
A vector representation of Fluid Construction Grammar
using Holographic Reduced Representations

Yana Knight1 and
Michael Spranger2 and

Luc Steels1

1 Artificial Intelligence Laboratory,
Free University of Brussels (VUB)

Pleinlaan 2, 1050 Brussels, Belgium
Dr. Aiguader 88, Barcelona 08003, Spain

2 Sony Computer Science Laboratories
3-14-13 Higashigotanda, 141-0022 Tokyo, Japan

Abstract
The question of how symbol systems can be instantiated in
neural network-like computation is still open. Many technical
challenges remain and most proposals do not scale up to realis-
tic examples of symbol processing, for example, language un-
derstanding or language production. Here we use a top-down
approach. We start from Fluid Construction Grammar, a well-
worked out framework for language processing that is compat-
ible with recent insights into Construction Grammar and inves-
tigate how we could build a neural compiler that automatically
translates grammatical constructions and grammatical process-
ing into neural computations. We proceed in two steps. FCG is
translated from symbolic processing to numeric processing us-
ing a vector symbolic architecture, and this numeric processing
is then translated into neural network computation. Our exper-
iments are still in an early stage but already show promise.
Keywords: Vector Symbolic Architectures; Fluid Construc-
tion Grammar; Connectionist Symbol Processing

Introduction
Since the early days of cognitive science in the late nineteen
fifties, there has been a struggle to reconcile two approaches
to model intelligence and cognition: a symbolic and a nu-
meric one. The symbolic approach postulates an abstract
layer with symbols, symbolic structures, and operations over
these symbolic structures, so that it is straightforward to im-
plement the kind of analysis that logicians, linguists, and psy-
chologists tend to make. AI researchers have built remarkable
technology to support such implementations based on high
level ‘symbolic’ languages like LISP.

The numeric approach wants to look at cognitive process-
ing in terms of numeric operations. It is motivated by the fact
that biological neuronal networks are dynamical systems and
that numeric processing can model self-organizing processes.
So the numeric approach tries to get intelligent behavior with-
out needing to postulate symbolic structures and operations
explicitly. There have been several waves exploiting this nu-
meric approach under the head of neural networks and most
recently deep learning.

The symbolic approach has proven its worth in model-
ing very large scale language systems, search engines, prob-
lem solvers, models of expert knowledge, ontological and
episodic memory, etc., but most of these applications rely
heavily on a human analyst who identifies the relevant sym-
bols and symbol processing operations. It is usually claimed

that the symbolic approach is unable to deal with learning
and grounding, but this criticism often ignores work within
the large field of (symbolic) machine learning and work on
grounding symbolic representations in perception and action
by physical robots. While the numeric approach has proven
its worth in the domains of pattern recognition which includes
feature extraction, category formation, and pattern detection,
it has not been equally successful in the implementation of
‘true’ physical symbol systems (Newell & Simon, 1976).
More specifically, it turns out to be non-trivial to represent
a group of properties of an object (a feature structure), to
compare feature-structures to each other, and to handle vari-
able binding and feature structure merging - all operations
which many researchers have argued to be necessary for intel-
ligence. We believe the symbolic and the numeric approach
can only be reconciled when they are viewed as two levels of
description of the same system whereby the former describes
and models natural objects at a higher level than the latter.
Each level has its own abstractions at which regularities are
revealed and each own laws of operation. It is necessary and
highly interesting to find out how the different levels map to
each other. This paper sets some small steps in this direc-
tion. We do not go immediately from the symbol level to
the numeric level but rather use a two-step process: mapping
the symbolic level to a symbolic vector layer, as suggested
by several researchers (Hinton, 1990; Neumann, 2001; Plate,
1994; Gayler, Levy, & Bod, 2010) and then mapping this
layer to a possible neural implementation level in terms of
populations of neurons, which has also been explored already
in (Eliasmith, 2013).

This paper focuses only on the first step. Experiments have
also been done for the second step using the Nengo frame-
work (Eliasmith, 2013) but are not reported here. The pa-
per begins by introducing Fluid Construction Grammar as a
challenging test case for studying how to map symbolic pro-
cessing to numeric processing. It then proceeds to describe
a potential approach for the translation of FCG to vector
form, namely Holographic Reduced Representations (HRR).
Finally, it presents the results of experiments using HRR to
produce a vector representation of FCG feature structures and
core operators.

