
On Mental Imagery in Lexical Processing:
Computational Modeling of the Visual Load Associated to Concepts

Daniele P. Radicioniχ, Francesca Garbariniψ, Fabrizio Calzavariniφ

Monica Biggioψ, Antonio Lietoχ, Katiuscia Saccoψ, Diego Marconiφ

(FirstName.Surname@unito.it)

χDepartment of Computer Science, Turin University – Turin, Italy
φDepartment of Philosophy, Turin University – Turin, Italy
ψDepartment of Psychology, Turin University – Turin, Italy

Abstract

This paper investigates the notion of visual load, an es-
timate for a lexical item’s efficacy in activating mental
images associated with the concept it refers to. We elab-
orate on the centrality of this notion which is deeply
and variously connected to lexical processing. A com-
putational model of the visual load is introduced that
builds on few low level features and on the dependency
structure of sentences. The system implementing the
proposed model has been experimentally assessed and
shown to reasonably approximate human response.

Keywords: Visual imagery; Computational modeling;
Natural Language Processing.

Introduction
Ordinary experience suggests that lexical competence,
i.e. the ability to use words, includes both the abil-
ity to relate words to the external world as accessed
through perception (referential tasks) and the ability to
relate words to other words in inferential tasks of sev-
eral kinds (Marconi, 1997). There is evidence from both
traditional neuropsychology and more recent neuroimag-
ing research that the two aspects of lexical competence
may be implemented by partly different brain processes.
However, some very recent experiments appear to show
that typically visual areas are also engaged by purely
inferential tasks, not involving visual perception of ob-
jects or pictures (Marconi et al., 2013). The present work
can be considered as a preliminary investigation aimed
at verifying this main hypothesis, by investigating the
following issues: i) to what extent the visual load asso-
ciated with concepts can be assessed, and which sort of
agreement exists among humans about the visual load
associated to concepts; ii) which features underlie the
visual load associated to concepts; and iii) whether the
notion of visual load can be grasped and encapsulated
into a computational model.

As it is widely acknowledged, one main visual cor-
relate of language is imageability, that is the property
of a particular word or sentence to produce an experi-
ence of imagery: in the following, we focus on visual im-
agery (thus disregarding acoustic, olfactory and tactile
imagery), which we denote as visual load. The visual
load is related to the easiness of producing visual im-
agery when an external linguistic stimulus is processed.

Intuitively, words like ‘dog’ or ‘apple’ refer to concrete
entities and are associated with a high visual load, im-
plying that these terms immediately generate a mental
image. Conversely, words like ‘algebra’ or ‘idempotence’
are hardly accompanied by the production of vivid im-
ages. Although the construct of visual load is closely
related to that of concreteness, concreteness and visual
load can clearly dissociate, in that i) some words have
been rated high in visual load but low in concreteness,
such as some concrete nouns that have been rated low
in visual load (Paivio, Yuille, & Madigan, 1968); and,
conversely, ii) abstract words such as ‘bisection’ are as-
sociated with a high visual load.

The notion of visual load is relevant to many disci-
plines, in that it contributes to shed light on a wide vari-
ety of cognitive and linguistic tasks and helps explaining
a plethora of phenomena observed in both impaired and
normal subjects. In the next Section we survey a mul-
tidisciplinary literature showing how mental imagery af-
fects memory, learning and comprehension; we consider
how imagery is characterized at the neural level; and we
show how visual information is exploited in state-of-the-
art Natural Language Processing research. In the subse-
quent Section we illustrate the proposed computational
model for providing concepts with their visual load char-
acterization. We then describe the experiments designed
to assess the model through an implemented system, re-
port and discuss the obtained results. Conclusion will
summarize the work done and provide an outlook on fu-
ture work.

Related Work

As regards linguistic competence, it is generally ac-
cepted that visual load facilitates cognitive perfor-
mance (Bergen, Lindsay, Matlock, & Narayanan, 2007),
leading to faster lexical decisions than not-visually
loaded concepts (Cortese & Khanna, 2007). For ex-
ample, nouns with high visual load ratings are remem-
bered better than those with low visual load ratings in
long-term memory tests (Paivio et al., 1968). More-
over, visually loaded terms are easier to recognize for
subjects with deep dyslexia, and individuals respond
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bered better than those with low visual load ratings in
long-term memory tests (Paivio, 1986, 1991). Yet, vi-
sually loaded terms are easier to recognize for subjects
with deep dyslexia, and individuals respond more quickly
and accurately when making judgments about visually
loaded sentences (Kiran & Tuchtenhagen, 2005). Neu-
ropsychological researches have shown that many apha-
sic patients perform better with linguistic items that
are easier to elicit visual imagery (Goodglass, Hyde, &
Blumstein, 1969; Coltheart, 1980), although the oppo-
site pattern has also been documented (Breedin, Sa↵ran,
& Coslett, 1994; Cipolotti & Warrington, 1995; Warring-
ton, 1975).

