Opts = [plotter(igraph), label distance(−1),
label degree(2), node size(4)],

wgraph plot(G,Opts).

3.3 Availability

The three libraries discussed here, (Real, b real and wgraph) are available as
SWI-Prolog packages3 which can be installed easily from within SWI-Prolog. To
download and install Real the user needs to query with:

?− install pack(real). (9)

3 http://swi-prolog.org/pack/list

Advances in integrating statistical inference

16

4 Conclusions

We presented a number of recent advances in Real and in particular shown
how developments in Prolog syntax have made Real syntax blend naturally into
Prolog code. The resulting syntax provides a powerful platform for accessing the
extensive collection of freely available R code. As a consequence Real can have a
strong positive influence into the penetration of Prolog to new application areas
such as bioinformatics and machine learning. With version 1.4 Real has reached a
new level of maturity including facilities for using R in web-servers. In addition
we highlighted some predicates from two sister packages. As with Real itself,
these are freely available and can be easily installed via the SWI-Prolog package
manager. In the future we plan to work towards suggesting internal ways for
Prolog to work better, or more confluent to R, with NA values and infinity.

Real has been used in a number of projects in the area of bioinformatics and
has a steady stream of downloads via SWI-Prolog’s package manager. With the
enhanced level of integration, Real is becoming a powerful hybrid programming
language.

Advances in integrating statistical inference

17

Bibliography

Nicos Angelopoulos, Vitor Santos Costa, Joao Azevedo, Jan Wielemaker, Rui
Camacho, and Lodewyk Wessels. Integrative functional statistics in logic
programming. In Proc. of Practical Aspects of Declarative Languages, vol-
ume 7752 of LNCS, pages 190–205, Rome, Italy, Jan. 2013. URL http:

//stoics.org.uk/~nicos/sware/real/.
Vı́tor Santos Costa, Ricardo Rocha, and Lúıs Damas. The YAP Prolog system.
Theory and Practice of Logic Programming, 12:5–34, 1 2012. ISSN 1475-3081.

Torbjorn Lager and Jan Wielemaker. Pengines: Web logic programming made
easy. In International Conference of Logic Programming, 2014.

David MacIntyre, Manju Chandiramani, Yun S Lee, Lindsay Kindinger, Ann
Smith, Nicos Angelopoulos, Benjamin C. Lehne, Shankari Arulkumaran,
Richard Brown, Tiong Ghee Teoh, Elaine Holmes, Jeremy K. Nicholson, Ju-
lian Marchesi, and Phillip R. Bennett. The vaginal microbiome during preg-
nancy and the postpartum period in a european population. Scientific Re-
ports, 5:Article number: 8988, 2015. URL http://www.nature.com/srep/

2015/150311/srep08988/full/srep08988.html.
Justin Stebbing, Hua Zhang, , Yichen Xu, Adam Sanit Nicos Angelopoulos, and
Georgios Giamas. Global mapping of tyrosine kinase signalling. Journal Title,
2015. Accepted for publication.

Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer New York,
2009. ISBN 978-0-387-98140-6. URL http://had.co.nz/ggplot2/book.

Jan Wielemaker. SWI-Prolog ODBC interface, 2014. URL http://www.

swi-prolog.org/pldoc/package/odbc.html.
Jan Wielemaker and Vı́tor Santos Costa. On the portability of Prolog applica-
tions. In Practical aspects of Declarative Languages, pages 69–83, 2011.

Jan Wielemaker, Zhisheng Huang, and Lourens van der Meij. SWI-Prolog and
the web. TPLP, 8(3):363–392, 2008.

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-
Prolog. Theory and Practice of Logic Programming, 12(1-2):67–96, 2012. ISSN
1471-0684.

Hua Zhang, Nicos Angelopoulos, Yichen Xu, Arnhild Grothey, Joao Nunes,
Justin Stebbing, and Georgios Giamas. Proteomic profile of KSR1-regulated
signaling in response to genotoxic agents in breast cancer. Breast Cancer Re-
search and Treatment, 2015. URL http://link.springer.com/article/10.

1007/s10549-015-3443-y.

Advances in integrating statistical inference

18