560

FCG and its key operations
Fluid Construction Grammar is a computational platform for
implementing construction grammars (Steels, 2011). It is
a typical example of a complex symbol system addressing
a core competence of the human brain, namely the repre-
sentation and processing (comprehension, production, learn-
ing) of language. FCG was originally designed for modeling
language learning and language change (Steels, 2012), and
language-based robot interaction (Steels & Hild, 2012). More
recently research has focused on challenging problems in lin-
guistics and broader coverage grammars. The components of
FCG are symbols, feature structures, transient structures and
constructions.

Symbols are the elementary units of information. They
stand in for syntactic categories (like ‘noun’ or ‘plural’),
semantic categories (like ‘animate’ or ‘future’), unit-names
(e.g. ‘noun-phrase-17’), grammatical functions (like ‘sub-
ject’ or ‘head’), ordering relations of words and phrases (e.g.
‘meets’ or ‘preceeds’), meaning-predicates, etc. A basic
grammar of a human language like English would certainly
feature thousands of such symbols, and the set of meaning-
predicates is basically open-ended. Symbols can be bound to
variables, which are written as names with a question-mark
in front as: ?unit, ?gender, ?subject, etc. Symbol names are
chosen to make sense for us but of course the FCG interpreter
has no clue what they mean. The meaning of a symbol only
comes from its functions in the rest of the system.

Feature structures are a way to group information about
a particular linguistic unit, for example, a word or a phrase.
A feature structure has a name to index it (which is again a
symbol, possibly a variable) and a set of features and val-
ues. Construction grammars group all features of a unit to-
gether, whatever the level. So a feature structure has phonetic
and phonologic features, morphological information, syntac-
tic and semantic categories, pragmatic information, as well
as structural information about the many possible relations
between units (constituent structure, functional structure, ar-
gument structure, information structure, temporal structure,
etc.). All of these are represented explicitly using features
and values. The values of a feature can be elementary sym-
bols, sets of symbols (e.g. the constituents of a phrase form
a set), sequences or feature structures, thus allowing a hierar-
chically structured feature structure.

Feature structures are used to represent transient struc-
tures. These are the structures built up during comprehen-
sion and production. The features are grouped into a semantic
pole, which contains the more semantic oriented features, in-
cluding pragmatics and semantic categorisations, and a syn-
tactic pole, which contains the form-oriented features. For
comprehension, the initial transient structure contains all the
information that could be gleaned from the form of the ut-
terance by perceptual processes and then this transient struc-
ture is progressively expanded until it contains enough infor-
mation to interpret the utterance. For production, the initial
transient structure contains the meaning to be expressed and

then this structure is transformed until enough information is
present to render a concrete utterance. There are often multi-
ple ways to expand a transient structure so a search space is
unavoidable.

Constructions are also represented as feature structures
and they are more abstract than transient structures. They typ-
ically contain variables that can be bound to the elements of
transient structures and they contain less information about
some of the units. Constructions have a conditional part
which has to match with the transient structure they try to ex-
pand and a contributing part which they add to the transient
structure if the conditional part matches. The conditional part
is decomposed into a production lock which constrains the
activation of a construction in production and a comprehen-
sion lock which constrains the construction in comprehen-
sion. When the lock fits with the transient structure, all infor-
mation from the construction which is not there yet is merged
into the transient structure. So match and merge are the most
basic fundamental operations of the grammar.

Here is a simplified example of the double object construc-
tion (Goldberg, 1995) handling phrases like “she gave him a
book”. It has a unit for the clause as a whole (?ditransitive-
clause) and for the different constituents (?NP-1, ?verb, ?NP-
2 and ?NP-3). The conditional part is on the right-hand side
of the arrow and the contributing part on the left-hand side.
Units in the conditional part have a comprehension lock (on
top) and a production lock (below). The≤ sign between units
means ‘immediately preceeds’.

