
Seamless Cooperation of JAVA and PROLOG
for Rule-Based Software Development

Ludwig Ostermayer

University of Würzburg, Department of Computer Science
Am Hubland, D – 97074 Würzburg, Germany

ludwig.ostermayer@uni-wuerzburg.de

Abstract. Modern software often relies on the modular combination of several
software subsystems, for instance rule-based subsystems for decision support,
verification or knowledge management. Different software libraries in potentially
different programming languages have to work together in just a single applica-
tion. Even more complex is the case when different programming paradigms are
combined. Such a diversification of programming languages and modules in just
a single software application can only be mastered by smooth integration tech-
niques that retain the power of different programming paradigms. Unfortunately,
for the popular object-oriented programming language JAVA and the common
logic programming language PROLOG occurring interoperability problems still
are not solved sufficiently. To overcome various external and internal issues of
former approaches we propose an intuitive and portable Connector Architecture
for PROLOG and JAVA (CAPJA). A concise, extensible and independent commu-
nication layer with a pluggable interface system allows for a seamless integration
of PROLOG programs in JAVA. Compared to former approaches we could reduce
the code for the mere communication to a minimum. Several case studies with
different PROLOG systems document not only the portability but the overall ap-
plicability of our approach.

Keywords. Multi-Paradigm Programming, Java, Prolog, Rule-Based Systems.

1 Introduction

Modern software systems often consist of dynamically linked subsystems handling dif-
ferent application relevant problem domains, for instance rule-based subsystems for de-
cision support, verification or knowledge management. These subsystems evolve con-
tinually and often independently of one another. Not every problem can be solved ele-
gantly in every programming language. To support multi-language systems we require
smooth interaction mechanisms for the programming languages involved. In case of
JAVA and PROLOG, this is an especially challenging task as they additionally follow
two different programming paradigms.

The object-oriented programming paradigm is widely used in the field of indus-
trial software engineering as well as in the academic sector. Currently, one of the most
popular object oriented programming languages is JAVA. It has a rich set of libraries,

especially for the development of refined graphical user interfaces (GUI), web develop-
ment and embedded devices. In addition, there are several public tools and Integrated
Development Environments (IDE) such as Eclipse [9] that substantially support the de-
velopment with JAVA. Last but not least, JAVA has a very active community. But there
are also complaints about JAVA such as being too verbose, full of boilerplate code, ill-
suited for rapid prototyping and most notably being little declarative, just to mention
a few. Although there are tools for JAVA, e.g. DROOLS [11], the development of rule-
based systems in JAVA still comes with flaws [15].

Logic programming following an alternative, declarative programming paradigm
excels at these points. Languages like the common logic programming language PRO-
LOG are particularly well suited for an intuitive development of rule-based systems. Pro-
grams in PROLOG consist of a collection of rules and facts that describe Horn clauses
and are evaluated top-down. PROLOG is widely used for knowledge engineering and
expert systems [3], the development of business rule applications [16] and for natural
language processing[20]. Backtracking, partial bindings, incomplete structures, nega-
tion and recursion result in elegant, concise and readable programs that improve main-
tainability and refactoring. For this reason PROLOG qualifies for rapid prototyping and
agile software development. Features like custom operators, infix notation and definite
clause grammars allow for an elegant and fast development of meta-interpreters for all
purposes, for instance readable business rule systems [14] or domain specific languages.

Various approaches [1, 2, 4–6, 8, 12] of the last decade have attempted to solve the
issues related to a cooperation of JAVA and PROLOG. We identified several external
and internal problems that hinder or limit a smooth cooperation. Among the external
ones are restrictions coming from architectural assumptions, dependencies on specific
PROLOG systems or operating systems, the amount of necessary modifications to ex-
isting code bases, re-usability, performance or maintenance. Internal issues are, for in-
stance, the amount of boilerplate code for the mere communication, mixtures of PRO-
LOG and JAVA syntax and semantics, missing IDE support like syntax highlighting or
auto-completion, options for customisation or a neat integration in the development
cycle. Unfortunately, all former approaches come with more or less of these issues,
especially with regard to a subsequent integration of PROLOG programs into existing
JAVA applications.

