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Abstract. Data quality is context-dependent. That is, the quality of data cannot
be assessed without contextual knowledge about the production or the use of
data. As expected, context-based data quality assessment requires a formal model
of context. Accordingly, we propose a model of context that addresses quality
concerns that are related to the production and use of data.

Here we follow and extend a context model for the assessment of the quality
of a database instance that was proposed in a previous work [1]. In that frame-
work, the context takes the form of a possibly virtual database or data integration
system into which a database instance under quality assessment is mapped, for
additional analysis and processing, enabling quality dataextraction. In this work
we extend contexts with dimensions, and by doing so, we make possible a multi-
dimensional data quality assessment. Multidimensional contexts are represented
as ontologies written in Datalog±. We use this language for representingdimen-
sional constraints, anddimensional rules, and also for doingquery answering
based on dimensional navigation, which becomes an important auxiliary activity
in the assessment of data. We show ideas and mechanisms by means of examples.

1 Introduction
In a previous work [1], a model of context for data quality assessment was proposed.
In that work, the assessment of a databaseD is performed byputtingD in contextor,
more precisely, by mapping it into a contextC, which is represented as another database,
or as a database schema with partial information, or, more generally, as a virtual data
integration system [8].

The quality of data inD is determined through additional processing of the data
within the context. Data processing in the context leads to possible several quality
versions ofD, forming a classDq of intended, clean versions ofD. The quality of
D is measured in terms of how muchD departs from (its quality versions in)Dq:
dist(D,Dq). We may want to assess the quality of answers to a queryQ posed to in-
stanceD or to obtain “quality answers” fromD. This can be done appealing to the class
Dq of intended clean versions ofD. For assessment, the set of query answers toQ from
D can be compared with thecertain answersfor Q, from each of the instances inDq

[7]. The certain answers become what we call theclean answerstoQ fromD [1].

Problem Statement and Relevance:An important contextual element was not con-
sidered in [1]:dimensions. In practice, dimensions are naturally associated to contexts.
Here, in order to capture general dimensional aspects of data for inclusion in contexts,
we take advantage of and start from the Hurtado-Mendelzon (HM) multidimensional
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data model [6], whose inception was mainly motivated by datawarehouses (DWH) and
OLAP applications.

In Example 1, we illustrate the intuition behind multidimensional context for quality
specification and extraction. We assume, according to the HMmodel, that a dimension
consists of a finite set of categories related to each other bya partial order.
Example 1.The relational tableMeasurements(Table 1) shows body temperatures of
patients in an institution. A doctor wants to know“The body temperatures of Tom Waits
for September 5 taken around noon with a thermometer of brandB1” (as he expected).
It is possible that a nurse, unaware of this requirement, used a thermometer of brandB2,
storing the data inMeasurements. In this case, not all the measurements in the table are
up to the expected quality. However, tableMeasurementsalone does not discriminate
between intended values (those taken with brandB1) and the others.

For assessing the quality of the data inMeasurementsaccording to the doctor’s qual-
ity requirement, extra contextual information about the thermometers in use may help.
In this case, the tablePatientWardstores the wards of the patients in an institution on
different days. The relation is linked to theHospital andTime dimensions (Fig. 1, mid-
dle, bottom) meaning that the ward and day attributes of the relation take values from
the members of theWardand theDay categories in theHospital andTime dimensions
resp. Table 1.Measurements

Time Patient Value

1 Sep/5-12:10Tom Waits 38.2

2 Sep/6-11:50Tom Waits 37.1

3 Sep/7-12:15Tom Waits 37.7

4 Sep/9-12:00Tom Waits 37.0

5 Sep/6-11:05 Lou Reed 37.5

6 Sep/5-12:05 Lou Reed 38.0

Furthermore, the institution has aguideline
prescribing that:“Temperature measurement for
patients in a standard care unit have to be taken
with thermometers of Brand B1”.It can be used
for data quality assessment when combined with
the tablePatientUnit(Fig. 1, middle, top), which
is linked to theUnit category, and whose data are
(at least partially) generated fromPatientWardby
moving data upward through dimensionHospital
(Fig. 1, left), from categoryWardto categoryUnit. 
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Fig. 1.An extended multidimensional model
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According to the guideline, it is now possible to conclude that, on days when Tom
Waits was in the standard care unit, his temperature values were taken with the ex-
pected thermometer: for patients in wardsW1 or W2 a thermometer of brandB1 was
used. These “clean data” —in relation to the doctor’s expectations— appear in relation
Measurementsq .