 ?ditransive-clause
constituents:
{?NP-1, ?verb,

?NP-2, ?NP-3}

?verb
sem-valence:
{receiver(?receiver)}

syn-valence:
{ind-obj(?NP-2)}

←

?ditransive-clause
predicates:
{cause-receive(?event),
causer(?event,?causer),
transferred(?event,?transferred),
receiver(?event ?receiver)}

/0

?NP-1
sem-function: referring
referent: ?causer
sem-cat: {animate}
phrasal-cat: NP
case: nominative

≤

?verb
referent: ?event
sem-function: predicating
sem-valence:
{actor(?causer),
undergoer(?transferred)}

syn-valence:
{subj(?NP-1),

dir-obj(?NP-3)}

≤

?NP-2
sem-function: referring
sem-cat: {animate}
referent: ?receiver
phrasal-cat: NP
case: not-nominative

≤

?NP-3
sem-function: referring
sem-cat: {physobj}
referent: ?transferred
phrasal-cat: NP
case: not-nominative

561

A regular speaker of a language knows probably something
on the order of half a million constructions. So it is not possi-
ble to simply throw them in one bag and try constructions ran-
domly. FCG therefore features various mechanisms to fine-
tune which construction should be selected and, if more than
one construction matches, which one should be pursued fur-
ther. They include priming networks, organisation of con-
structions into sets, partial orderings, a scoring mechanism,
footprints preventing some constructions from becoming ac-
tive, etc.

Obviously Fluid Construction Grammar is a sophisticated
computational formalism but all the mechanisms it proposes
are absolutely necessary to achieve accurate (as opposed to
approximate) comprehension and correct production of utter-
ances given a particular meaning. Due to the space limita-
tions, the reader is referred to the rapidly growing literature
on FCG for more details (see also emergent-languages.org).

Holographic Reduced Representations
The kind of structures used in FCG can be represented us-
ing the AI techniques provided by symbolic programming
languages such as LISP. It is very non-trivial to implement
FCG but doable and adequate implementations exist. We now
come to the key question: Can similar mechanisms also be
implemented using a numeric approach? This means that the
basic elements of FCG are encoded in a numeric format and
the basic FCG-operations are translated into numeric opera-
tions over them. Various efforts to implement symbolic sys-
tems in neural terms have already been undertaken (Shastri
& Ajjanagadde, 1993). The key problem however is scaling:
The number of neurons required to represent the millions of
symbols in human-scale grammars so far becomes biologi-
cally totally unrealistic (Eliasmith, 2013).

Vector-based approaches known as Vector Symbolic Ar-
chitectures (VSA) have demonstrated promising results for
representing and manipulating symbolic structures using dis-
tributed representations. Smolensky’s tensor product is one
of the simplest variants of VSA (Smolensky, 1990). How-
ever, the main problem with this approach is that a ten-
sor binding results in an n2-dimensional vector and in case
of recursive representations does not scale well (Eliasmith,
2013). Alternative approaches have been suggested, such
as Binary Spatter Codes (Kanerva, 1997) and Holographic
Reduced Representations (HRR) (Plate, 1994), where bind-
ing is done with circular convolution, which results in a n-
dimensional vector, so that the number of dimensions does
not increase. Hinton explored distributed representations
based on the idea of reduced representations (Hinton, 1990)
and later (Neumann, 2001) demonstrated that connectionist
representational schemes based on the concept of reduced
representation and on the functional composition of hierarchi-
cal structures can support structure-sensitive processes which
show a degree of systematicity. VSAs provide a means for
representing structured knowledge using distributed vector
representations and as such provide a way to translate sym-

bolic to vector representations (Eliasmith, 2013). Since vec-
tors can be used by many machine learning methods (for ex-
ample, neural networks, support-vector machines, etc.), once
a symbol system has been translated to a vector space archi-
tecture, a subsequent implementation of such a system in nu-
meric terms should give us access to the machine learning
methods associated with distributed representations.

Given the claims made by these various authors, we de-
cided to explore VSA, more specifically Holographic Re-
duced Representations (HRR), for implementing Fluid Con-
struction Grammar, and then further translate this representa-
tion using existing neural mappings (Eliasmith, 2013). The
remainder of this section reflects on what is required for the
mapping from FCG to VSA.

Representing FCG entities
Symbols A symbol in FCG can be mapped to a randomly
generated n-dimensional vector. All the elements of the vec-
tors are drawn from a normal distribution N (0,1/n) following
(Plate, 1994). The symbol and its symbol vector are stored in
an error-correction memory as explained later.