Therefore, we propose an intuitive and portable Connector Architecture for PRO-
LOG and JAVA (CAPJA). Using our approach existing objects in JAVA can be reused to
query PROLOG without additional JAVA data structures representing terms in PROLOG.
We reconcile both languages internally by using an extensible, bidirectional object-term
mapping freeing up the programmer from bothering with boilerplate code to handle the
mere communication. Lambdas, a feature recently introduced to JAVA, can be exploited
with CAPJA to express complex queries to PROLOG in a natural, declarative and concise
way. We use advanced meta-programming techniques in JAVA to support the develop-
ment process with CAPJA and to improve the performance of resulting bytecode. All
parts of CAPJA are implemented in JAVA and available as JAR (JAVA Archive) though
portability and a simple integration are guaranteed. The mapping is combined with
a pluggable interface system that enables various communication scenarios of JAVA
with PROLOG, for instance via sockets or a foreign language interface. In addition,

CAPJA provides a portable, built-in PROLOG interface that has been successfully tested
with several open source systems like B-, CIAO-, GNU-, SWI-, TU-, XSB- and YAP-
PROLOG. In PROLOG, we introduce the Prolog-View-Notation (PVN) to elegantly feed
a generator producing JAVA classes that map to terms specified within PVN expressions.

2 Related Work

A well-known interface for JAVA and PROLOG is JPL [21] that is bundled with SWI-
PROLOG [22]. To enable a fast communication JPL provides JAVA classes representing
language artefacts of PROLOG like atoms or terms. JPL communicates directly with the
core of SWI which is coded in C. Queries from JAVA do not have to be interpreted like
native PROLOG code. This leads to fast execution times but requires much boilerplate
code in JAVA. An integration requires that either the JAVA developer knows how to pro-
gram PROLOG or the PROLOG developer knows how to code JAVA in order to build the
necessary structures. Complex queries in JAVA to PROLOG have to be coded manually
by concatenating Strings containing the specific PROLOG code. But Strings usually do
not benefit from auto-completion nor pre-compile time checking. Furthermore, JPL is
limited to the use with SWI-PROLOG, as it is shipped and created for just this single
PROLOG system although the concepts of its higher-level API can easily be adopted to
interface other PROLOG systems.

Another interesting approach is INTERPROLOG [4] for XSB-PROLOG [19]. It uses
JAVA’s serialization mechanism in order to send serialized JAVA objects to PROLOG.
Messages from JAVA are first interpreted as atoms and are further analysed in PROLOG
by the use of definite clause grammars (DCG’s). As a result there is a portion of PROLOG
code that has to be ported in order to run INTERPROLOG with other PROLOG systems.
On the JAVA side, the classes have to implement the Serializable interface and its
members have to be serializable. If not, they have to be marked transient and their
values are lost during serialization. As with JPL, queries in JAVA have to be created
from Strings, too. On the PROLOG side, complex term structures have to be derived
each time an object is transferred.

PROLOG CAFE [2] translates a PROLOG program into a JAVA program via the War-
ren Abstract Machine (WAM), and then compiles it using a standard JAVA compiler.
PROLOG CAFE offers only a core PROLOG functionality, but lacks support for many
PROLOG built–in predicates in the ISO-Standard. The creation of queries also is String
based.

The concept of linguistic symbiosis has been used in [5, 8, 10] to define a suitable
mapping of objects in JAVA to terms in PROLOG. Linguistic symbiosis targets on find-
ing similar concepts of different paradigms in order to map them. Methods in JAVA are
mapped to queries in PROLOG. The conversion is realised via meta programming tech-
niques in JAVA, in particular by an extensive use of JAVA Annotation. The Annotations
are processed during runtime using JAVA’s Reflection API. The analysis via Reflec-
tions compared to static calls causes a not negligible overhead and with it a loss in
performance. Castro et al. have their LOGICOBJECTS [5] compared to JPL. Their im-
plementation has been slower than the corresponding JPL implementation by a factor
of about 7. CAPJA, instead, competed well against JPL [17].

TUPROLOG [7], an engine entirely written in JAVA, has been integrated in [6] into
JAVA programs using annotations and generics. Rules and facts are written directly into
the JAVA code within annotations. The syntax for rules and facts is native PROLOG. This
leads to a complex mixture of not only code in different programming languages but
different programming paradigms, too. With manually customised methods PROLOG
can be queried from JAVA. The mapping of input and return to arguments of a goal in
PROLOG is defined by annotations. This approach is strongly dependent on TUPROLOG.

In [12], the JAVA virtual machine is extended to embed logic programming directly
into JAVA source code. Of course, this means that the programming language itself is
extended in order to be able to write logic programs within JAVA. As the JAVA Virtual
Machine (JVM) is changed, the portability of the JAVA program decreases. Every sub-
sequent version of JAVA causes new porting effort. With regard to the integration into
an already existing and running JAVA application a subsequent extension of the JVM
proves often impossible. Another drawback is that only PROLOG libraries already in
the extension included are supported.

