
The DPIL Framework: Tool Support for Agile
and Resource-Aware Business Processes?

Stefan Schönig and Michael Zeising

University of Bayreuth,
Universitätsstraße 30, 95447 Bayreuth, Germany

{stefan.schoenig,michael.zeising}@uni-bayreuth.de

Abstract. The Declarative Process Intermediate Language (DPIL) is a
declarative process modelling language that allows for specifying multi-
perspective and multi-modal agile, i.e., flexible, processes. The expres-
siveness of DPIL and its suitability for business process modelling have
been evaluated with respect to the well-known Workflow Patterns. The
DPIL Framework provides a tool set for supporting agile and resource-
aware business processes based on the language DPIL. While the DPIL
Modeller component is used to create and verify models, the DPIL Nav-
igator depicts a rule-based execution engine for enacting models. It com-
prises a web-based worklist which allows process participants to choose
and perform tasks. In addition to this, the DPIL Miner component allows
for the discovery of DPIL models from event logs.

1 Background and Significance to BPM

Two different representational paradigms for business processes can be distin-
guished: procedural models describe which activities can be executed next and
declarative, i.e., rule-based models define execution constraints that the pro-
cess has to satisfy [1]. In flexible processes the exact flow of activities cannot
be fully determined at design time. These processes heavily depend on human
participants, their decisions and expert knowledge. These information cannot be
identified and formalized in a whole. As a result, these processes require highly
flexible IT support. Flexible processes are common in healthcare where, e.g.,
patient diagnosis and treatment processes require flexibility to cope with unan-
ticipated circumstances. In brief, a more flexible business process and IT support
means a greater number of alternative paths. Within a rule-based model initially
all paths are considered viable. The more constraints are added to the model
the less paths remain. As result, to make a rule-based model more flexible con-
straints have to be removed or weakened. Moreover, a rule-based model focuses
on crosscutting relations instead of the flow of activities. Hence, a rule-based ap-
proach is well-suited for modelling flexible processes [1, 2]. As mentioned above,
declarative modelling provides means for increasing the number of alternative

? Copyright c©2015 for this paper by its authors. Copying permitted for private and
academic purposes.



use group Student

process BusinessTrip {

task Apply for trip

task Approve Application

task Book flight

ensure sequence(Apply for trip, Approve Application)

advice "Approval before booking recommended":

roleSequence(Approve Application, Book flight, Student)

advice "Flight should be booked by applicant":

binding(Apply for trip, Book flight)

milestone "Done": complete(of ApproveApplication) and

complete(of BookFlight)

}

Fig. 1: Process for trip management modelled with DPIL

paths without explicitly modelling them. Given the vast amount of alternatives,
a differentiation between mandatory and only recommended actions in the form
of modalities is reasonable [3]. Independent from a specific modelling paradigm
different perspectives on a process exist. The organizational perspective, often
also referred to as resource perspective deals with the definition and the alloca-
tion of human and non-human resources to activities. Due to the importance of
human decision-making and expert knowledge, especially flexible processes need
to explicitly integrate the organisational perspective [2]. In many declarative lan-
guages, however, an adequate representation of organisational patterns is often
still not possible. The Declarative Process Intermediate Language (DPIL) [4] is a
declarative process modelling language that supports the requirements described
above. Unlike other declarative languages it is multi-perspective, i.e., it allows
for representing several business process perspectives, namely, control flow, data
and especially resources. In order to express complex organisational relations,
DPIL builds upon a generic organisational meta model. The expressiveness of
DPIL and its suitability for business process modelling have been evaluated [4]
with respect to the well-known Workflow Patterns. DPIL supports 52% of the
behavioral, 62% of the organizational and 75% of the informational patterns.
Like this, DPIL meets around 50% more of the requirements than BPMN does.
Moreover, it is multi-modal, meaning that it allows defining two different types
of rules: rules representing mandatory relations (called ensure in DPIL) and
rules representing recommended relations (called advice in DPIL). The latter
are useful, e.g., to reflect good practices. Here, the modeller can give further
explanations that are offered to the user during execution.

DPIL provides a textual notation based on the use of macros to define
reusable rules. For instance, the sequence macro (sequence(a, b)) states that
the existence of a start event of task b implies the previous occurrence of a



Fig. 2: Principle of rule-based process execution of the DPIL Navigator

complete event of task a; and the binding macro (binding(a, b)) states that an
activity b is assigned to the same actor that already performed activity a. The
roleSequence (roleSequence(a, b, r)) finally depicts that the start of task b by
an actor in role r requires the completion of task a before. Fig. 1 shows a model
of a simple process for trip management in DPIL. It states that it is manda-
tory for all applicants to apply for a business trip before it can be approved.
Moreover, it is recommended for students that the approval is carried out before
a flight is booked. Since the applicant usually knows appointments best it is
recommended that she books the flight herself. The DPIL Framework provides
a tool set for modelling, executing and analysing flexible and resource-aware
business processes based on the language DPIL as described above.