Feature-value pairs A feature-value pair (the primary
component of a feature structure) can be mapped to a circular
convolution of two vectors, the feature vector and the value
vector. Following (Plate, 1994), we define convolution as
follows:

Z = X⊗Y (1)

z j =
n−1

∑
k=0

xk y j−k f or j = 0,,n−1 (2)

Once we have a combined feature-value vector, we can, given
the feature, extract the value, using circular correlation (Plate,
1994; Neumann, 2001), which convolves the pair with the
approximate inverse of the feature vector (Plate, 1994):

X = Z⊕Y (3)

x j =
n−1

∑
k=0

zk y j+k f or j = 0,,n−1 (4)

Feature-set A feature-set consists of a set of feature-value
pairs. This can be mapped to HRR using vector addition
(Plate, 1994):

Z = X⊗Y +T ⊗S (5)

Feature structures Feature structures in FCG consist of
feature-sets combined into units. Each unit has a unique name
which is stored as a symbol in the symbol memory. A feature
structure is constructed in the same way as a feature-set, i.e by
convolution and addition, except that to also include units, we
now convolve unit-feature-value triples rather than feature-
value pairs. The feature structure is the addition of all triples:

Z =U⊗X⊗Y +U⊗T ⊗S (6)

562

Since we can represent feature structures, we can also rep-
resent transient structures as well as constructions of arbitrary
length.

Parts of the structure (also called a trace) can be retrieved
using the correlation operation (Equation 3). For example,
given U⊗X and the whole structure, we can obtain Y.

However, correlation on traces is noisy. A trace preserves
just enough information to recognise the result but not to re-
construct it. Therefore, we need an error-correction memory
that stores vectors for possible units, features and values. The
memory is used to compare the noisy output of the correla-
tion operation with all vectors known to the system. Various
comparison measures can be used, however, the most stan-
dard one is dot product, which for two normalized vectors is
equal to the cosine of their angle Neumann (2001). We define
the following similarity for two vectors:

sim(X ,Y) =
X�Y
||X ||||Y ||

(7)

This similarity is used to retrieve the vector stored in the
error-correction memory with the highest similarity to the
output of correlation. That vector represents the most plau-
sible value of the feature in a particular trace.

Matching and Merging
The promise of distributed representations is that they can do
very fast operations over complete feature structures (such as
comparing them) without traversing the components as would
be done in a symbolic implementation. Let us see how far we
might be able to get without decomposition. FCG basically
needs (i) the ability to copy a feature structure, (ii) to compare
two feature structures (matching) and (iii) to merge a feature
structure with another one.

Copying It is not difficult to copy two feature structures
because it means to copy the two vectors. However we of-
ten need to replace all variables in a feature structure either
by new variables (e.g. when copying a construction before
applying it) or by their bindings (e.g. when creating the ex-
panded transient structure after matching). It has been sug-
gested that copy-with-variation can be done by convolving
the current structure A with a transformation vector T (Plate,
1994):

A⊗T = B (8)

The transformation vector is first constructed by convolving
the new values with the inverse of the current values, then
adding up the pairs by vector addition. For example, in order
to set the value of the lex-cat feature with the current value
?x to the new value which is the binding of ?x, e.g. noun,
the inverse of ?x should be convolved with noun. The full
transformation vector is

x′⊗ y+ z′⊗w (9)

Such vectors can be hand-constructed (Plate, 1994) – which
is not desirable – or learnt from examples as shown in
(Neumann, 2002).

Matching In general, matching two feature structures can
be done by the same principle that is used in the error-
correcting memory, i.e. similarity (Equation 7). Since we use
the dot product as our similarity measure, we have a compu-
tationally fast operation, which is well understood mathemat-
ically. Using dot product provides us with a way to compare a
feature structure to every structure in a pool of structures and
to find the structure with the highest similarity as the closest
match. However this ignores two problems we have not tack-
led yet: (i) Match in FCG is an includes rather than similar-
ity operation: if the source structure is a subset of the target
structure, they should still match, even if the similarity be-
tween the two structures is low. In fact, this is very common
because the lock of a construction is always a subset of the
transient structure, and (ii) This does not take variable bind-
ings yet into account.

Merging Merging two feature structures is straightforward
because their respective vector representations can simply be
added. It is possible to deal with variable bindings by first
transforming both feature structures by replacing the vari-
ables by their bindings as discussed earlier. However, there
are also some tricky issues to be resolved (e.g. variables may
be bound to other variables making a variable-chain and then
one of these has to be substituted for all the others).

Preliminary implementation experiments
We now report on first steps in implementing the FCG→VSA
mapping described above. Experiments were carried out in
Python using the mathematical extension numpy.