Visual imageability of concepts evoked by words and
sentences is commonly known to a↵ect brain activity.
While visuosemantic processing regions, such as left in-
ferior temporal gyrus and fusiform gyrus revealed greater
involvement during the comprehension of highly image-
able words and sentences (Bookheimer et al., 1998; Mel-
let, Tzourio, Denis, & Mazoyer, 1998), other seman-
tic brain regions (i.e., superior and middle temporal
cortex) are selectively activated by low-imageable sen-
tences (Mellet et al., 1998; Just, Newman, Keller, McE-
leney, & Carpenter, 2004). Furthermore, a mounting
number of studies suggests that words encoding di↵er-
ent visual properties (such as color, shape, motion, etc.)
are processed in cortical areas that overlap with some of
the same areas that are activated during visual percep-
tion of those properties (Kemmerer, 2010).

Investigating the visual features associated to linguis-
tic input can be useful to many Natural Language Pro-
cessing tasks, such as individuating verbs subcategoriza-
tion frames (Bergsma & Goebel, 2011), enriching the tra-
ditional extraction of distributional semantics from text
with a multimodal approach, integrating textual features
with visual ones (Bruni, Tran, & Baroni, 2011, 2014). Fi-
nally, visual attributes are at the base of the development
of annotated corpora and resources that can be used to
extend text-based distributional semantics by grounding
word meanings on visual features, as well (Silberer, Fer-
rari, & Lapata, 2013).

The computational model for mental imagery de-
scribed by Glasgow and Papadias (1992) aims at recon-
structing image representations for retrieving visual and
spatial information: the first mode is concerned with
how objects look like, and the second one regards their
placement within a visual scene. This bipartite scheme
is justified based on neural accounts. In fact, visual and
spatial correlates of imagery seem to have a direct coun-
terpart in the cortical pathways involved in vision: while
the temporal cortex is involved in recognizing objects
themselves, on the other side the parietal cortex is acti-
vated for accessing spatial information (Mishkin, Unger-
leider, & Macko, 1983). The model proposes three stages
of image representation —each featured by its own kind

L’ animale che mangia banane su un albero è la scimmia
The animal that eats bananas on a tree is the monkey

Figure 1: The dependency tree corresponding to a stim-
ulus.

of information processing—, including a deep represen-
tation, which is a semantic network stored in long-term
memory that contains a hierarchical representation of
image descriptions; the spatial representation intended
for collecting image components along with their spatial
features; the visual representation that builds on an oc-
cupancy array, storing information such as shape, size,
etc..

Model
The modeling phase has been characterized by the need
of defining the notion of visual load in a uniform and
computationally tractable manner. Such concept, in
fact, is used by and large in literature with di↵erent
meanings, thus giving raise to di↵erent levels of ambi-
guity. We define visual load as the concept representing
a direct indicator (a numeric value) of the e�cacy for a
lexical item to activate mental images associated to the
concept referred to by the lexical item. Consequently,
we expect that visual load also represents an indirect
measure of the probability of activation of a brain area
deputed to the visual processing.

We conjecture that visual load is situated at the inter-
section of lexical and semantic spaces, mostly associated
to the semantic level. That is, the visual load is primar-
ily associated to a concept, although lexical phenomena
like terms availability (implying that the most frequently
used terms are easier to recognize than those seen less
often (Tversky & Kahneman, 1973)) can also a↵ect it.

Based on the work by Kemmerer (2010) we explore the
hypothesis that a limited number of primitive elements
can be used to characterize and evaluate the visual load
associated to concepts. Namely, Kemmerer’s Simulation
Framework allows to grasp information about a wide va-
riety of concepts and properties used to denote objects,
events and spatial relations. Three main visual semantic
components have been individuated that, in our opin-
ion, are also suitable to be used as di↵erent dimensions
along which to characterize the concept of visual load.
They are: color properties, shape properties, and mo-
tion properties. The perception of these properties is
expected to occur in a immediate way, such that “dur-
ing our ordinary observation of the world, these three
attributes of objects are tightly bound together in uni-

Figure 1: The (simplified) dependency tree correspond-
ing to the sentence ‘The animal that eats bananas on a
tree is the Monkey’.

more quickly and accurately when making judgments
about visually loaded sentences (Kiran & Tuchtenhagen,
2005). Neuropsychological research has shown that
many aphasic patients perform better with linguistic
items that more easily elicit visual imagery (Coltheart,
1980), although the opposite pattern has also been doc-
umented (Cipolotti & Warrington, 1995).