2 DPIL Framework: Overview and Demo Guidelines

By means of the example process above, the demo will show the functionality
of the three modules the framework consists of: the DPIL Modeller, the DPIL
Navigator and the DPIL Miner. The framework supports defining models using
a textual editor based on the Eclipse IDE, the DPIL Modeller. The modeling
tool support users through syntactic, semantic and qualitative model analysis
based on the Xtext framework1. After specifying DPIL models like in Fig. 1
the model is compiled to an executable file that can be enacted by a rule-based
execution engine, the DPIL Navigator.

The DPIL Navigator is based on the execution principle as visualized in Fig.
2. Tasks of a DPIL process model undergo a life cycle composed of events that is
managed by the engine. A task, e.g., can be started and completed. The current
state of a process is then the series of past events (1). Besides the static elements
like human tasks, e.g., Apply for trip and Approve application, a process model
may specify rules constraining that series of events, e.g., sequence(Apply for
trip, Approve application). When the model is executed, the engine simulates
one event ahead for every model element (2) and evaluates the resulting series of

1 http://www.eclipse.org/Xtext/



(a) Sequence rule (b) RoleSequence rule (c) Binding rule

Fig. 3: Worklist of the DPIL Navigator in different situations

events on the basis of the rules (3). Each simulated event that does not violate
any ensure rule is related to an action that the engine interprets immediately
(4). A simulated start of a task by a certain participant, e.g., is interpreted as the
assignment of this task to the participant. If the start event violates an advice
rule, the action is marked as not recommended. The principle is demonstrated
w.r.t. two different instances “Business trip to Innsbruck” of the example process.
Fig. 3a shows the web-based worklist for a non-student, e.g., a professor. The
task Approve Application is not visible since its execution violates the mandatory
(ensure) sequence rule. The execution of the other tasks, however, is possible.
Fig. 3b depicts the worklist for a student. In case of a user in role Student, the
execution of the task Book flight violates the recommended (advice) roleSequence
rule. Note, that the execution of the task is still possible, however, the violation
of the rule is highlighted through orange colour and the indication text from the
model. Fig. 3c shows the task worklist for a third person in the situation where
the trip application has already been started by the professor. In this case the
execution of Book flight violates the recommended binding rule, i.e., the flight
should be booked by the applicant herself.

As well as manually creating a DPIL model using the DPIL modeler, users
can also discover models from event logs using the DPIL Miner [5]. Here, the
analyst selects the DPIL macros that should be discovered w.r.t. the provided
event log. Fig. 4 shows the user-interface of the DPIL Miner with some discov-
ered organizational patterns. Both the execution engine and the mining module
are based on the JBoss Drools platform [6] that provides a current implementa-
tion of the rete rules solver [7]. Therefore, in both components DPIL rules are
transformed to the Drools Rule Language (DRL).

3 Maturity and Future Work

The DPIL Framework is a well-evaluated prototype that is already used for
demonstration purposes in academia as well as in industry. It has been developed
and used in the KpPQ project. In [5] we show how it is possible to discover DPIL
models from real-life event logs. The DPIL Navigator with the example process



Fig. 4: User-interface of the DPIL Miner during the analysis of an event log

deployed is accessible at http://dpilnavigator.kppq.de. Furthermore, differ-
ent screencasts illustrating the different features of the DPIL Framework are
accessible online: the Modeller at http://modeller.kppq.de, the navigator at
http://navigator.kppq.de and the miner at http://miner.kppq.de. Future
work will focus on the implementation of DPIL model verification techniques
and model simulation features that should support users when choosing from a
diversity of possible action through look ahead strategies and recommendations.

References

1. D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and S. Zu-
gal, “Declarative versus imperative process modeling languages: The issue of under-
standability,” in Enterprise, Business-Process and Information Systems Modeling,
pp. 353–366, 2009.

2. R. Vacuĺın, R. Hull, T. Heath, C. Cochran, A. Nigam, and P. Sukaviriya, “Declar-
ative business artifact centric modeling of decision and knowledge intensive busi-
ness processes,” in Enterprise Distributed Object Computing Conference (EDOC),
no. Edoc, pp. 151–160, 2011.

3. G. Regev and A. Wegmann, “A regulation-based view on business process and
supporting system flexibility,” in Advanced Information Systems Engineering, vol. 5,
pp. 91–98, 2005.

4. M. Zeising, S. Schönig, and S. Jablonski, “Towards a Common Platform for the
Support of Routine and Agile Business Processes,” in Collaborative Computing:
Networking, Applications and Worksharing, 2014.

5. S. Schönig, C. Cabanillas, S. Jablonski, and J. Mendling, “Mining the Organisa-
tional Perspective in Agile Business Processes,” in Enterprise, Business-Process and
Information Systems Modeling, Springer, 2015.

6. T. JBoss Drools, “JBoss Drools Documentation - Chapter 7: Rule Language Refer-
ence,” 2013.

7. C. Forgy, “Rete: A fast algorithm for the many pattern/many object pattern match
problem,” Artificial intelligence, vol. 19, no. 1, pp. 17–37, 1982.