Feature encoding and retrieval First, we tested the preci-
sion of value retrieval from a feature set and a feature struc-
ture. We were particularly interested in the relationship be-
tween HRR vector dimensionality, length of FCG feature
structure and retrieval accuracy. We therefore tested differ-
ent lengths of FCG feature sets/structures (5, 50, 500) vs di-
mensionality of HRR vectors (10, 100, 1,000 etc). We did
100 runs for each combination (results averaged). Each time
HRR vectors for individual features were random-initialized
and combined into a feature-structure representing HRR vec-
tors using convolution and addition. Then we attempted to
retrieve all feature values and measured the number of cor-
rect retrievals divided by the original FCG feature sets length.
Figure 1 (top) illustrates how precision score increases with
vectors of higher dimensionality, consistent with previous ex-
periments with HRR (Neumann, 2001). To encode FCG fea-
ture sets with an average length of about 50-100 features, we
required around 3,000-dimensional HRR vectors. This figure
also illustrates how differences in HRR vector dimensionality
are related to the cardinality of the feature-set. For example,
in order to represent and successfully retrieve all values from
a 5-pair set, around 300 dimensions appears to be sufficient,
while a 500-pair feature-set requires just over 30,000. Our
feature-values pairs behave in accordance with (Plate, 1994),
which can described as follows:

n = 3.16(k−0.25)ln
m
q3 (10)

563

where n is a lower bound for the dimensionality of the vectors
in order for retrieval to have a probability of error q; k is the
number of pairs in a trace and m is the number of vectors
in the error-correction memory. For example, to have a q of
10−1 in a 5-pair trace with 1,500 items in the error-correction
memory, n should be approximately 213. For a smaller q
of 10−2, around 300 dimensions is required. This roughly
follows the n and q observed and illustrated in Figure 1 (top).

Feature structures (triples) behave similarly to pairs al-
though dimensions required to encode triples increase.
Figure 1 (bottom) illustrates how both feature sets
and feature structures scale for various structure sizes
(5;10;50;100;500;1,000 pairs/triples). These results can be
directly translated to FCG. A toy grammar starts at 1-5 units
per construction with 1-10 feature-value pairs in each. A
more complex grammar can have around 10 units with ap-
proximately the same number of pairs in each unit. Repre-
sented as triples, such structures can be encoded in vectors
of around 6,000 dimensions. Really large grammars of 30
units and 30 feature-values pairs in each unit require roughly
100,000 dimensions.

Figure 1: Top: The effects of dimensionality on precision scores
in feature sets and structures of various length. Bottom: Scaling of
sets and structures (vector dimensionality at which precision scores
become 1.0).

Matching We numerically investigated if HRR representa-
tions can be used to implement the FCG match operation in
two phases: We investigated changes in sim(X ,Y) under var-

ious conditions working with feature sets (rather than feature
structures) for simplicity.

First, we investigated how similarity (Equation 7) between
two HRR vectors responds to structural changes vs changes
in underlying feature values. Figure 2 (top, bottom) shows
that changes to feature values result in a greater decrease in
similarity (reaching 0.0 after 102 for a 100-pair structure)
than structural changes i.e. adding new pairs, which led to
a more gradual similarity degradation (reaching 0.0 after 105

for the same structure size). The difference between these
two types of changes is important in FCG, where structures
can be structurally different and still match, while structures
that for example, differ in feature values, should not. This
finding is also in line with previous experiments comparing
HRR structures using dot product (Plate, 1994), where simi-
larity was more sensitive to the content of feature-value pairs
rather than the quanitiy of pairs.

Figure 2: Top: Comparison of similarity values for changes in
structure vs changes in bindings for a structure of 10,000 pairs.
Bottom: Comparison of similarity as structures of different original
length are extended.

When adding or removing new pairs, similarity (Equation
7) is affected as illustrated in Figure 3. Initially, both struc-
tures contained 1,000 pairs; the second structure was subse-
quently changed by an order of magnitude at a time. Thus the
first structure gradually became a subset of the second. The
graph illustrates that as the structure becomes extended with
new pairs, similarity of the two structures begins to drop, de-

564

spite the fact that the structures share the initial 1,000 pairs.
However, this degradation is very gradual, and similarities
reach 0.0 only after 105 new pairs have been added. Further-
more, it can be seen that for larger structures such degradation
is more gradual than for smaller ones (see Figure 2 bottom).
For example, for 10-pair structures similarity is almost 0.0
after 103 new pairs have been added. This is still, however,
fairly gradual, considering that a 10-pair structure had 1,000
pairs added to it before becoming dissimilar to the original.
The drop in sim(X ,Y) appears to be asymmetrical: removing
pairs gives lower similarity than adding the same number of
pairs. This is expected since removing pairs results in less
shared information between the structures than adding pairs.