Visual imageability of concepts evoked by words and
sentences is commonly known to affect brain activity.
While visuosemantic processing regions, such as left in-
ferior temporal gyrus and fusiform gyrus revealed greater
involvement during the comprehension of highly image-
able words and sentences (Bookheimer et al., 1998; Mel-
let, Tzourio, Denis, & Mazoyer, 1998), other seman-
tic brain regions (i.e., superior and middle temporal
cortex) are selectively activated by low-imageable sen-
tences (Mellet et al., 1998; Just, Newman, Keller, McE-
leney, & Carpenter, 2004). Furthermore, a growing num-
ber of studies suggests that words encoding different vi-
sual properties (such as color, shape, motion, etc.) are
processed in cortical areas that overlap with some of the
areas that are activated during visual perception of those
properties (Kemmerer, 2010).

Investigating the visual features associated to linguis-
tic input can be useful to build semantic resources de-
signed to deal with Natural Language Processing (NLP)
problems, such as individuating verbs subcategorization
frames (Bergsma & Goebel, 2011), enriching the tradi-
tional extraction of distributional semantics from text
with a multimodal approach, integrating textual features
with visual ones (Bruni, Tran, & Baroni, 2014). Finally,
visual attributes are at the base of the development of
annotated corpora and resources that can be used to ex-
tend text-based distributional semantics by grounding
word meanings on visual features, as well (Silberer, Fer-
rari, & Lapata, 2013).

Model
Although much work has been invested in different ar-
eas for investigating imageability in general and visual
imagery in particular, at the best of our knowledge no
attempt has been carried out to formally characterize
visual load, and no computational model has been de-
vised to compute how visually loaded are sentences and

lexicalized concepts therein. We propose a model that
relies on a simple hypothesis additively combining few
low-level features, refined by exploiting syntactic infor-
mation.

The notion of visual load, in fact, is used by and large
in literature with different meanings, thus giving rise to
different levels of ambiguity. We define visual load as the
concept representing a direct indicator (a numeric value)
of the efficacy for a lexical item to activate mental images
associated to the concept referred to by the lexical item.
We expect that visual load also represents an indirect
measure of the probability of activation of brain areas
deputed to the visual processing.

We conjecture that the visual load is primarily as-
sociated to concepts, although lexical phenomena like
terms availability (implying that the most frequently
used terms are easier to recognize than those seen less
often (Tversky & Kahneman, 1973)) can also affect it.

Based on the work by Kemmerer (2010) we explore the
hypothesis that a limited number of primitive elements
can be used to characterize and evaluate the visual load
associated to concepts. Namely, Kemmerer’s Simulation
Framework allows to grasp information about a wide va-
riety of concepts and properties used to denote objects,
events and spatial relations. Three main visual semantic
components have been individuated that, in our opin-
ion, are also suitable to be used as different dimensions
along which to characterize the concept of visual load.
They are: color properties, shape properties, and mo-
tion properties. The perception of these properties is
expected to occur in a immediate way, such that “dur-
ing our ordinary observation of the world, these three
attributes of objects are tightly bound together in uni-
fied conscious images” (Kemmerer, 2010). We added a
further perceptual component related to size. More pre-
cisely, our assumption is that information about the size
of a given concept can also contribute, as an adjoint fac-
tor and not as a primitive one, to the computation of a
visual load value for the considered concept.

In this setting, we represent each concept/property as
a boolean-valued vector of four elements, each encoding
the following information: lemma, morphological infor-
mation on POS (part of speech), and then whether the
considered concept/property conveys information about
color, shape, motion and size.1 For example, this piece
of information

table,Noun,1,1,0,1 (1)

can be used to indicate that the concept table (associated
with a Noun, and differing, e.g., from that associated
with a Verb) conveys information about color, shape and
size, but not about motion. In the following, these are

1We adopt here a simplification, since we are assuming
that the pair 〈lemma,POS〉 is sufficient to identify a con-
cept/property, and that in general we can access items by
disregarding the word sense disambiguation problem, which
is known as an open problem in the field of NLP.
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TUP parser

definition dz }| {
The big carnivore with yellow and black stripes is the

target Tz }| {
. . . tiger| {z }

stimulus st

Dictionary annotated
with features

lemma,POS,�col,�sha,�mot,�siz

lemma,POS,�col,�sha,�mot,�siz

lemma,POS,�col,�sha,�mot,�siz.....

Dependency structure

L’ animale che mangia banane su un albero è la scimmia
The animal that eats bananas on a tree is the monkey

Figure 1: The dependency tree corresponding to a stimulus.

the following information: lemma, morphological infor-
mation on POS (part of speech), and then whether the
considered concept/property conveys information about
color, shape, motion and size.1 For example, this piece
of information

finger,Noun,1,1,0,1 (1)

can be used to indicate that the concept finger (associ-
ated to a Noun, and di↵ering, e.g., from that associated
to a Verb) conveys information about color, shape and
size, but not about motion. In the following these are re-
ferred to as the visual features �· associated to the given
concept.

