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Abstract. Data quality is context-dependent. That is, the qualityathccannot
be assessed without contextual knowledge about the pioduct the use of
data. As expected, context-based data quality assesseaggitas a formal model
of context. Accordingly, we propose a model of context trddrasses quality
concerns that are related to the production and use of data.

Here we follow and extend a context model for the assessnfi¢imé guality
of a database instance that was proposed in a previous wpri[that frame-
work, the context takes the form of a possibly virtual dasabar data integration
system into which a database instance under quality assasssnrmapped, for
additional analysis and processing, enabling quality d&teaction. In this work
we extend contexts with dimensions, and by doing so, we magsilple a multi-
dimensional data quality assessment. Multidimensionatesds are represented
as ontologies written in Dataldg We use this language for representdimen-
sional constraintsanddimensional rulesand also for doingjuery answering
based on dimensional navigation, which becomes an impatadliary activity
in the assessment of data. We show ideas and mechanisms by ofexamples.

1 Introduction

In a previous work [1], a model of context for data qualityessnent was proposed.
In that work, the assessment of a datab&sis performed byputting D in contextor,
more precisely, by mapping it into a contétwhich is represented as another database,
or as a database schema with partial information, or, momergdly, as a virtual data
integration system [8].

The quality of data inD is determined through additional processing of the data
within the context. Data processing in the context leadsdssible several quality
versions of D, forming a classD? of intended, clean versions d@). The quality of
D is measured in terms of how mudb departs from (its quality versions irfp¢:
dist(D,D7). We may want to assess the quality of answers to a q@eppsed to in-
stanceD or to obtain “quality answers” from®. This can be done appealing to the class
D1 of intended clean versions &f. For assessment, the set of query answeg fimm
D can be compared with theertain answerdor Q, from each of the instances in?

[7]. The certain answers become what we call¢iean answerso Q from D [1].

Problem Statement and Relevance:An important contextual element was not con-
sidered in [1]:dimensionsin practice, dimensions are naturally associated to atsite
Here, in order to capture general dimensional aspects affdatnclusion in contexts,
we take advantage of and start from the Hurtado-Mendelzda) (fultidimensional
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data model [6], whose inception was mainly motivated by @aeehouses (DWH) and
OLAP applications.

In Example 1, we illustrate the intuition behind multidinséganal context for quality
specification and extraction. We assume, according to thettdidel, that a dimension
consists of a finite set of categories related to each othargaytial order.

Example 1.The relational tabldvleasurement§Table 1) shows body temperatures of
patients in an institution. A doctor wants to knt¥he body temperatures of Tom Waits
for September 5 taken around noon with a thermometer of biEdridas he expected).
Itis possible that a nurse, unaware of this requirement| ageermometer of brari,
storing the data iMeasurementdn this case, not all the measurements in the table are
up to the expected quality. However, tablieasurementalone does not discriminate
between intended values (those taken with biabdand the others.

For assessing the quality of the datdVleasurementaccording to the doctor’s qual-
ity requirement, extra contextual information about therthometers in use may help.
In this case, the tablBatientWardstores the wards of the patients in an institution on
different days. The relation is linked to thospital and Time dimensions (Fig. 1, mid-
dle, bottom) meaning that the ward and day attributes ofehation take values from
the members of thevard and theDay categories in thélospital and Time dimensions
resp.

Furthermore, the institution has guideline
prescribing that!Temperature measurement for

Table 1. Measurements
Time Patient | Value

patients in a standard care unit have to be takeh

Sep/5-12:1(

Tom Waits

38.2

with thermometers of Brand B1It can be used :

Sep/6-11:5(

Tom Waits

37.1

for data quality assessment when combined wit

Sep/7-12:11

Tom Waits

37.7

the tablePatientUnit(Fig. 1, middle, top), which
is linked to theUnit category, and whose data are

Sep/9-12:0(

Tom Waits

37.0

(at least partially) generated froRatientWarcby

Sep/6-11:01

Lou Reed

37.5

moving data upward through dimensibliospital

(Fig. 1, left), from categoryVardto categoryJnit.