Elaborating on this example, there could be a constraint involving theUnit category
in theHospital dimension:“No patient in intensive care unit at any time after August
/2005”. This constraint could be applied on the process of moving data upward from
PatientWardto PatientUnit. �

Example 1 illustrates the necessity of a formal data model torepresent multidimen-
sional context (e.g. including relations linked to dimensions, constraints and rules on
these relations).

Proposed Solutions: In this work, we extend the HM model by addingcategorical
relationsassociated to categories, at different levels of the dimension hierarchies, pos-
sibly to more than one dimension, i.e.PatientWardandPatientUnit(think of general-
ized fact tables as found in data warehouses). It also include dimensional constraints
anddimensional rules, which could be treated both asdimensional integrity constraints
on categorical relations that involve values from dimension categories. However, di-
mensional constraints are intended to be used asdenial constraintsthat forbid certain
combinations of values, whereas the dimensional rules are intended to be used for data
completion, to generate data through their enforcement viadimensional navigation.

Categorical relations may be incomplete, and new data can begenerated for them,
which will be enabled through rules (tgds) of a Datalog± dimensional ontology. The
previous example shows data generation via upward navigation whiledownward nav-
igation may also be useful (cf. [13]). Our approach to multidimensional contexts will
support both.

We propose an ontological representation in Datalog± [3, 4] of the extended HM
model, and also mechanisms for data quality assessment based on query answering
(QA) from the ontology via dimensional navigation. The ideais that a query to the
ontology triggers dimensional navigation and the creationof missing data, in possible
upward and downward directions, and on multiple dimensions. Datalog± supports data
generation through the ontological rules. Amultidimensional context—corresponding
to the formalization of the extension of HM— becomes a Datalog± ontology,M, that
belongs to an interesting syntactic classes of programs (called weakly-sticky [5]), for
which some results are known. This allows us to give a semantics to our ontologies, and
apply some established and new algorithms for QA.

The proposed multidimensional context forms a weakly-sticky ontology. This im-
plies that quality query answering and quality data extraction require an algorithm for
QA from such ontologies and its optimization and implementation. The weakly-sticky
class of ontologies is a well-established member of the family of Datalog± ontologies
with polynomial time data complexity for QA [5]. However, a practical QA algorithm
for this member of Datalog± is still missing in the literature. Here, we propose a practi-
cal QA algorithm that runs in polynomial time and it is applicable for some members of
the Datalog± family, including weakly-sticky ontologies. We also studythe magic-sets
optimization techniques and show that they are applicable on the QA algorithm.
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2 Work Done So Far
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Fig. 2. A context for data quality assessment

We enhance the approach
to data quality specification
and extraction in [1] (Fig-
ure 2), by adding dimen-
sions to contexts. In this
case, the context contains
a generic multidimensional
ontology, the shadedM in
Fig. 3, aka. “core ontol-
ogy” (described next). This
ontology can be extended,
within the context, with additional rules and constraints that depend on specific data
quality concerns (cf. Section 2.3).

2.1 The Extended MD Model and Datalog±

We extend the HM model introducingcategorical relations, each of them having a rela-
tional schema with a name, and attributes, some of which arecategoricaland the other,
non-categorical. The former take values that are members of a dimension category. The
latter take values from an arbitrary domain. Categorical relations have to be logically
connected to dimensions. For this we use a Datalog± ontologyM, which has a re-
lational schemaSM, an instanceDM, and a setΣM of dimensional rules, and a set
κM of constraints. Here,SM = K ∪ O ∪ R, with K a set of unarycategory predi-
cates,O a set ofparent-child predicates, capturing<-relationships for pairs of adjacent
categories, andR a set ofcategorical predicates, sayR(C1, . . . ;N1, . . .), where, to
highlight, categorical and non-categorical attributes (Cis vs.Njs) are separated by “;”.