3 Research Question and Goal

Bringing new software technology in an existing software project raises many ques-
tions that often result in restrictions and interoperability problems. Notably, there are:
1) external or environmental problems considering architectural assumptions, depen-
dencies, extensive code modifications and maintenance and 2) internal or deployment
problems that refer to the actual coding practice such as obscuration (boilerplate code),
complexity and readability, IDE support and options for customisation and extension.

The main goal of our work is to introduce a Connector Architecture for PROLOG
and JAVA (CAPJA) in order to realize a smooth cooperation of object oriented and logic
programming. As an instantiation of our model we want to implement a framework that
overcomes the mentioned interoperability problems and 1) has a concise, extensible
and intuitive communication layer with a pluggable interface system, 2) is not limited
to a certain PROLOG or operating system, 3) is well integrated in the development cy-
cle, 4) allows for a seamless (subsequent) integration of PROLOG programs into JAVA
applications and 5) operates with high performance during runtime.

4 Proposed Approach

To combine the two programming paradigms – object-oriented programming and logic
programming – we propose an Object-Term Mapping (OTM). The default mapping is
usable for JAVA classes without any modifications to their source code. The result-
ing data exchange format is a simple textual term representation. Because the textual
term representation already conforms PROLOG’s syntax, it can be directly called within
PROLOG. In JAVA, the mapping is customisable by Prolog-Views that are defined as
@PlView annotations. In PROLOG, we generate JAVA classes that correspond to given
predicates. For this purpose, we introduce the Prolog-View Notation (PVN). Expres-
sions in PVN are based on lists in PROLOG and describe predicates enriched by map-
ping information for JAVA. On the one hand, a PVN expression can be used to generate

@PLView annotations on a given class in JAVA. On the other hand, it is sufficient to
generate a JAVA class that translate by the default to the PROLOG predicate that has
been described in the PVN expression. In this way, we can control the mapping from
the PROLOG side.

To decouple our connector architecture from a single PROLOG system we design
a pluggable interface system based on a adapter pattern in JAVA. As built-in PROLOG
interface, we provide the Portable Prolog Interface (PPI) for JAVA that uses the stan-
dard streams stdin, stdout and stderr to communicate with a PROLOG instance.
Because these standard streams are available for all popular operating systems and are
used by most of the PROLOG implementations for the interaction with users, the PPI
works for a broad range of PROLOG implementations.

A recently introduced new feature in JAVA are Lambdas [13]. Although intended
only as syntactic sugar for anonymous classes containing only one method, we want to
exploit Lambdas to express refined queries to Prolog.

We evaluate our approach with several case studies, in particular in the field of
e-commerce, applied graph theory and logistics. In the case studies CAPJA helps to
solve problems in commercial, real life scenarios. Knowledge about a problem domain
is modelled declaratively in PROLOG reusing existing data structures of an associated
JAVA application. The PROLOG knowledge base then is integrated in JAVA for queries.

5 Research Status and Preliminary Results

In [16], we have presented an early predecessor of CAPJA called PBR4J (PROLOG Busi-
ness Rules for JAVA). PBR4J allows to request a given set of PROLOG rules from JAVA.
To overcome the interoperability problems a JAVA Archive (JAR) has been generated
containing the methods to query the rules. It uses XML Schema to describe the data
exchange format. From the XML Schema description we have generated JAVA classes
for the JAR. For CAPJA, we have subsequently improved the mapping mechanism in
order to get rid of an intermediate, external layer for the data exchange format. While
PBR4J enables with every generated JAR only a single, given PROLOG query, we are
with CAPJA now much more flexible. The result of a request has been encapsulated in
a result set that implements the java.util.Iterator interface with eager evalua-
tion. Although very static, PBR4J has been used in a case study in [16] to successfully
integrate a set of PROLOG business rules into a commercial JAVA e-commerce system.

In [17] the customisable mapping mechanism of CAPJA has been introduced. The
following listing shows a Person class containing two different Prolog-Views.

@PlView(viewId="V1", dropArgs={"familyName"},
modifyArgs={@PlArg(valueOf="children",viewId="V2")})

@PlView(viewId="V2", functor="child",
orderArgs={"firstName"})

class Person {
private String firstName;
private String familyName;
private int age;
private ArrayList<Person> children; /*...constr. & methods*/ }

First, we instantiate the persons homer and bart, and add bart as child of homer.

Person homer = new Person("Homer", null, 40);
Person bart = new Person("Bart", "Stimpson", 10);
homer.getChildren().add(bart);

Then, the we show in the listing below the textual term representations of homer as a
result of the default mapping and the Prolog-View "V1" of the Person class.