These findings are good and bad news at the same time.
On the one hand it is good that feature value changes have
a more drastic effect on sim(X ,Y) than structure changes.
On the other hand, the system will have to be able to au-
tonomously find out whether two HRR vectors represent fea-
ture sets which differ structurally or in terms of feature values.
Possibly this distinction can be learnt. But finding a solution
that is invariant to HRR vector dimension size and feature set
cardinality is likely not an easy task. Another problem is the
commutative nature of sim(X ,Y) which essentially does not
allow to determine which is the more inclusive feature set.

Figure 3: Gradual changes to a feature set of 1,000 feature-
value pairs and their effects on similarity values.

Conclusions
This paper has speculated how a linguistically and computa-
tionally adequate formalism for language, namely Fluid Con-
struction Grammar, could be represented in a Vector Sym-
bolic Architecture, more specifically Holographic Reduced
Representations, as a step towards a neural implementation.
We proposed a number of steps and reported some prelim-
inary implementation experiments with promising results.
The main conclusion so far is that a number of fundamen-
tal issues remain to be solved to make the FCG→VGA map-
ping fully operational, particularly the issue of implementing
a matching operation that uses a binding list and possibly ex-
tends it while matching takes place.

Acknowledgments
Research reported in this paper was funded by the Marie
Curie ESSENCE ITN and carried out at the AI lab, Vrije Uni-
versiteit Brussel and the Institut de Biologia Evolutiva (UPF-
CSIC), Barcelona, financed by the FET OPEN Insight Project
and the Marie Curie Integration Grant EVOLAN. We are in-
debted to comments from Johan Loeckx and Emilia Garcia
Casademont.

References
Eliasmith, C. (2013). How to build a brain: A neural ar-

chitecture for biological cognition. New York, NY: Oxford
University Press.

Gayler, R. W., Levy, S. D., & Bod, R. (2010). Explanatory
aspirations and the scandal of cognitive neuroscience. In
Proceedings of the first annual meeting of the bica society
(pp. 42–51). Amsterdam: IOS Press.

Goldberg, A. (1995). Constructions: A construction gram-
mar approach to argument structure. Chicago: University
of Chicago Press.

Hinton, G. (1990). Mapping part-whole hierarchies into con-
nectionist networks. Artificial Intelligence, 46, 47–75.

Kanerva, P. (1997). Fully distributed representation. In Proc.
real world computing symposium (pp. 358–365). Tsukuba-
city, Japan: Real World Computing Partnership.

Neumann, J. (2001). Holistic processing of hierarchical
structures in connectionist networks. Doctoral dissertation,
School of Informatics,The University of Edinburgh UK.

Neumann, J. (2002). Learning the systematic transformation
of holographic reduced representations. Cognitive Systems
Research, 3, 227–235.

Newell, A., & Simon, H. A. (1976). Computer science as
empirical inquiry: Symbols and search. Communications
of the ACM, 19, 113–126.

Ohlsson, S., & Langley, P. (1985). Identifying solution paths
in cognitive diagnosis (Tech. Rep. No. CMU-RI-TR-85-2).
Pittsburgh, PA: Carnegie Mellon University, The Robotics
Institute.

Plate, T. A. (1994). Distributed representations and nested
compositional structure. Doctoral dissertation, Graduate
Department of Computer Science, University of Toronto,.

Shastri, L., & Ajjanagadde, V. (1993). From simple associa-
tions to systematic reasoning: A connectionist representa-
tion of rules, variables, and dynamic bindings. Behavioral
and Brain Sciences, 16, 417?494.

Smolensky, P. (1990). Tensor product variable binding and
the representation of symbolic structures in connectionist
systems. Artificial Intelligence, 46, 159–216.

Steels, L. (Ed.). (2011). Design patterns in Fluid Construc-
tion Grammar. Amsterdam: John Benjamins.

Steels, L. (Ed.). (2012). Experiments in cultural language
evolution. Amsterdam: John Benjamins.

Steels, L., & Hild, M. (Eds.). (2012). Language grounding in
robots. New York: Springer-Verlag.

565