Alltospisat PatientUnit

Sep/5-12:01

Lou Reed

38.0

Allrine
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Fig. 1. An extended multidimensional model
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According to the guideline, it is now possible to concludatiton days when Tom
Waits was in the standard care unit, his temperature valwes vaken with the ex-
pected thermometer: for patients in wak¥d or W2 a thermometer of branB1 was
used. These “clean data” —in relation to the doctor’s exgtemis— appear in relation
Measurements? .

Elaborating on this example, there could be a constraiotinvg theUnit category
in the Hospital dimension*No patient in intensive care unit at any time after August
/2005". This constraint could be applied on the process of movinig dpward from
PatientWardto PatientUnit |

Example 1 illustrates the necessity of a formal data modedpoesent multidimen-
sional context (e.g. including relations linked to dimemsi, constraints and rules on
these relations).

Proposed Solutions: In this work, we extend the HM model by addircgtegorical
relationsassociated to categories, at different levels of the dimertserarchies, pos-
sibly to more than one dimension, iRatientWardand PatientUnit(think of general-
ized fact tables as found in data warehouses). It also iedlidensional constraints
anddimensional ruleswhich could be treated both dénensional integrity constraints
on categorical relations that involve values from dimensiategories. However, di-
mensional constraints are intended to be usedemsal constraintghat forbid certain
combinations of values, whereas the dimensional rulesn¢eaded to be used for data
completion, to generate data through their enforcemerdivig@nsional navigation

Categorical relations may be incomplete, and new data cgeberated for them,
which will be enabled through ruleggg of a Datalog- dimensional ontology. The
previous example shows data generation via upward nawigathile downward nav-
igation may also be useful (cf. [13]). Our approach to multidimenaiacontexts will
support both.

We propose an ontological representation in Datal{@) 4] of the extended HM
model, and also mechanisms for data quality assessmerd basquery answering
(QA) from the ontology via dimensional navigation. The ideghat a query to the
ontology triggers dimensional navigation and the creatibmissing data, in possible
upward and downward directions, and on multiple dimensibasalogt supports data
generation through the ontological rulesnAlltidimensional context-corresponding
to the formalization of the extension of HM— becomes a Daalontology, M, that
belongs to an interesting syntactic classes of prograniiedcaeakly-sticky [5]), for
which some results are known. This allows us to give a segtttiour ontologies, and
apply some established and new algorithms for QA.

The proposed multidimensional context forms a weaklykgtiantology. This im-
plies that quality query answering and quality data extoaatequire an algorithm for
QA from such ontologies and its optimization and implemgata The weakly-sticky
class of ontologies is a well-established member of thelfaafiDatalog™ ontologies
with polynomial time data complexity for QA [5]. However, agatical QA algorithm
for this member of Datalogis still missing in the literature. Here, we propose a practi
cal QA algorithm that runs in polynomial time and it is applte for some members of
the Datalog family, including weakly-sticky ontologies. We also stuttiy magic-sets
optimization techniques and show that they are applicabkae QA algorithm.
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Fig. 3, aka. “core ontol- external sources
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ontology can be extended, Fig. 2. A context for data quality assessment

within the context, with additional rules and constrairtattdepend on specific data
quality concerns (cf. Section 2.3).

2.1 The Extended MD Model and Datalog

We extend the HM model introducirogtegorical relationseach of them having a rela-
tional schema with a name, and attributes, some of whichategjoricaland the other,
non-categoricalThe former take values that are members of a dimension@atéihe
latter take values from an arbitrary domain. Categoriciatiens have to be logically
connected to dimensions. For this we use a Datalogtology M, which has a re-
lational schemaS ¢, an instanceD, and a set”,, of dimensional rules, and a set
rka Of constraints. HereSy, = K U O U R, with K a set of unarycategory predi-
cates O a set ofparent-child predicatescapturing<-relationships for pairs of adjacent
categories, an®R a set ofcategorical predicatessay R(C1,...; N1,...), where, to
highlight, categorical and non-categorical attribut€gs(vs.N;s) are separated by *;”.