Example 2.Categorical relationPatientWard(Ward ,Day;Patient) in Fig. 1 has cat-
egorical attributesWardandDay, connected to theHospital andTime dimensions, resp.
Patientis non-categorical.Ward(·),Unit(·) ∈ K; O contains, e.g. a binary predicate
connectingWard to Unit; andR contains, e.g.PatientWard. �

The (extensional) data,DM, associated to the ontologyM’s schema are the complete
extensions for categories inK and predicates inO that come from the dimension in-
stances. The categorical relations (with predicates inR) may contain partial data, i.e.
they may be incomplete. They can belong to instanceI in Fig. 3. Dimensional rules in
ΣM are those in (c) below; and constraints inκM, those in (a) and (b).

(a) Referential constraintsbetween categorical attributes and categories asnegative
constraint (NC):1 (R ∈ R, K ∈ K; ē, ā are categorical, non-categorical, resp.;
e ∈ ē)

⊥ ← R(ē; ā),¬K(e). (1)

1 An alternative and more problematic approach, may usetgdsbetween categorical attributes
and categories, making it possible to generate elements in categories or categorical attributes.
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(b) Additionaldimensional constraints, asegdsor NCs: (Ri ∈ R, Dj ∈ O, andx, x′

stand both for either categorical or non-categorical attributes in the body of (2))

x = x′ ← R1(ē1; ā1), ..., Rn(ēn; ān), D1(e1, e
′
1
), ..., Dm(em, e′m). (2)

⊥ ← R1(ē1; ā1), ..., Rn(ēn; ān), D1(e1, e
′
1
), ..., Dm(em, e′m). (3)

(c) Dimensional rulesas Datalog± tgds:

∃āz Rk(ēk; āk)← R1(ē1; ā1), ..., Rn(ēn; ān), D1(e1, e
′
1
), ..., Dm(em, e′m). (4)

Here,āz ⊆ āk, ēk ⊆ ē1 ∪ ... ∪ ēn ∪ {e1, ..., em, e′
1
, ..., e′m}, ākrāz ⊆ ā1 ∪ ... ∪

ān; and repeated variables in bodies are only in positions of categorical attributes
(in the categorical relationsRi(ēi; āi)), and attributes in parent-child predicates
Dj(ej , e

′
j). Value invention is only on non-categorical attributes (wewill consider

relaxing this later on).

With rule (4) (an example is (7) below), the possibility of doing dimensional navigation
is captured by joins between categorical predicates, e.g.Ri(ēi; āi), ..., Rj(ēj ; āj) in the
body, and parent-child predicates, e.g.Dn(en, e

′
n), ..., Dm(em, e′m).
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Fig. 3. A multidimensional context

Rule (4) allows navigation in both upward
and downward directions. Thedirection of
navigationis determined by the level of cate-
gorical attributes that participate in the join
in the body. Assuming the join is between
Ri(ēi; āi) and Dn(en, e

′
n), upward naviga-

tion is enabled whene′n ∈ ēi (i.e. e′n appears
in Ri(ēi; āi)) anden ∈ ēk (i.e en appears in
the head). On the other hand, ifen occurs in
Ri ande′n occurs inRk, then downward nav-
igation is enabled, fromen to e′n.

Example 3. (example 2 cont.) The categorical attributeUnit in categorical relation
PatientUnit takes values from theUnit category. We use a constraint of the form (1):
⊥ ← PatientUnit(u,d; p),¬Unit(u). (5)

For the constraint in Example 1 requiring“No patient was in intensive care unit
during the time after August 2005”, we use a dimensional constraint of the form (3):

⊥ ← [PatientWard(w,d; p),UnitWard(Intensive, w), (6)

MonthDay(August/2005, d)].