We have then built a dictionary by extracting it from a
set of stimuli (illustrated hereafter) composed by simple
sentences describing a concept; and manually annotated
the visual features associated to each concept. The as-
signment of features scores has been conducted by the
authors on a purely introspective basis.

Di↵erent weighting schemes ~w = {↵,�, �} have been
tested in order to set features contribution to the visual
load associated to a concept c, that results from com-
puting

VL(c, ~w) =
X

i

�i = ↵(�col+�sha)+� �mot+� �siz. (2)

For the experimentation we set ↵ to 1.35, � to 1.1 and
� to .9.

To the ends of combining the contribution of concepts
in a sentence s to the overall VL score for s, we adapt
the principle of compositionality2 to the visual load do-
main. In other words, we assume that the visual load of
a sentence can be computed by starting from the visual

1We adopt here a simplification, since we are assuming
that the pair hlemma, POSi is su�cient to identify a con-
cept/property, and that in general we can access items by
disregarding the word sense disambiguation problem, which
is actually an open problem in the field of Natural Language
Processing (Vidhu Bhala & Abirami, 2014).

2This principle states that the meaning of an expression
is a function of the meanings of its parts and of the way they
are syntactically combined: to get the meaning of a sentence
we combine words to form phrases, then we combine phrases
to form clauses, and so on (Partee, 1995).

load of the concepts denoted by the lexical items in the
sentence, that is VL(s) =

P
c2s VL(c).

The calculation of the VL score also accounts for the
dependency structure of the input sentences. The syn-
tactic structure of sentences is computed through the
Turin University Parser (TUP) in the dependency for-
mat (Lesmo, 2007). Dependency formalisms represent
syntactic relations by connecting a dominant word, the
head (e.g., the verb ‘fly’ in the sentence The eagle flies)
and a dominated word, the dependent (e.g., the noun
‘eagle’ in the same sentence). The connection between
these two words is usually represented by using labeled
directed edges (e.g., subject): the collection of all depen-
dency relations of a sentence forms a tree, rooted in the
main verb (see the parse tree illustrated in Figure 1).
The dependency structure is relevant in our approach,
because we assume that some sort of reinforcement ef-
fect may apply in cases where both a word and its de-
pendent(s) (or governor(s)) are associated to some visual
feature. For example, a phrase like ‘with black stripes’
is expected to evoke mental images in a more vivid way
than its elements taken in isolation (that is, ‘black’ and
‘stripes’), and its visual load is expected to still grow
if we add a coordinated term, like in ‘with yellow and
black stripes’. Yet, the VL would –recursively– grow if
we added a governor term (like ‘fur with yellow and black
stripes’). We then introduced a parameter ⇠ to control
the contribution of the aforementioned features in case
the corresponding terms are linked in the parse tree by
a modifier/argument relation (denoted as mod and arg
in Equation 3).

V L(ci) =

(
⇠ V L(ci) if 9 cj s.t. mod(ci, cj) _ arg(ci, cj)

V L(ci) otherwise.

(3)
In the experimentation ⇠ was set to 1.2.

The stimuli in the dataset are pairs consisting of
a definition d and a target T (st = hd, T i), such as

definition dz }| {
The big carnivore with yellow and black stripes is the

target Tz }| {
. . . tiger| {z }

stimulus st

.

The visual load associated to st components, given the

L’ animale che mangia banane su un albero è la scimmia
The animal that eats bananas on a tree is the monkey

Figure 1: The dependency tree corresponding to a stimulus.

the following information: lemma, morphological infor-
mation on POS (part of speech), and then whether the
considered concept/property conveys information about
color, shape, motion and size.1 For example, this piece
of information

finger,Noun,1,1,0,1 (1)

can be used to indicate that the concept finger (associ-
ated to a Noun, and di↵ering, e.g., from that associated
to a Verb) conveys information about color, shape and
size, but not about motion. In the following these are re-
ferred to as the visual features �· associated to the given
concept.

We have then built a dictionary by extracting it from a
set of stimuli (illustrated hereafter) composed by simple
sentences describing a concept; and manually annotated
the visual features associated to each concept. The as-
signment of features scores has been conducted by the
authors on a purely introspective basis.

Di↵erent weighting schemes ~w = {↵,�, �} have been
tested in order to set features contribution to the visual
load associated to a concept c, that results from com-
puting

VL(c, ~w) =
X

i

�i = ↵(�col+�sha)+� �mot+� �siz. (2)

For the experimentation we set ↵ to 1.35, � to 1.1 and
� to .9.