Example 2.Categorical relatiorPatient Ward (Ward,Day; Patient) in Fig. 1 has cat-
egorical attribute§VardandDay, connected to thEospital andTime dimensions, resp.
Patientis non-categoricalWard(-), Unit(-) € K; O contains, e.g. a binary predicate
connectingNVardto Unit; andR contains, e.gPatientWard ]

The (extensional) datd) »¢, associated to the ontologyt’s schema are the complete
extensions for categories i and predicates i© that come from the dimension in-
stances. The categorical relations (with predicateR)mimay contain partial data, i.e.
they may be incomplete. They can belong to instahteFig. 3. Dimensional rules in
Xapm are those in (c) below; and constraintssig,, those in (a) and (b).

(a) Referential constraintbetween categorical attributes and categorieaagmtive
constraint (NCY! (R € R, K € K; ¢,a are categorical, non-categorical, resp.;
eE€e)

L « R(g;a),~K(e). Q)

1 An alternative and more problematic approach, maytgss between categorical attributes
and categories, making it possible to generate elementtégaries or categorical attributes.



(b) Additionaldimensional constrainigisegdsor NCs (R; € R, D; € O, andz, z’
stand both for either categorical or non-categoricaltaitds in the body of (2))

v =1 ¢ Ri(€1;a1), e, Ru(Enian), Dr(e1,€))s o, Din(em, ). (2)
1 « Rl(él;dl),...,Rn(én;dn),Dl(el,e/l),...,Dm(em,e’ ) (3)
(c) Dimensional rulesis Datalog tgds

Jda, Ri(ex;ar) « Ri(e1;a1), ..., Ry(€n;an), Di(e1,€]), .o, Din(em, €el,). (4)

Here,a, C ai, e C e U...Ueé, U{er,...,em, e, e}, ag~a, Ca U...U
a,; and repeated variables in bodies are only in positions tfgcaical attributes
(in the categorical relation®;(é;; a;)), and attributes in parent-child predicates
Dj(ej, €}). Value invention is only on non-categorical attributes (witt consider
relaxing this later on).

With rule (4) (an example is (7) below), the possibility oficipdimensional navigation
is captured by joins between categorical predicates/&(@;; a;), ..., R;(€;; a;) inthe
body, and parent-child predicates, e, (e, €,), ..., Dm(em, €l )-

Rule (4) allows navigation in both upward

and downward directions. Thdirection of e
navigationis determined by the level of cate- S’ M

in the body. Assuming the join is between | | R.

R;(e;;a;) and Dy(en,el,), upward naviga- % o

in R;(&;;a;)) ande,, € & (i.e e, appears in - \dimensions) 1 quality predicates
the head). On the other handgif occurs in
R; ande!, occurs inRy, then downward nav-

gorical attributes that participate in the join —
categorica I
relatione. |
tion is enabled when,, € ¢; (i.e.e], appears :
igation is enabled, from,, to e/, .

Fig. 3. A multidimensional context

Example 3. (example 2 cont.) The categorical attribudait in categorical relation
PatientUnittakes values from th&nit category. We use a constraint of the form (1):
1 + PatientUnit(u, d; p), -~ Unit(u). (5)

For the constraint in Example 1 requirifijo patient was in intensive care unit
during the time after August 2005ve use a dimensional constraint of the form (3):
1 « [PatientWard(w, d; p), Unit Ward(Intensive, w), (6)
MonthDay(August /2005, d)].

