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Abstract

Analogical reasoning, along with inductive, deductive or abduc-
tive reasoning, belongs to the fundamental human mechanisms
for the environment exploration, learning, or problem solving.
Modeling this ability using computer simulations is important,
as it might offer mechanistic explanation of these phenomena.
In this work, we focus on the part–whole analogies in a separa-
tion task where the analogical objects between two scenes show
a mutual resemblance. In simulations, using a simple recurrent
network, we deal with the problem of geometrical analogies,
inspired by the Analogator model (Blank, 1997). The original
model had learning limitations hindering its full potential, com-
bined with increased time and memory complexity. We propose
model modifications for removing these limitations which leads
to superior learning performance both in terms of speed and
accuracy.
Keywords: geometrical analogies; part–whole relationship;
simple recurrent network; learning

Introduction
Analogical reasoning is considered to be the fundamental cog-
nitive ability, which distinguishes humans from other animals.1
This mechanism enables to explain new concepts in terms of
old ones, to emphasize some aspects of situations, to gener-
alize, to characterize situations, to explain or describe some
new phenomena, to provide ideas on how to behave in new
circumstances, to understand new forms of humour, etc.
To create an analogy means to see an object or situation

within one context as the same as different object or situation
within another context. Hall (1989) defines this process as a
mapping between source domain which represents old, known
situation onto target domain which represents new, unknown
situation. Objects between domains that possess the same
properties are mapped onto each other. Whole process consists
of four steps: (1) source identification, (2) evaluation of degree
of similarity, (3) information transfer from source to target, (4)
consolidation. That is, when one starts making an analogy,
the first step is to recall a similar situation from the past that
resembles the current situation (source identification). Then
one evaluates whether the resemblance is adequate (degree of
similarity) and if so, one tries to use the knowledge about the
past situation in the new situation (information transfer). The
outcome of this process is then remembered (consolidation).
There are many types of analogical reasoning with differ-

ent histories. A classical type of analogy is considered the
proportional analogy “A is to B as C is to D”, that dates back

1However, the evidence suggests that chimpanzees are also capable
of analogical thinking to some degree (Gillan et al., 1981).

to ancient Greece. For example, “white is to black as cold is
to hot”, or “tree is to forest as department is to faculty”. The
next type we could consider is a metaphor which is a figure of
speech that describes one object in terms of a second object:
e.g. “He has a heart of stone”.

In our paper, we focus on part–whole proportional analogies
where analogical objects (parts) between the scenes (wholes)
are the ones that share a common attribute; this could be the
same role, position, the same or very similar structure, or simi-
lar sensory properties. One type of analogies in this category
are geometrical analogies in which two scenes comprising ge-
ometrical objects are presented and one scene contains the
selected object. The idea is to select an object in the second
scene which is analogical to the selected object in the first
scene in some way. The concept of learning and analogy mak-
ing in people is still poorly understood, despite plethora of
existing computational models (Gentner and Forbus, 2011).
Therefore, cognitive modelling is important as it may provide
new hypotheses and explanations.
This type of geometrical analogy was dealt with by Evans

(1968) using symbolic approaches and more recently by Lovett
et al. (2009) who combined the sketch understanding program
CogSketch (Forbus et al., 2008) and the symbolic model SME
(Falkenhainer et al., 1986). Connectionist solution to these
part–whole analogies was proposed by Blank (1997) whose
doctoral thesis served as the main inspiration for our work.
More recent connectionist models have not dealt with this type
of analogy. Blank designed Analogator model as a simple
recurrent network that learns to reason analogically by see-
ing lots of analogical pairs. This represents quite a different
approach, as many other models were explicitly designed for
analogical reasoning and they did not have to learn. However,
Analogator had its limits which prevented it from using its
whole potential.

Geometrical analogies
Consider two scenes consisting of 3 objects with different
shapes and colors. In the first scene (source) exactly one object
is selected (figure) which differs in some way from the remain-
ing two (ground).2 The idea is to identify this unique property
and to choose an object in the second scene (target) that differs

2We use the terms “figure” and “ground”, even though this task
does not evoke the experience of perceiving the figure as closer to the
observer than the ground. Blank (1997) also used these terms in his
model that we were inspired by.
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from the other objects in the same way as the selected object
in the source.

Figure 1: Example of a geometrical analogy.

Example of this problem is given in Figure 1 where on
the left (source), one object is beforehand selected (see the
pointing arrow). On the right (target), the correct answer is
also shown (blue square). We have constrained the problem
to three different colors (red, blue, green) and three different
shapes (circle, square, triangle). Hence, every scene consists
of exactly three objects, which are placed in three possible
positions (out of four corners). In Figure 1, red triangle is
analogical to blue square because both differ in shape from
the ground. Another possible example could be the pair of
pictures where analogical objects differ in color, or where the
target is the rotation of the source.
We have chosen two types of analogies to investigate (fol-

lowing Blank): rotational (target is the rotated version of the
source) and categorical (analogical objects differ in color or
shape from the ground).