The following dimensional rules of the form (4) capture how data inPatientWard
andWorkingSchedulesgenerate data forPatientUnitandShifts, resp.:

PatientUnit(u,d; p) ← PatientWard(w,d; p),UnitWard(u,w). (7)

∃z Shifts(w,d; n, z ) ← WorkingSchedules(u,d; n, t),UnitWard(u,w). (8)

In (7), dimension navigation is enabled by the join betweenPatientWardandUnit-
Ward. The rule generates data forPatientUnit(at a the higher level ofUnit) from Pa-
tientWard(at the lower level ofWard) via upward navigation.
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Rule (8) captures a guideline that states:“If a nurse works in a unit on a specific day,
he/she has shifts in every ward of that unit on the same day”.The rule is expressed using
two additional categorical relations,WorkingSchedulesandShifts, that store schedules
of nurses in units and shifts of nurses in wards, resp. Downward navigation is performed
by generating data forShifts(at the level ofWard) from WorkingSchedules(at the level
of Unit). In this case, the schemas of the two categorical relationsdo not match. So, the
existential variablez represents missing data for theshift attribute. �

2.2 Properties of MD Datalog± Ontologies
Here, we first establish the membership of our MD ontologies,M (cf. Section 2.1) of
a class of the Datalog± family. Membership is determined by the setΣM of its tgds.
Next, we analyze the role of the constraints inκM, in particular, of the setǫM of egds.

Proposition 1. MD ontologies are weakly-sticky Datalog± programs. �

The proof and a review ofweakly-stickyDatalog± [5], can be found in [13] (an extended
version of [11]). A consequence of this result is that QA fromΣM is in polynomial-time
in data complexity [5].

The complexity stays the same if we addNCs, of the forms (1) and (3), because
they can be checked through the conjunctive queries in theirbodies [5]. However, com-
bining theegdsin ǫM with ΣM could change things, and, in principle, even lead to
undecidability of QA [2]. Separability[5] ofegdsandtgdsis a semantic condition that
guarantees complexity of query answering still remains thesame even after adding
egds. In [13] (Proposition 2), we show a syntactic condition for the dimensionaledgs
that implies the separability.

2.3 MD Contexts for Quality Data
We now show in general how to use a MD context,C, containing MD ontologies for
quality data specification and extraction wrt. a database instanceD for schemaS. Here,
ContextC, as shown in Fig. 3, contains:
1. Nickname predicatesR′ ∈ S ′ for predicatesR of original schemaS. In this case, the
R′ have the same extensions as inD, producing a material or virtual instanceD′ within
C. For example,Measurements ′ ∈ S ′ is a nickname predicate forMeasurements ∈ S,
whose initial contents (inD) is under quality assessment.

2. Thecore MD ontology,M. We assume that application dependent guidelines and
constraints are all represented as components ofM.

In our running example,PatientUnit ,PatientWard ,WorkingSchedules andWor -
k ingT imes are categorical relations.UnitWard , DayTime are parent-child relations
in dimensions,Hospital andTime, resp. The followings are dimensional rules ofΣM:

WorkingTimes(u, t;n, y)←WorkingSchedules(u, d;n, y),DayTime(d, t).

PatientUnit(u, t; p)←PatientWard(w, d; p),DayTime(d, t),UnitWard(u,w).(9)

3. The set ofquality predicates,P , with their definitions in non-recursive Datalog (pos-
sibly with negation,not ), in terms of categorical predicates inR and built-in predicates.
A quality predicate reflects an application dependent specific quality concern.

Now, TakenByNurse andTakenWithTherm are quality predicates with defini-
tions on top ofM, addressing quality concerns about the nurses and the thermometers:
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TakenByNurse(t, p, n, y)←WorkingTimes(u, t;n, y),PatientUnit(u, t; p). (10)

TakenWithTherm(t, p, b)←PatientUnit(u, t; p), u = Standard, b = B1. (11)
Furthermore, and not strictly inside contextC, there are predicatesRq

1
, ..., Rq

n ∈ S
q,

thequality versionsof R1, ..., Rn ∈ S. They are defined throughquality data extraction
ruleswritten in non-recursive Datalog, in terms of nickname predicates (inS ′), categor-
ical predicates (inR), and the quality predicates (inP), and built-in predicates. Their
definitions (theαq

i in Fig. 3) impose conditions corresponding to user’s data quality
profiles, and their extensions form the quality data (instance).

