Process Verification and Synthesis —
The Use Case of Commissioning Processes
in the Automobile Industry

Richard Mrasek

Karlsruhe Institute of Technology (KIT)
Institute for Program Structures and Data Organization
76131 Karlsruhe, Germany
richard.mrasek@kit.edu

Supervisor: Prof. Dr.-Ing. Klemens Béhm

Abstract. In the automobile industry, commissioning process models
describe the end-of-line manufacturing and testing of vehicles. Due to the
increase of electronic components in modern vehicles, the process models
tend to become more complex. At the same the number of different
model series is constantly increasing leading to a larger amount of process
models. The increase in process models and complexity lead to higher cost
for the process design and decrease the quality of the individual process
model. In this Ph.D. project we want to support process modeling. First,
by developing a framework to test if a given process model fulfills all
properties required (process verification). Second, we want to support the
process design by approaches for a semiautomatic generation of process
models (process synthesis). Third, for process verification and process
synthesis one needs a specification of the allowed behavior of the process
models.

Keywords: Commissioning Processes, Process Verification, Process Syn-
thesis, Business Process Modeling

1 Introduction

In the automobile industry, commissioning process models describe the end-of-line
manufacturing and testing of vehicles. Process developers define these processes
with development tools. Workflow Management Systems (WfMS), here referred
to as Diagnostic Frameworks, execute these processes [25]. Vehicle commissioning
includes, say, to check for each vehicle produced, whether all its Electronic
Control Units (ECU) are integrated correctly and to put them into service. ECUs
are components built in to the vehicle which control specific functionalities of
the car, e. g., the ECU MOT controls the engine electronics. Each ECU needs to be
tested and put into operation, e. g., by installing certain software. To this end, the
WIMS executes several tasks for each ECU. Tasks can be executed automatically
like the configuration of the control unit, or they may require a factory worker
equipped with a hand terminal. Figure 1 shows the general architecture of a



~, Commissioning
Process Model

. Diagnostic Framework —

(WiMS)

Manual Tasks Automatic Tasks

Fig. 1. The Simplified Architecture of a Diagnostic System

diagnostic system. Commissioning processes have the characteristic to be complex.
Typically there are hundreds of tasks for each vehicle, arranged in up to 14 parallel
lanes.

Due to the increase of electronic components in modern vehicles, the process
models tend to become more complex. At the same the number of different model
series is constantly increasing leading to a larger amount of process models. In
this Ph.D. project we want to support process modeling, making research on
testing schemes, whether a given process model fulfills all properties required
(process verification), and on approaches for a semiautomatic generation of process
models (process synthesis). For process verification and process synthesis one
need specification of the allowed behavior of the process models. Formally, let P
be the process model of a commissioning process, and Lp denote the complete
log of the process, i.e., all possible traces of the process model. Let C denote
the set of all traces allowed by the properties. We can now define Specification,
Verification, and Synthesis as follows:

Specification : Define the set of allowed traces C (1)
Verification : For a given process model P check if Lp CC (2)
Synthesis : Generate a process model P with Lp C C (3)

C) Specifi-
Specifi- Specifi- Process \ o cation C
eziifem © cation C Model L p ) Brocess
Model £ p
Define C Testif Lp CC Find a P with Lp CC

Fig. 2. Our Problem Statements Specification (a), Verification (b), and Synthesis (c).



ExtractContext | Database of Property Instances

Context
Knowledge

Resp. Preced.

I Instantiate Pattern AB XY

Property Patterns

Response Precedence

Fig. 3. The Approach of the Instantiating of the Contextual Property Pattern

2 Specification

Before verification and synthesis can take place we have to specify the allowed
behavior C. The allowed behavior is induced by a set of properties @. The allowed
behavior C consists of all traces fulfilling the properties @, i.e., C := {t | V¢ €
@ : t = ¢}. The specification of the properties @ gives way to several challenges:
First, the knowledge which characteristics a commissioning process should fulfill
is typically distributed among several employees in different departments. Often
documentation is missing and properties merely exist in the minds of the process
modelers. Second, the properties frequently are context-sensitive, i.e., they only
hold in specific contexts of a commissioning process. For example, certain tasks
require a protocol to communicate with control units for testing depending
on the factory the testing takes place. Due to this context-sensitiveness, the
number of properties is very large, but it consists of a lot of variants with only
small differences. This causes maintenance problems [11]. For instance the new
generation of an electronic control unit in the car uses a different communication
protocol than the previous generation. This protocol change leads to a large set of
new properties and render several properties invalid. Third, to apply an automatic
verification or synthesis technique, it is necessary to specify the properties in
a formal language such as a temporal logic [21]. With vehicle-commissioning
processes as well as in other domains, see for instance [6], [15], specifying the
properties in this way is error-prone and generally infeasible for domain experts
who are not used to formal specifications.