To the ends of combining the contribution of concepts
in a sentence s to the overall VL score for s, we adapt
the principle of compositionality2 to the visual load do-
main. In other words, we assume that the visual load of
a sentence can be computed by starting from the visual

1We adopt here a simplification, since we are assuming
that the pair hlemma, POSi is su�cient to identify a con-
cept/property, and that in general we can access items by
disregarding the word sense disambiguation problem, which
is actually an open problem in the field of Natural Language
Processing (Vidhu Bhala & Abirami, 2014).

2This principle states that the meaning of an expression
is a function of the meanings of its parts and of the way they
are syntactically combined: to get the meaning of a sentence
we combine words to form phrases, then we combine phrases
to form clauses, and so on (Partee, 1995).

load of the concepts denoted by the lexical items in the
sentence, that is VL(s) =

P
c2s VL(c).

The calculation of the VL score also accounts for the
dependency structure of the input sentences. The syn-
tactic structure of sentences is computed through the
Turin University Parser (TUP) in the dependency for-
mat (Lesmo, 2007). Dependency formalisms represent
syntactic relations by connecting a dominant word, the
head (e.g., the verb ‘fly’ in the sentence The eagle flies)
and a dominated word, the dependent (e.g., the noun
‘eagle’ in the same sentence). The connection between
these two words is usually represented by using labeled
directed edges (e.g., subject): the collection of all depen-
dency relations of a sentence forms a tree, rooted in the
main verb (see the parse tree illustrated in Figure 1).
The dependency structure is relevant in our approach,
because we assume that some sort of reinforcement ef-
fect may apply in cases where both a word and its de-
pendent(s) (or governor(s)) are associated to some visual
feature. For example, a phrase like ‘with black stripes’
is expected to evoke mental images in a more vivid way
than its elements taken in isolation (that is, ‘black’ and
‘stripes’), and its visual load is expected to still grow
if we add a coordinated term, like in ‘with yellow and
black stripes’. Yet, the VL would –recursively– grow if
we added a governor term (like ‘fur with yellow and black
stripes’). We then introduced a parameter ⇠ to control
the contribution of the aforementioned features in case
the corresponding terms are linked in the parse tree by
a modifier/argument relation (denoted as mod and arg
in Equation 3).

VL(ci) =

(
⇠ VL(ci) if 9 cj s.t. mod(ci, cj) _ arg(ci, cj)

VL(ci) otherwise.

(3)
In the experimentation ⇠ was set to 1.2.

The stimuli in the dataset are pairs consisting of
a definition d and a target T (st = hd, T i), such as

definition dz }| {
The big carnivore with yellow and black stripes is the

target Tz }| {
. . . tiger| {z }

stimulus st

.

The visual load associated to st components, given the

weighting scheme ~w, is then computed as follows:

VL(d, ~w) =
P

c2d VL(c) (4)

VL(T, ~w) = VL(T ). (5)

Aggiungere figura e descrizione di alto livello della
pipeline.

Experimentation

Materials and Methods

Forty-five healthy volunteers (23 females and 22 males),
19 � 52 years of age (mean ±sd = 25.7 ± 5.1) , were
recruited for the experiment. One of them was excluded
because she was outlier with respect to the group. None
of the subjects had a history of psychiatric or neuro-
logical disorders. All participants gave their written in-
formed consent before taking part to the experimental
procedure, which was approved by the ethical commit-
tee of the University of Turin, in accordance with the
Declaration of Helsinki ( BMJ 1991; 302: 1194 ). Par-
ticipants were all näıve to the experimental procedure
and to the aims of the study.

The set of stimuli was devised by the multidisciplinary
team of philosophers, neuropsychologists and computer
scientists in the frame of a broader project aimed at in-
vestigating both the role of visual load in concepts in-
volved in inferential and referential tasks.

Experimental design and procedure Participants
were asked to perform an inferential task “Naming by
definition”. During the task a sentence was pronounced
and the subjects were instructed to listen to the stim-
ulus given in the headphones and to overtly name, as
accurately and as fast as possible, the target word cor-
responding to the definition, using a microphone con-
nected to a response box. Auditory stimuli were pre-
sented through the E-Prime software, which was also
used to record data on accuracy and reaction times.

Furthermore, at the end of the experimental session,
the subjects were administered a questionnaire: they had
to rate on a 1� 7 Likert scale the intensity of the visual
load they perceived as related to each target and to each
definition.

The factorial design of the study included two within-
subjects factors, in which the visual load of both target
and definition was manipulated. The resulting four ex-
perimental conditions were as follows:

VV Visual Target—Visual Definition (e.g., ‘The bird of
prey with great wings flying over the mountains is the
. . . eagle’);

VNV Visual Target—Non-Visual Definition (e.g., The
hottest of the four elements of the ancients is . . . fire);

NVV Non-Visual Target—Visual Definition (e.g., The
nose of Pinocchio stretched when he said a . . . lie);

NVNV Non-Visual Target—Non-Visual Definition
(e.g., The quality of people that easily solve di�cult
problems is said . . . intelligence).

