
A ProM Operational Support Provider for
Predictive Monitoring of Business Processes

Marco Federici1,2, Williams Rizzi1,2, Chiara Di Francescomarino1, Marlon
Dumas3, Chiara Ghidini1, Fabrizio Maria Maggi3, and Irene Teinemaa3

1 FBK-IRST, Italy.
{federici,wrizzi,dfmchiara,ghidini}@fbk.eu

2 University of Trento, Italy.
3 University of Tartu, Estonia.

{marlon.dumas,f.m.maggi,irheta}@ut.ee

Abstract. Predictive process monitoring is concerned with exploiting
event logs to predict how running (uncompleted) cases will unfold up
to their completion. In this paper, we propose an implementation in the
ProM toolset of a predictive process monitoring framework for estimat-
ing the probability that an ongoing case will lead to a certain outcome
among a set of possible outcomes. An outcome refers to a label associated
to completed cases, like, for example, a label indicating that a given case
completed “on time” (with respect to a given desired duration) or “late”,
or a label indicating that a given case led to a customer complaint or not.
The framework takes into account both the sequence of events observed
in the current trace, as well as data attributes associated to these events.
The prediction problem is approached in two phases. First, prefixes of
previous traces are clustered according to control flow information. Sec-
ondly, a classifier is built for each cluster to discriminate among a set of
possible outcomes. At runtime, a prediction is made on a running case
by mapping it to a cluster and applying the corresponding classifier.

1 Introduction

Often, questions and predictive challenges can arise during the execution of
business processes. For example, in a medical process execution a doctor may
ponder whether a surgery, a pharmacological therapy or a manipulation is the
best choice to be made in order to guarantee the patient recovery. Predictive
business process monitoring [6] is a family of techniques that apply what we do
in everyday life to the field of business processes. In particular, predictive process
monitoring exploits event logs, which are more and more widespread in modern
information systems, to predict how current (uncompleted) cases will unfold up
to their completion. A predictive process monitor allows users to predict the
most likely outcome of the ongoing case. In this context, an outcome could be,
for example, the timely completion of the case with respect to a deadline (versus
late completion), or the fulfillment of a desired business goal (e.g., a sales process

Copyright c©2015 for this paper by its authors. Copying permitted for private and
academic purposes.



Fig. 1: Predictive process monitoring framework

leading to an order, or an issue handling process leading to successful resolution).
Based on the analysis of execution traces, the monitor provides the user with
estimations of the likelihood of achieving a given outcome for a running case.

In this paper, we describe an implementation in the ProM process mining
toolset of a general customizable predictive process monitoring framework [3]
that allows users to assign a “label” (outcome) to an ongoing case based on: (i)
a prefix thereof; and (ii) a set of labeled completed sequences (the “history”).
ProM provides a generic Operational Support (OS) environment [2,7] that allows
the tool to interact with external workflow management systems at runtime. A
stream of events coming from a workflow management system is received by an
OS service. The OS service is connected to a set of OS providers implementing
different types of analysis that can be performed online on the stream. The pre-
dictive process monitoring framework has been implemented as an OS provider.

2 Framework and Tool

The framework requires as input a set of past executions of the process. Based
on the information extracted from such execution traces (sequences of events
with their associated payload, i.e., attribute-value pairs), it tries to predict how
currently evolving executions will develop in the future. To this aim, before the
process execution, an automated pre-processing phase is carried out. In such a
phase, state-of-the-art approaches for clustering and classification are applied
to the historical data in order to (i) identify and group historical trace prefixes
with a similar control flow, i.e., to delimitate the search space on the control
flow base (clustering from a control flow perspective) and, hence, avoid noise;
(ii) get a precise classification in terms of data of traces with similar control
flow (data-based classification). At runtime, the classification of the historical
trace prefixes is used to classify new traces during their execution and predict
how they will behave in the future. In particular, the new trace is matched to
a cluster, and the corresponding classifier is used to estimate the probability for
the trace to achieve a certain outcome. The overall picture of the framework is
illustrated in Fig. 1.



Fig. 2: Logical architecture

The modules of the framework have been implemented by using different
techniques for experimentation purposes. The clustering module has been im-
plemented by using two different types of trace encoding and different types of
clustering algorithms. In particular, a frequency based and a sequence based trace
encoding approaches have been implemented. The former is realized encoding
each execution trace as a vector of event occurrences (on the alphabet of the
events), while, in the latter, the trace is encoded as a sequence of events. These
encodings can then be passed to the clustering techniques. For instance, the fre-
quency based encoding has been used with the Model-based clustering [5] and
the sequence based encoding with the DBSCAN clustering [4]. In addition, for
model-based clustering, we use the Euclidean distance to identify the clusters
while, for DBSCAN, we use the edit distance. Finally, the supervised learning
module has been implemented by using decision tree and random forest learn-
ing. The possible “instances” of our framework can be obtained through different
combinations of these techniques.