Research Question:

How to generate the correct set of properties given a process model and context.

Approach:

In [19] we have presented an approach to address these challenges based on our
real-world use case of vehicle-commissioning processes. More specifically, we use



the following approach: We have analyzed the properties occur for vehicle commis-
sioning processes as well as the respective context information. We have observed
that there are few patterns to which these properties adhere to. We propose to
explicitly represent these patterns, rather than each individual property. Next,
we develop a model of the context knowledge regarding vehicle-commissioning
processes. Here, context are the components of a vehicle, their relationships and
the constraints which the vehicle actually tested and configured must fulfill. We
let a relational database manage the context information. To populate it, we use
several sources, e.g., information on the vehicle components from production
planning, constraints from existing commissioning processes, and information
provided by the process designers themselves. Our framework uses this infor-
mation to generate process-specific instances of the property patterns. Figure 3
illustrates the approach.

Evaluation:

Our goal is for a user-friendly approach for the specification of properties, i.e.,
high usability. According to ISO 9241-11 [10] usability has three different aspects
to be evaluated separately: Effectiveness (Whether the user can complete his tasks
and achieve the goals), Efficiency (The amount of the resource usage to achieve
the goals), Satisfaction (The level of comfort the users experience achieving
the goals). The effectiveness is proven by testing if the resulting specification
gives a meaningful result for the later verification or synthesis. Our approach
has shown to be able to generate the hundreds of property instances in under
one second, proving a high efficiency. For the satisfaction we have used an
established questionnaire the System Usability Scale (SUS). The result states
that our approach leads to a high satisfaction with results higher than the average.

3 Verification of Process Models

Verification means to test if the behavior of the process model Lp complies with
the allowed behavior C. The verification is not trivial because, it is not possible
to explicitly generate C and Lp. C is in general not bounded and the size Lp
can increase exponentially with the size of the process model, or it can even be
infinite. This is well known as state-space explosion [4]. It leads to unacceptable
runtime or renders the verification not executable. This is often caused by parallel
branches in the model. To overcome this problem, reduction techniques can
be used, either (a) during construction of the Lp or (b) on the level of the
process model already. Approaches like stubborn set reductions [22] fall into
the first category. However, many of the industrial processes to be analyzed in
our evaluation are too large to be verified only with stubborn set reductions.
Even with stubborn set reduction, there are more than 1 million traces in 78%
of the processes we have evaluated; thus, verification has not been possible in
reasonable time. Regarding (b), only few proposals exist, although preprocessing
of the process model is promising to achieve a significant reduction of the state



a) Task b) Parallel

yag

|

)
TOut %out

Fig. 4. The Simplified Templates for Different oTX Elements, from [19].

space. An example is given in [2]. They specify the requirements in BPMN-Q.
BPMN-Q is a visual language to query business process models. [2] however is not
expressive enough to express all requirements from our real-world application
scenario. Furthermore, they apply reduction rules on the process schema in an
iterative way. After each reduction step, another reduction rule may become
again applicable. Thus, a rescan of the whole process may be necessary after
each step, rendering this kind of approach expensive. In the industrial setting
envisioned here, it is necessary to verify hundreds of properties per process, in
short time. Compared to the processes dealt with by others [7], ours are much
larger and more complex, leading to an exploding state space.

Research Questions:

There are two research question of our concerns. First, how to allow the verification
for the industry standard oTX. Second, how to verify a process model having a
state space to large to generate explicitly.

Approach:

In order to allow the verification one have to generate the traces Lp for a process
model. It is not possible to directly generate Lp for a commissioning process in
the notation of OTX. Therefore, we developed a mapping of OTX to Petri net
suitable for our verification. For the transformation we define for each object in
OTX a Petri net subnet. For the transformation we parse the process model of a
OTX process model and generate a Petri net according to the templates. Figure 4
shows the simplified template for four OTX elements.