For each condition, there were 48 sentences, for overall
192 sentences. Each trial lasted about 30 minutes. The
number of words (nouns and adjectives) and the (syn-
tactic dependency) structure of the considered sentences
were homogeneous within conditions.

The same set of stimuli used for the human experi-
ment was given in input to the system implementing the
proposed computational model. The system was used to
compute the visual load score associated to (lexicalized)
concepts according to Eq. 4 and 5, implementing the vi-
sual load model in Eq. 2, with the system’s parameters
set to the aforementioned values.

Data analysis

The participants’ performance in the “naming by def-
inition” task was evaluated by recording, for each re-
sponse, the reaction time RT, in milliseconds, and the
accuracy AC, as the percentage of the correct answers.
Then, for each subject, both RT and AC were com-
bined in the Inverse E�ciency Score (IES), by using
the formula IES = (RT ·AC)/100. IES is a metrics com-
monly used to aggregate reaction time and accuracy and
to summarize them. The mean IES value was used as
dependent variable and entered in a 2⇥ 2 repeated mea-
sures ANOVA with ‘target’ (two levels: ‘visual’ and ‘not-
visual’) and ‘definition’ (two levels: ‘visual’ and ‘not-
visual’) as within-subjects factors. Post hoc comparisons
were performed by using the Duncan test.

The scores obtained by the participants in the vi-
sual load questionnaire were analyzed by using paired
T-tests, two tailed. Two comparisons were performed
for visual and not-visual targets, and for visual and not-
visual definitions.

The computational model results were analyzed by us-
ing paired T-tests, two tailed. Two comparisons were
performed for visual and not-visual targets and for vi-
sual and not-visual definitions.

Correlations between IES, computational model
and visual load questionnaire. We also explored the
existence of correlations between IES, the visual load
questionnaire and the computational model output by
using linear regressions. For both the IES values and
the questionnaire scores, we calculated for each item the
mean of the 30 subjects’ responses. In a first model, we
used the visual-load questionnaire scores as independent
variable to predict the participants’ performance (with
the IESas dependent variable); in a second model, we
used the computational data as independent variable to
predict the participants’ visual load evaluation (with the
questionnaire scores as independent variable).

System implementing the
computational model of VL

hlemma, POSi{hlemma, POSi
hlemma, POSi
hlemma, POSi
.....

Morphological information

Figure 2: The pipeline to compute the VL score according to the proposed computational model.

referred to as the visual features φ· associated with the
given concept.

We have then built a dictionary by extracting it from
a set of stimuli (illustrated hereafter) composed of sim-
ple sentences describing a concept; next, we have man-
ually annotated the visual features associated with each
concept. The automatic annotation of visual properties
associated with concepts is deferred to future work: it
can be addressed either through a classical Information
Extraction approach building on statistics, or in a more
semantically-principled way.

Different weighting schemes ~w = {α, β, γ} have been
tested in order to determine the features’ contribution to
the visual load associated with a concept c, that results
from computing

VL(c, ~w) =
∑

i

φi = α(φcol+φsha)+β φmot+γ φsiz. (2)

For the experimentation we set α to 1.35, β to 1.1 and
γ to .9: these assignments reflect the fact that color and
shape information is considered more important, in the
computation of VL.

To the ends of combining the contribution of concepts
in a sentence s to the overall VL score for s, we adopted
the following additive schema: VL(s) =

∑
c∈s VL(c).

The computation of the VL score also accounts for
the dependency structure of the input sentences. The
syntactic structure of sentences is computed by the
Turin University Parser (TUP) in the dependency for-
mat (Lesmo, 2007). Dependency formalisms represent
syntactic relations by connecting a dominant word, the
head (e.g., the verb ‘fly’ in the sentence The eagle flies)
and a dominated word, the dependent (e.g., the noun

‘eagle’ in the same sentence). The connection between
these two words is usually represented by using labeled
directed edges (e.g., subject): the collection of all depen-
dency relations of a sentence forms a tree, rooted in the
main verb (see the parse tree illustrated in Figure 1).
The dependency structure is relevant in our approach,
because we assume that a reinforcement effect may ap-
ply in cases where both a word and its dependent(s) (or
governor(s)) are associated with visual features. For ex-
ample, a phrase such as ‘with black stripes’ is expected
to evoke mental images in a more vivid way than its el-
ements taken in isolation (that is, ‘black’ and ‘stripes’),
moreover its visual load is expected to further grow if
we add a coordinated term, as in ‘with yellow and black
stripes’. Moreover, the VL would –recursively– grow if
we added a governor term (like ‘fur with yellow and black
stripes’). We then introduced a parameter ξ to control
the contribution of the aforementioned features in case
the corresponding terms are linked in the parse tree by
a modifier/argument relation (denoted as mod and arg
in Equation 3).