% default mapping of homer
person('Homer', X, 40, [person('Bart',10,[])]).
% the Prolog-View "V1" of homer
person('Homer', 40, [child('Bart')]).

The next listing demonstrates the PVN expression that describes the person/4 pred-
icate. It is enriched by name and type information for the mapping to JAVA. Therefore,
it is sufficient to generate the skeleton of the corresponding Person class without an-
notations, constructors and methods as these can be subsequently added in JAVA on
demand. PVN expressions can also be used to generate @PlView annotations in order
to control the mapping behaviour of given classes from PROLOG.

pl_view(person, compound, [pl_arg(firstName, string),
pl_arg(familyName, string), pl_arg(age, int),
pl_arg(children, arrayList, person)]).

As a first implementation we have combined in [17] JAVA with SWI-PROLOG [22]
using it’s Foreign Language Interface. To enable the mapping and the communication
with PROLOG only a small JAR has to be integrated in JAVA. An evaluation of the
performance has shown that it is as fast as JPL [21]. However, the implementation with
CAPJA has proven simpler, cleaner and shorter as the reference with JPL. With CAPJA,
we have saved 25% lines of code.

In [18] we have uncoupled CAPJA from any specific PROLOG system by introducing
the Portable PROLOG Interface (PPI). It is based on standard streams that are part of
every operating system and used by most PROLOG systems for the user interface. A
case study in [18] verifies the applicability of the PPI with CAPJA for several PROLOG
systems with decent performance. Without changing the underlying JAVA or PROLOG
source code we have successfully tested with B-, CIAO-, GNU-, SWI-, TU-, XSB- and
YAP-PROLOG.

Constructors of the generic Unifier<T> class in CAPJA offer an elegant way to
specify a query from JAVA to PROLOG. A simple Prolog goal can be specified by a sole
class instance as parameter for the constructor. Members of such an instance with value
null are interpreted by the OTM as logical variables for PROLOG.

More complex goals can be encoded declaratively into JAVA Lambdas [13]. In order
to decode the Lambdas correctly they have to be processed before being passed to the
JAVA compiler. The developer marks them in the source file with an @JPLambda anno-
tation. An annotation processor activates every time a Lambda has potentially changed.
We use it to register the changed files in a build script which in turn triggers a compo-
nent of CAPJA. As the following procedure changes an existing source file, an annota-
tion processor alone proves to be inadequate. The initial source file is parsed yielding all

contained class imports and Lambda expressions. A customisable transcoder decodes
the Lambdas before translating the necessary classes describing terms with the OTM.
Every part of a Lambda that cannot be translated to PROLOG is retained in their JAVA
representation. The resulting PROLOG term strings and their corresponding untranslated
JAVA code pieces form a method call containing the PROLOG goal. These are wrapped
into custom, auto-generated Unifier subclasses that provide specific iterators for the
result set. Finally, Unifier constructor calls in the original source file are replaced
with references to the generated Unifier classes.

CAPJA encapsulates the complex process outlined above and offers a convenient,
semantic oriented coding pattern that results in readable source.

Unifier<Person> personUnifier = new Unifier$3141<>(plEngine,
protocol, person -> person.getFamilyName() == "Stimpson"

&& person.getAge() < 18);
Iterator<Person> personIt1 = personUnifier.unify();
Iterator<Person> personIt2 = personUnifier.findall();

The example above asks a given PROLOG system plEngine via a given protocol,
e.g. plain text or XML, for the persons in the family Stimpson with age less than
18. CAPJA has replaced a call for the constructor of Unifier in the original source
file by the call for the constructor of the auto-generated class Unifier$3141. The
methods unify and findall return specialized Person Iterators with lazy or eager
evaluation of the result set, respectively.

6 Conclusion

In this paper we have presented CAPJA, an intuitive and portable Connector Architec-
ture for PROLOG and JAVA. The most recent instantiation already complies with most of
the goals as stated in Section 3. Many external and internal issues have been eliminated
by design. CAPJA is applicable for several open-source PROLOG systems with at least
decent performance. The pluggable interface system has been successfully tested with
various types of interfaces. A significant reduction in lines of code in comparison to
other approaches reflects the clarity and conciseness of our approach. A novel approach
using Lambdas allows to construct elegantly readable PROLOG queries in JAVA.