The quality version ofMeasurements is Measurementq ∈ Sq, with the following
definition, which captures the intended, clean contents of the former:

Measurementq(t, p, v)←Measurement ′(t, p, v),TakenByNurse(t, p, n, y), (12)

TakenWithTherm(t, p, b), b = B1, y = certified.

Quality data can be obtained from the interaction between the original sourceD
and the contextC, in particular using the MD ontologyM. For that, queries have to be
posed to the context, in terms of predicatesSq, the quality versions of those ofD. A
query could be as direct as asking, e.g. about the contents ofpredicateMeasurementq

above, or a conjunctive query involving predicatesSq.
For example, this is the initial query asking for (quality) values for Tom Waits’ tem-

perature:Q(t, v) :Measurements(t, Tom Waits, v)∧Sep5-11:45 ≤ t ≤ Sep5-12:15,
which, in order to be answered, has to be first rewritten into,Qq(t, v) : Measurementsq

(t , Tom Waits, v) ∧ Sep5-11:45 ≤ t ≤ Sep5-12:15.
To answer this query, first (12) can be used, obtaining a contextual query:QC(t, v) :
Measurement ′(t, p, v) ∧TakenByNurse(t, p, n, certified) ∧TakenWithTherm(t,
p, B1) ∧ p = Tom Waits ∧ Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

This query will in turn, use the contents forMeasurement ′ coming fromD, and the
quality predicate definitions (10) and (11), eventually leading to a conjunctive query
expressed in terms ofMeasurement ′ and MD predicates only, namely:QM(t, v) :
Measurement ′(t, p, v) ∧WorkingTimes(u, t;n, y) ∧ PatientUnit (u, t; p) ∧ u =
Standard∧ y=certified∧p = Tom Waits∧Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

At this point, QA from a weakly-sticky ontology has to be performed. We know
that this can be done in polynomial time in data. However, there is still a need for
practical QA algorithms. Doing this goes beyond the scope ofthis paper. In Section 2.4,
we describe some ideas from [12] on the development and optimization of such an
algorithm.

2.4 Query Answering on the MD Ontology
We proposed a conjunctive query answering algorithm for weakly sticky programs to
be also applied to our MD ontology. The algorithm is based on the concepts ofparsimo-
nious chase(pChase) andfreezing nulls, as used for QA withshy Datalog, a fragment
of Datalog∃ [9].

At a pChasestep, a new atom is added only if a homomorphic atom is not already
in the chase. Freezing a null is promoting it to a constant (and keeping it as such in
subsequent chase steps). So, it cannot take (other) values under homomorphisms, which
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may create newpChasesteps. Resumption of thepChasemeans freezingall nulls, and
continuingpChaseuntil no morepChasesteps are applicable.

Query answering with shy programs has a first phase where thepChaseruns until
termination. In a second phase, thepChaseiteratively resumes for a number of times
that depends on the number of distinct∃-variables in the query. This second phase
is required to properly deal with joins in the query. Our algorithm for weakly sticky
programs is similar, it has the same two phases, but apChasestep is modified: after
every application of apChasestep that generates nulls, the latter that appear in positions
with finite ranks are immediately frozen. The algorithm runsin polynomial-time in data.

3 Work Still to Be Done

We are investigating several extensions of the current work. Some of them are as fol-
lows: (1)Uncertain downward-navigationwhentgdsallow existentials on categorical
attributes. A parent in a category may have multiple children in the next lower category.
Under the assumption of complete categorical data, we know it is one of them, but
not which one, (2) Using the MD ontologies to fully capturethe taxonomy-based data
model[10], (3) We may relax the assumption oncomplete categorical data. This brings
many new issues and problems that require investigation; from query answering to the
maintenance ofstructural semantic constraints, such as strictness and homogeneity, on
the HM model and our extension of it.
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