VL(ci) =

{
ξ VL(ci) if ∃ cj s.t. mod(ci, cj) ∨ arg(ci, cj)

VL(ci) otherwise.

(3)
In the experimentation ξ was set to 1.2.

The stimuli in the dataset are pairs consisting of
a definition d and a target T (st = 〈d, T 〉), such as

definition d︷ ︸︸ ︷
The big carnivore with yellow and black stripes is the

target T︷ ︸︸ ︷
. . . tiger︸ ︷︷ ︸

stimulus st

.

The visual load associated to st components, given the
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weighting scheme ~w, is then computed as follows:

VL(d, ~w) =
∑
c∈d VL(c) (4)

VL(T, ~w) = VL(T ). (5)

The whole pipeline from the input parsing to compu-
tation of the VL for the considered stimulus has been
implemented as a computer program; its main steps in-
clude the parsing of the stimulus, the extraction of the
(lexicalized) concepts by exploiting the output of the
morphological analysis, and the tree traversal of the de-
pendency structure resulting from the parsing step. The
morphological analyzer has been preliminarily fed with
the whole set of stimuli, and its output has been anno-
tated with the visual features and stored into a dictio-
nary. At run time, the dictionary is accessed based on
morphological information, then used to retrieve the val-
ues of the features associated with the concepts in the
stimulus. The output obtained by the proposed model
has been compared with the results obtained in a behav-
ioral experimentation as described below.

Experimentation

Materials and Methods
Thirty healthy volunteers, native Italian speakers, (16
females and 14 males), 19 − 52 years of age (mean
±sd = 25.7 ± 5.1), were recruited for the experiment.
None of the subjects had a history of psychiatric or neu-
rological disorders. All participants gave their written
informed consent before participating in the experimen-
tal procedure, which was approved by the ethical com-
mittee of the University of Turin, in accordance with
the Declaration of Helsinki (World Medical Association,
1991). Participants were all näıve to the experimental
procedure and to the aims of the study.

Experimental design and procedure Participants
were asked to perform an inferential task “Naming from
definition”. During the task a sentence was pronounced
and the subjects were instructed to listen to the stim-
ulus given in the headphones and to overtly name, as
accurately and as fast as possible, the target word cor-
responding to the definition, using a microphone con-
nected to a response box. Auditory stimuli were pre-
sented through the E-Prime software, which was also
used to record data on accuracy and reaction times. Fur-
thermore, at the end of the experimental session, the
subjects were administered a questionnaire: they had to
rate on a 1 − 7 Likert scale the intensity of the visual
load they perceived as related to each target and to each
definition.

The factorial design of the study included two within-
subjects factors, in which the visual load of both target
and definition was manipulated. The resulting four ex-
perimental conditions were as follows:

VV Visual Target—Visual Definition (e.g., ‘The bird of

prey with great wings flying over the mountains is the
. . . eagle’);

VNV Visual Target—Non-Visual Definition (e.g., The
hottest of the four elements of the ancients is . . . fire);

NVV Non-Visual Target—Visual Definition (e.g., The
nose of Pinocchio stretched when he told a . . . lie);

NVNV Non-Visual Target—Non-Visual Definition
(e.g., The quality of people that easily solve difficult
problems is said . . . intelligence).

For each condition, there were 48 sentences, 192 sen-
tences overall. Each trial lasted about 30 minutes. The
number of words (nouns and adjectives), their balancing
across stimuli, and the (syntactic dependency) structure
of the considered sentences were uniform within condi-
tions, so that the most relevant variables were controlled.
The same set of stimuli used for the human experiment
was given in input to the system implementing the com-
putational model.

Data analysis
The participants’ performance in the “Naming from def-
inition” task was evaluated by recording, for each re-
sponse, the reaction time RT, in milliseconds, and the
accuracy AC, computed as the percentage of correct an-
swers. The answers were considered correct if the target
word was plausibly matched with the definition. Then,
for each subject, both RT and AC were combined in
the Inverse Efficiency Score (IES), by using the formula
IES = (RT/AC) · 100. IES is a metrics commonly used
to aggregate reaction time and accuracy, and to summa-
rize them (Townsend & Ashby, 1978). The mean IES
value was used as the dependent variable and entered
in a 2× 2 repeated measures ANOVA with ‘target’ (two
levels: ‘visual’ and ‘non-visual’) and ‘definition’ (two lev-
els: ‘visual’ and ‘non-visual’) as within-subjects factors.
Post hoc comparisons were performed by using the Dun-
can test.