However, tests for a cooperation with commercial PROLOG systems are still missing
and a public release of CAPJA under an open-source license requires additional prepa-
rations. Furthermore, our main attention, so far, has been the direction of JAVA calling
PROLOG. Currently, CAPJA is limited to support only queries from JAVA to PROLOG.
Because the OTM is bidirectional, we suppose that the opposite direction can be han-
dled with the help of PVN expressions and a JAVA message predicate in PROLOG, an
approach similar to INTERPROLOG.

References

1. A. Amandi, M. Campo, A. Zunino. JavaLog: a framework-based integration of Java and
Prolog for agent-oriented programming. Computer Languages, Systems & Structures 31.1,
2005. 17-33.

2. M. Banbara, N. Tamura, K. Inoue. Prolog Cafe: A Prolog to Java Translator. Proc. Intl. Con-
ference on Applications of Knowledge Management, INAP 2005, Lecture Notes in Artificial
Intelligence, Vol. 4369, Springer, 2006. 1-11.

3. I. Bratko. Prolog Programming for Artificial Intelligence International Computer Science
Series, 4th edition, Addison Wesley, 2011.

4. M. Calejo. InterProlog: Towards a Declarative Embedding of Logic Programming in Java.
Proc. Conference on Logics in Artificial Intelligence, 9th European Conference, JELIA, Lis-
bon, Portugal, 2004.

5. S. Castro, K. Mens, P. Moura. LogicObjects: Enabling Logic Programming in Java through
Linguistic Symbiosis. Practical Aspects of Declarative Languages. Springer Berlin Heidel-
berg, 2013. 26-42.

6. M. Cimadamore, M. Viroli. A Prolog-oriented extension of Java programming based on
generics and annotations. Proc. 5th international symposium on Principles and practice of
programming in Java. ACM, 2007. 197-202.

7. E. Denti, A. Omicini, A. Ricci. tuProlog: A light-weight Prolog for Internet applications
and infrastructures. Practical Aspects of Declarative Languages. Springer Berlin Heidelberg,
2001. S. 184-198.

8. M. D’Hondt, K. Gybels, J. Viviane Seamless Integration of Rule-based Knowledge and
Object-oriented Functionality with Linguistic Symbiosis. Proc. of the 2004 ACM sympo-
sium on Applied computing. ACM, 2004.

9. Eclipse Foundation. Desktop IDEs. http://eclipse.org/ide
10. K. Gybels. SOUL and Smalltalk - Just Married: Evolution of the Interaction Between a Logic

and an Object-Oriented Language Towards Symbiosis. Proc. of the Workshop on Declarative
Programming in the Context of Object-Oriented Languages, 2003.

11. JBoss Community. Drools – The Business Logic Integration Platform.
http://www.jboss.org/drools

12. T. Majchrzak, H. Kuchen. Logic java: combining object-oriented and logic programming.
Functional and Constraint Logic Programming. Springer Berlin Heidelberg, 2011. 122-137.

13. Oracle Corporation. The Java Tutorials - Lambda Expressions. https://docs.
oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

14. L. Ostermayer, D. Seipel. Knowledge Engineering for Business Rules in Prolog. Proc. Work-
shop on Logic Programming (WLP), 2012.

15. L. Ostermayer, D. Seipel. Simplifying the Development of Rules Using Domain Specific Lan-
guages in Drools. Proc. Intl. Conf. on Applications of Declarative Programming and Knowl-
edge Management (INAP), 2013.

16. L. Ostermayer, D. Seipel. A Prolog Framework for Integrating Business Rules into Java
Applications. Proc. 9th Workshop on Knowledge Engineering and Software Engineering
(KESE), 2013.

17. L. Ostermayer, F. Flederer, D. Seipel. CAPJA - A Connector Architecture for Prolog and
Java. Proc. 10th Workshop on Knowledge Engineering and Software Engineering (KESE),
2014.

18. L. Ostermayer, F. Flederer, D. Seipel. PPI - A Portable Prolog Interface for Java. Proc. 28th
Workshop on Logic Programming (WLP), 2014.

19. K. Sagonas, T. Swift, D. S. Warren. XSB as an efficient deductive database engine. ACM
SIGMOD Record. ACM, 1994. S. 442-453.

20. D. Seipel, W. Wegstein metaDictionary - Towards a Generic e-Infrastructure for Detecting
Variance in Language by Exploiting Dictionary Information. Proc. International Symposium
on Grids and Clouds (ISGC), 2011.

21. P. Singleton, F. Dushin, J. Wielemaker. JPL 3.0: A Bidirectional Prolog/Java Interface.
http://www.swi-prolog.org/packages/jpl

22. J. Wielemaker. SWI-Prolog. http://www.swi-prolog.org