The verification of our real commissioning processes has performance issues.
Verification means to check if a process model P complies with all required
properties @, formally to check V¢ € @ : P = ¢. Our basic idea is to generate



a smaller process model Py for each property ¢. The reduction should preserve
each property, or formally:

Voed: P=opVpecd:Pyl=¢

In [16] we showed an algorithm that traverses the process model and identifies
the regions of the process that are relevant for verification of a given complex
property ¢. Identifying the relevant regions of a process is far from trivial. Even
an elementary task cannot be removed in all cases. Our approach features a
criterion for process-graph reduction, which we refer to as relevance function.
The algorithm proposed creates a formal, reduced representation of the process
for each property. In particular, the reduction of parallel regions help to decrease
the size of the state space and hence the runtime of the verification.

Evaluation

The approach has been evaluated with commissioning process models for testing
newly produced vehicles in the factories of a German car manufacturer. One
result is that even complex processes with many parallel branches can be verified
in less than 10 seconds on a commodity PC. Our approach is able to detect
property violations in realistic commissioning processes.

4 Process Syntheses

Process Syntheses is to find a process model P with the complete log Lp C C. To
allow a transformation into OTX we are looking for a block-based process model.
As we show in [18] it is in general not possible to find a block-based process
model with £p = C. Furthermore, as we see in our use case, it is not possible to
find a single best process model P. In general, a vast amount of process models
is possible.

Research Question:

How to synthesize an acyclic process model from a declarative specification that
is good according to a given quality criteria.

Approach:

The approach presented later at the conference [18] generates a process model
from a declarative specification. The input to our approach is a declarative
specification in graph forms the Ordering Relationship Graph (org). In [17] we
show how to generate such a graph from other specification languages. First we
apply a modular decomposition on the graph. The technique decomposes the
graph in several subgraph of different granularity. The subgraphs called modules
are arranged in a hierarchical form, called Modular Decomposition Tree (MDT).
The modular decomposition allows us to detect the under-specified parts of
the specification. We use a probabilistic search to find a good solution for the
under-specified regions according to a predefined fitness function.



Evaluation:

As we show in the evaluation with thousands of non-trivial process models,
our approach is efficient, i.e., is able to test thousands of models in under a
second. We use a real life specification for commissioning from our industrial
partner in our evaluation. On average, our approach nearly halves the processing
time compared to the reference processes which already are the output of a
careful, intellectual design. It is able to handle complex real-world specifications
containing several hundred dependencies as well as more than one hundred tasks.
In our evaluation, the process models generated contain between 98 and 185
tasks, and their arrangement typically is nontrivial.

5 Related Work

Recent research works present different graphical notations for the property
specification, e.g., for the verification. See, for example, the Compliance Rule
Graphs (CRG)[15], or BPMN-Q [2]. The graphical specification allows for a more
user-friendly and intuitive specification compared to the textual specification,
say, in a temporal logic. But they do not support the major challenges of our
work: The context sensitivity and the distributed knowledge. [6] introduce a set of
property patterns for the specification. They share some common patterns with
our set of commissioning property patterns but lack necessary domain specific
information.

A related field of research is business process compliance [13]. Compliance is
ensuring that a process model is in accordance with prescribed norms [20], e. g.,
Sarbanes-Oxley, Basel II, HIP AA. In general, two approaches toward process
compliance exists. Expensive manual checks (after-the-fact) and automated
detection. For the automated detection the norms have to be specified formally.
As well as in our use case, specifying the norm leads to maintenance problems
[14]. Approaches exist to ensure the compliance of an existing process model
by, e.g., model checking [2][12][8] or to synthesize a new process model which
complies with the norm [3][9].

A lot of work is done in the verification of the soundness property for process
models. The soundness verification leads to a similar state space explosion
compared to our approach. [1][5] tries to handle the state space explosion by
using reduction rules on the process-model level. These reduction rules are not
applicable for our use case, in general. Other works like the stubborn set reduction
[23, 22], try to reduce the state-space generation of a Petri net. These techniques
are orthogonal to our reduction and can be used in combination. Our experiments
have shown that these low level reductions alone are not sufficient for our process
models.

[24] and [3] synthesize a process model from a declarative specification. To
this end, [24] uses a collection of small state machines representing property
patterns, and [3] from LTL formulas. The approach of [24] does not consider the
case of a under specification, i.e., more than one process model is possible for



the specification. [3] requires a manual solving of these cases. Both approaches
indicate performance issues when dealing with large specifications like the ones
in our use case.