The following dimensional rules of the form (4) capture hoatalin PatientWard
andWorkingSchedulegenerate data fdPatientUnitandShifts resp.:

PatientUnit(u,d; p) < PatientWard(w,d; p), UnitWard (u, w). 7
3z Shifts(w, d; n, z) + WorkingSchedules(u, d;n, t), Unit Ward(u, w). (8)
In (7), dimension navigation is enabled by the join betwBatientWardand Unit-

Ward The rule generates data fBatientUnit(at a the higher level afnit) from Pa-
tientWard(at the lower level ofVard) via upward navigation.



Rule (8) captures a guideline that statéfa nurse works in a unit on a specific day,
he/she has shifts in every ward of that unit on the same d&g'rule is expressed using
two additional categorical relationg/orkingSchedulesnd Shifts that store schedules
of nurses in units and shifts of nurses in wards, resp. Dowtiwavigation is performed
by generating data f@hifts(at the level olWard) from WorkingScheduleg@t the level
of Unit). In this case, the schemas of the two categorical relaion®ot match. So, the
existential variable represents missing data for thlift attribute. |

2.2 Properties of MD Datalogt Ontologies

Here, we first establish the membership of our MD ontologhes(cf. Section 2.1) of
a class of the Datalag family. Membership is determined by the g}, of its tgds
Next, we analyze the role of the constraints:igy, in particular, of the sety of egds

Proposition 1. MD ontologies are weakly-sticky Datalggprograms. |

The proof and a review afeakly-stickyDatalogt [5], can be foundin [13] (an extended
version of [11]). A consequence of this result is that QA frahy, is in polynomial-time
in data complexity [5].

The complexity stays the same if we aN€s of the forms (1) and (3), because
they can be checked through the conjunctive queries in tiogiies [5]. However, com-
bining theegdsin e, with X', could change things, and, in principle, even lead to
undecidability of QA [2]. Separability[5] ofgdsandtgdsis a semantic condition that
guarantees complexity of query answering still remainsshme even after adding
egds In [13] (Proposition 2), we show a syntactic condition fbe tdimensionaédgs
that implies the separability.

2.3 MD Contexts for Quality Data

We now show in general how to use a MD contektcontaining MD ontologies for
quality data specification and extraction wrt. a databastainteD for schemaS. Here,
Context¢, as shown in Fig. 3, contains:

1. Nickname predicate®’ € S’ for predicatesk of original schema. In this case, the
R’ have the same extensions aginproducing a material or virtual instan&® within
¢. For exampleMeasurements’ € S’ is a nickname predicate fdfeasurements € S,
whose initial contents (i) is under quality assessment.

2. Thecore MD ontology M. We assume that application dependent guidelines and
constraints are all represented as componentg of

In our running examplePatient Unit, Patient Ward, WorkingSchedules and Wor-
kingTimes are categorical relationslUnit Ward, DayTime are parent-child relations
in dimensionsHospital andTime, resp. The followings are dimensional rules’f:

Working Times (u, t; n, y) < WorkingSchedules(u, d;n,y), DayTime(d, t).
PatientUnit(u, t; p) < Patient Ward (w, d; p),Day Time(d, t), Unit Ward (u, w)(9)

3. The set ofjuality predicatesP, with their definitions in non-recursive Datalog (pos-
sibly with negationnot), in terms of categorical predicatesfihand built-in predicates.
A quality predicate reflects an application dependent $ipagqiiality concern.

Now, TakenByNurse and Taken WithTherm are quality predicates with defini-
tions on top ofM, addressing quality concerns about the nurses and the ¢heeters:



TakenByNurse(t, p,n,y) < WorkingTimes(u, t;n,y), Patient Unit(u, t; p). (10)
Taken WithTherm(t, p, b) <— PatientUnit(u, t; p), w = Standard, b = B1. (12)
Furthermore, and not strictly inside conte€xthere are predicatd?!, ..., RZ € S¢,
thequality version®f Ry, ..., R, € S. They are defined througtuality data extraction
ruleswritten in non-recursive Datalog, in terms of nickname jicatés (inS’), categor-
ical predicates (iR), and the quality predicates (iR), and built-in predicates. Their
definitions (thea! in Fig. 3) impose conditions corresponding to user’s datlityu
profiles, and their extensions form the quality data (instn
The quality version o easurements is Measurement? € S?, with the following
definition, which captures the intended, clean contente@fdrmer:

Measurement?(t, p, v)<Measurement’ (t,p,v), TakenByNurse(t, p,n,y), (12)
TakenWithTherm(t,p,b),b = B1l,y = certified.