The scores obtained by the participants in the visual
load questionnaire were analyzed by using unpaired T-
tests, two tailed. Two comparisons were performed for
visual and non-visual targets, and for visual and non-
visual definitions. The computational model results were
analyzed by using unpaired T-tests, two tailed. Two
comparisons were performed for visual and non-visual
targets and for visual and non-visual definitions.
Correlations between IES, computational model
and visual load questionnaire. We also explored the
existence of correlations between IES, the visual load
questionnaire and the computational model output by
using linear regressions. For both the IES values and
the questionnaire scores, we computed for each item the
mean of the 30 subjects’ responses. In a first model, we
used the visual load questionnaire scores as independent
variable to predict the participants’ performance (with
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Figure 3: The graph shows, for each condition, the mean
IES with standard error.

IESas the dependent variable); in a second model, we
used the computational data as independent variable to
predict the participants’ visual load evaluation (with the
questionnaire scores as the independent variable). In
order to verify the consistency of the correlation effects,
we also performed linear regressions where we controlled
for three covariate variables: the number of words, their
balancing across stimuli and the syntactic dependency
structure.

Results
The ANOVA showed a significant effect of the within-
subject factors “target” (F1,29 = 14.4; p < 0.001), sug-
gesting that the IES values were significantly lower in
the visual than in the non-visual targets, and “defini-
tion” (F1,29 = 32.78; p < 0.001), suggesting that the IES
values were significantly lower in the visual than in the
non-visual definitions. This means that, for both the tar-
get and the definition, the participants’ performance was
significantly faster and more accurate in the visual than
in the non-visual condition. We also found a significant
interaction “target*definition” (F1,29 = 7.54; p = 0.01).
Based on the Duncan post hoc comparison, we verified
that this interaction was explained by the effect of the
visual definitions of the visual targets (VV condition),
in which the participants’ performance was significantly
faster and more accurate than in all the other conditions
(VNV; NVV; NVNV), as shown in Figure 3.

By comparing the questionnaire scores for visual
(mean ±sd = 5.69± 0.55) and non-visual (mean ±sd =
4.73± 0.71) definitions we found a significant difference
(p < 0.001; unpaired T-test, two tailed). By compar-
ing the questionnaire scores for visual (mean ±sd =
6.32 ± 0.4) and non-visual (mean ±sd = 4.23 ± 0.9)
targets we found a significant difference (p < 0.001).
This suggest that our arbitrary categorization of each
sentences within the four conditions was supported by

Figure 4: Linear regression “Inverse Efficiency Score
(IES) by Visual Load Questionnaire”. The mean score
in the Visual Load Questionnaire, reported on 1−7 Lik-
ert scale, was used as an independent variable to predict
the subjects’ performance, as quantified by the IES.

the general agreement of the subjects. By compar-
ing the computational model scores for visual (mean
±sd = 4.0± 2.4) and non-visual (mean ±sd = 2.9± 2.0)
definitions we found a significant difference (p < 0.001;
unpaired T-test, two tailed). By comparing the compu-
tational model scores for visual (mean ±sd = 2.53±1.29)
and non-visual (mean ±sd = 0.26 ± 0.64) targets we
found a significant difference (p < 0.001). This suggest
that we were able to computationally model the visual-
load of both targets and descriptions, describing it as a
linear combination of different low-level features: color,
shape, motion and dimension.

Results correlations. By using the visual load ques-
tionnaire scores as independent variable we were able
to significantly (R2 = 0.4; p < 0.001) predict the partici-
pants’ performance (that is, their IES values), illustrated
in Figure 4. This means that the higher the participants’
visual score for a definition, the better the participants’
performance in giving the correct response (or, alterna-
tively, the lower the IES value).

By using the computational data as independent vari-
able we were able to significantly (R2 = 0.44; p < 0.001)
predict the participants’ visual load evaluation (their
questionnaire scores), as shown in Figure 5. This means
that a correlation exists between the computational pre-
diction about the visual load of the definitions and the
participants visual load evaluation: the higher is the
computational model result, the higher is the partici-
pants’ visual score in the questionnaire. We also found
that these effects were still significant in the regres-
sion models where the number of words, their balancing
across stimuli and the syntactic dependency structure
was controlled for.
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Figure 5: Linear regression “Visual Load Questionnaire
by Computational Model”. The mean value obtained
by the Computational model was used as an indepen-
dent variable to predict the subjects’ scores on the Visual
Load Questionnaire, reported on 1− 7 Likert scale.

Conclusions
In the next future we plan to extend the representation
of the conceptual information by grounding the concep-
tual representation on a hybrid representation composed
of conceptual spaces and ontologies (Lieto, Minieri, Pi-
ana, & Radicioni, 2015; Lieto, Radicioni, & Rho, 2015).
Additionally, we plan to integrate the current model in
the context of cognitive architectures.
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