6 Conclusions

In this Ph.D. project we research the specification, verification and synthesis
of commissioning process models in the automobile industry. The verification
frameworks are quite mature and actually applied in the factory of our industry
partner. The framework has shown to be able to increase the quality of the process
models. The first results of the synthesis show a great potential in applying these
techniques. In the last year of these project we plan to apply the synthesis
technique for the design of the new process models for the next generation of
vehicles.

References

1. W. M. P. v. d. Aalst, A. Hirnschall, and H. M. W. Verbeek. “An Alternative Way
to Analyze Workflow Graphs”. In: Advanced Information Systems Engineering.
2002.

2. A. Awad, G. Decker, and M. Weske. “Efficient Compliance Checking Using BPMN-
Q and Temporal Logic”. In: Business Process Management. 2008.

3. A. Awad et al. “An Iterative Approach for Business Process Template Synthesis
from Compliance Rules”. In: Advanced Information Systems Engineering. 2011.

4. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. 1999.

5. B. F. van Dongen, W. M. P. v. d. Aalst, and H. M. W. Verbeek. “Verification of
EPCs: Using Reduction Rules and Petri Nets”. In: Advanced Information Systems
Engineering. 2005.

6. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. “Property Specification Patterns
for Finite-state Verification”. In: Proceedings of the Second Workshop on Formal
Methods in Software Practice. 1998.

7. D. Fahland et al. “Instantaneous Soundness Checking of Industrial Business Process
Models”. In: Business Process Management. 2009.

8. A. Forster et al. “Verification of Business Process Quality Constraints Based on
Visual Process Patterns”. In: First Joint IEEE/IFIP Symposium on Theoretical
Aspects of Software Engineering, 2007. TASE ’07. 2007.

9. S. Goedertier and J. Vanthienen. “Designing Compliant Business Processes with
Obligations and Permissions”. In: Business Process Management Workshops. 2006.

10. ISO 9241-11, Ergonomics of Human-Computer Interaction - Part 11: Guidance
on Useability. 1998.

11. S. Kabicher, S. Rinderle-Ma, and L. T. Ly. “Activity-Oriented Clustering Tech-
niques in Large Process and Compliance Rule Repositories”. In: Proc. BPM’11
Workshops. 2011.

12. Y. Liu, S. Miiller, and K. Xu. “A static compliance-checking framework for business
process models”. In: IBM Systems Journal (2007).

13. L. T. Ly. SeaFlows - a compliance checking framework for supporting the process
lifecycle [Elektronische Ressource] / Linh Thao Ly. 2013.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

L. T. Ly et al. “Compliance of Semantic Constraints - A Requirements Analysis
for Process Management Systems”. In: 2008.

L. T. Ly et al. “SeaFlows Toolset — Compliance Verification Made Easy for
Process-Aware Information Systems”. In: Information Systems Fvolution. 2011.
R. Mrasek, J. Miille, and K. Béhm. “A new verification technique for large processes
based on identification of relevant tasks”. In: Information Systems (2014).

R. Mrasek, J. Miille, and K. Bohm. Automatic Generation of Optimized Process
Models from Declarative Specifications. Technical Report 2014-15. KIT Scientific
Publishing, 2014.

R. Mrasek, J. Miille, and K. Bohm. “Automatic Generation of Optimized Pro-
cess Models from Declarative Specifications”. In: Advanced Information Systems
FEngineering. 2015.

R. Mrasek et al. “User-Friendly Property Specification and Process Verification
- a Case Study with Vehicle-Commissioning Processes”. In: Business Process
Management. 2014.

S. Sadiq, G. Governatori, and K. Namiri. “Modeling Control Objectives for Business
Process Compliance”. In: Business Process Management. 2007.

H. Schlingloff, A. Martens, and K. Schmidt. “Modeling and Model Checking Web
Services”. In: Electronic Notes in Theoretical Computer Science (2005).

K. Schmidt. “Stubborn Sets for Model Checking the EF/AG Fragment of CTL”.
In: Fundam. Inf. (2000).

K. Schmidt. “Stubborn Sets for Standard Properties”. In: Application and Theory
of Petri Nets 1999. 1999.

J. Yu et al. “Synthesizing Service Composition Models on the Basis of Temporal
Business Rules”. In: Journal of Computer Science and Technology (2008).

W. Zimmermann and R. Schmidgall. Bussysteme in der Fahrzeugtechnik - Pro-
tokolle, Standards und Softwarearchitektur. 2011.