Quality data can be obtained from the interaction betweerotiginal sourceD
and the context, in particular using the MD ontology1. For that, queries have to be
posed to the context, in terms of predicatfs the quality versions of those @. A
guery could be as direct as asking, e.g. about the conteptedicateMeasurement?
above, or a conjunctive query involving predicatés

For example, this is the initial query asking for (qualit@lwes for Tom Waits’ tem-
perature:Q(t, v) :Measurements(t, Tom\Wi t s, v)ASep5- 11: 45 < ¢ < Sep5-12: 15,
which, in order to be answered, has to be first rewritten i@, v) : Measurements?
(t, TomWai t s, v) A Sep5-11: 45 < t < Sep5-12: 15.

To answer this query, first (12) can be used, obtaining a saraequery:Q%(t,v) :
Measurement' (t,p,v) A TakenByNurse(t, p,n,certi fied) A Taken WithTherm (t,
p,B1) Ap=TomWits A Sep/5-11: 45 < ¢ < Sep/ 5- 12: 15.

This query will in turn, use the contents fdfeasurement’ coming fromD, and the
quality predicate definitions (10) and (11), eventuallydieg to a conjunctive query
expressed in terms af/easurement’ and MD predicates only, namel@™ (¢, v) :
Measurement’ (t,p,v) A WorkingTimes(u,t;n,y) A PatientUnit (u,t;p) A u =
Standard Ay=certifiedAp =TomWaits ASep/5-11: 45 <t < Sep/ 5-12: 15.

At this point, QA from a weakly-sticky ontology has to be perhed. We know
that this can be done in polynomial time in data. Howevernehe still a need for
practical QA algorithms. Doing this goes beyond the scophisfpaper. In Section 2.4,
we describe some ideas from [12] on the development and gatiion of such an
algorithm.

2.4 Query Answering on the MD Ontology
We proposed a conjunctive query answering algorithm forkiyesticky programs to
be also applied to our MD ontology. The algorithm is basedherconcepts gbarsimo-
nious chas€¢pChaség andfreezing nullsas used for QA wittshy Datalog a fragment
of Datalog® [9].

At a pChasestep, a new atom is added only if a homomaorphic atom is noadyre
in the chase. Freezing a null is promoting it to a constand ¢a@eping it as such in
subsequent chase steps). So, it cannot take (other) valdeslbtomomorphisms, which



may create newChasesteps. Resumption of tiChasemeans freezingll nulls, and
continuingpChaseuntil no morepChasesteps are applicable.

Query answering with shy programs has a first phase wheneGhaseruns until
termination. In a second phase, th€haseiteratively resumes for a number of times
that depends on the number of distinttariables in the query. This second phase
is required to properly deal with joins in the query. Our aitfon for weakly sticky
programs is similar, it has the same two phases, lpClaasestep is modified: after
every application of pChasestep that generates nulls, the latter that appear in positio
with finite ranks are immediately frozen. The algorithm rimgolynomial-time in data.

3 Work Still to Be Done

We are investigating several extensions of the current waokne of them are as fol-
lows: (1) Uncertain downward-navigatiowhentgdsallow existentials on categorical
attributes. A parent in a category may have multiple chitdnethe next lower category.
Under the assumption of complete categorical data, we kmasvane of them, but
not which one, (2) Using the MD ontologies to fully captaihe taxonomy-based data
model[10], (3) We may relax the assumption complete categorical datd his brings
many new issues and problems that require investigatiom fjuery answering to the
maintenance odtructural semantic constraintsuch as strictness and homogeneity, on
the HM model and our extension of it.
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