The framework has been implemented as an OS provider.4 Fig. 2 shows the
architecture based on the OS. The OS service receives a stream of events (the
current execution trace) from a client and forwards it to the OS provider (Pre-
dictive Monitor) that, based on a repository of historical traces, returns back
predictions. The OS service sends these results back to the client. For the imple-
mentation of the Predictive Monitor, we rely on (i) the Weka implementation of
the clustering methods, and on (ii) the WeKa J48 implementation of the C4.5
algorithm and the Weka implementation of random forest for the supervised
learning.

As an additional utility, we have implemented a client application providing
users with (i) a simple interface for the choice of the (set of) configuration(s), i.e.,
the selection and the combination of the techniques available in the framework
and of the corresponding parameters, to be used for making predictions about
the current trace; (ii) a functionality which allows for an extended and fast
evaluation of different instances (configurations) of the framework, when a set
of testing execution traces (gold standard) is available for evaluation purposes.
The client utility presents, indeed, two execution modalities: prediction, for the
prediction over one or more online execution traces (coming from a workflow
engine), and prediction for evaluation, returning a set of metrics related to the
quality of the results of different configurations (if a testing log is available).

4 A screencast of this demo can be found at https://www.dropbox.com/s/
yrqszjmvv07okj1/PredictiveMonitoringTool.zip?dl=0

https://www.dropbox.com/s/yrqszjmvv07okj1/PredictiveMonitoringTool.zip?dl=0
https://www.dropbox.com/s/yrqszjmvv07okj1/PredictiveMonitoringTool.zip?dl=0


(a) Connection interface (b) Configuration interface

Fig. 3: Predictive process monitoring client

Fig. 3a shows the starting interface of the client application. Through the
GUI the user can select the IP and the port of the OS hosting the Predictive
Monitor. Once connected to the server, the user is asked to choose the (set of)
configuration(s), i.e., the (combination of) framework clustering and classifica-
tion techniques and the corresponding parameters, she wants to use (Fig. 3b).
By clicking on the button run, the configurations are sent to the server.

Fig. 4: Result interface

Fig. 2 shows the logical architecture of the client application and its interac-
tions with the OS Service. As mentioned above, the user can choose whether to
use the client just as a “replayer” of a stream of events coming from a workflow
engine for prediction purposes or as an evaluation utility for different configura-
tions of the predictive monitoring framework. The Unfolding Module combines
all the parameters provided by the user into a set of different configuration runs.
Here on, each configuration run is associated with an ID (Run ID), which will be
used to refer such a configuration. The Configuration Sender sequentially sends
each Run ID to the server that uses it to build the clusters for that specific



configuration. As soon as the server has done with the pre-processing, the Con-
figuration Sender starts sending the traces to the Replayer Scheduler in charge
of optimizing the distribution of the traces among different replayers on different
threads. Each replayer sends the trace (and the reference to the specific config-
uration run id) to the server and waits for the results. As soon as the results are
provided by the OS Service, they are visualized in the result interface (Fig. 4).
Each tab of the result interface refers to a specific configuration run, while the
summary tab reports a summary of all the runs.

3 Maturity and Inherence

Predictive Monitoring [6] is an emerging paradigm based on the continuous gen-
eration of predictions and recommendations on what activities to perform and
what input data values to provide, so that the likelihood to achieve a certain
outcome is maximized. Based on an analysis of execution traces, the idea of
predictive monitoring is to continuously provide the user with estimations of
the likelihood of achieving a certain outcome for a given case. Such predictions
generally depend both on: (i) the sequence of activities executed in a given case;
and (ii) the values of data attributes after each activity execution in a case.

We have conducted a set of experiments by using the BPI challenge 2011 [1]
event log. This log pertains to a healthcare process and, in particular, contains
the executions of a process related to the treatment of patients diagnosed with
cancer in a large Dutch academic hospital. The performed experiments allowed
us to positively answer the following two research questions: (1) “is the frame-
work effective in providing accurate results as early as possible?”, and (2) “is
the framework efficient in providing results?”. In addition, we could conclude
that the solutions provided by the different instances of the framework offer the
possibility to meet different types of needs, by opportunely setting the available
configuration parameters. For more information about our experimentation of
the tool, the reader is referred to [3].

References

1. 3TU Data Center: BPI Challenge 2011 Event Log (2011),
doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

2. van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond process mining: From the past
to present and future. In: Proc. of CAiSE. pp. 38–52 (2010)

3. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-Based
Predictive Process Monitoring. ArXiv e-prints (Jun 2015)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proc. of 2nd International
Conference on Knowledge Discovery and. pp. 226–231 (1996)

5. Fraley, C., Raftery, A.E.: Enhanced model-based clustering, density estimation,
and discriminant analysis software: MCLUST. Journal of Classification 20, 263–286
(September 2003)

6. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitor-
ing of business processes. In: Proceedings of CAiSE 2014 (2014)

7. Westergaard, M., Maggi, F.: Modelling and Verification of a Protocol for Operational
Support using Coloured Petri Nets. In: Proc. of ATPN (2011)


	A ProM Operational Support Provider for Predictive Monitoring of Business Processes