Rotational analogies In this type of analogy the target scene
is made by rotation of source scene by 90◦, 180◦, 270◦ or 0◦ (no
rotation applied) and changing the shape and color of objects.
In Figure 2, blue triangle bottom left is analogical to red square
top right, assuming the rotation 180◦. Color and shapes are in
this type of analogy not considered because they could create
ambiguity.

Figure 2: Example of a rotational analogy.

Let us now evaluate the overall number of unique rotational
analogies. Because all objects on the scene have the same color
and shape, there are exactly 9 possible options for choosing
one object (3 colors × 3 shapes). Then there are 4 possible
positions on the setting of objects in the scene3 and 3 possible
selections for the figure object. Therefore there are 9×4×3 =
108 unique source scenes and for every scene there are 9×4 =
36 target scenes. To sum up, we have 108×36 = 3888 unique
pairs of two scenes between which it is possible to find a rota-
tional analogy.4

3The number of all subsets of size 3 (3 objects) over the set of size
4 (4 options for putting objects in a scene) sums up to

(4
3
)
= 4.

4Blank actually generated 46656 unique pairs because he did not

Categorical analogies In this case the analogical object dif-
fers from the ground by color or by shape. In the source scene
the selected object differs by one property from the ground,
either in color or in shape while in the target scene it differs in
both properties. The reason for that is that we want the network
to notice this unique property in the source scene and then find
it in the target scene. The network should learn to identify
the required property and to ignore the rest. Example of this
categorical analogy in which analogical objects differ in color
is in Figure 3. Example of a categorical analogy where objects
differ by shape is shown in Figure 1.

Figure 3: Example of a categorical analogy where analogical
objects differ in color.

Scene representation
In order to approach the task, we must also choose the data
representation for inputs and targets. Basically, there are two
possible ways how to represent data: implicitly or explicitly.
Both are explained in the following sections.

Implicit representation When using implicit representa-
tion, the structure of objects and their relations to others are
not explicitly defined. Instead, this representation only defines
attributes of objects; it does not provide information about re-
lationships between attributes, neither which attributes belong
to which objects. For example, when a geometrical object is
not defined by the set of points, but instead by the set of colors
in the bitmap. Motivation behind using implicit representation
is that in real world there are probably no explicit representa-
tions, since every percept is obtained implicitly. In order to
create an analogy, one has to extract required attributes and to
map them in a way that analogy is created. If the input was
explicit, extraction of attributes would no longer be required
and the problem of analogy creation would be much simpli-
fied. Mitchell and Hofstadter (1995) state that perception of
a situation is an important component in the process of creat-
ing analogies and it should be included in the computational
models for analogy making. The fact that perception is a part
of analogy making was one of the most important contribu-
tions of cognitive science in understanding analogy making in
humans.

Blank was inspired by the work of Halford et al. (1994) who
used tensor representation to implicitly represent predicates
and arguments.5 Blank represented the scene with geometrical

constrain his experiments to using only one color and one shape in a
scene. We did so because we would like to use both rotational and
categorical analogies as an input for the same model, and we needed
to avoid ambiguity in analogy making.

5It is questionable whether this type of implicit representation is
cognitively plausible, though.
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objects as follows: For every object he created a 2×2 matrix X
which defined the position of an object in the scene and a vector
y of length 6 to define object attributes. By using the outer
product (X⊗y) he obtained a tensor of order 3 (6 matrices).
Example of representing red square in top right corner can be
seen in Figure 4.

Figure 4: Tensor representation for red square top right.

Figure 5: Tensor representation of the whole scene.

To get the tensor representation for the whole scene, Blank
generated tensor representations for each object and then
summed up the corresponding matrices. Detailed example
is shown in Figure 5. Furthermore, it is also necessary to repre-
sent the selected object. This can be simply done by providing
another 2×2 matrix which defines the position of this object.
To sum up, the whole input consists of tensor representation of
the source scene, of the position of a selected object and also
of the target scene.

Explicit representation Symbolic models of analogy mak-
ing typically use this approach which led to their criticism
(Chalmers et al., 1992). We already mentioned that using ex-
plicit representation in analogy making simplifies this process
to a large degree. Another problem with explicit representation
is that there are many unique and equivalent means of repre-
senting the scenes, but not all of them would allow analogy
to be correctly formed. The reason why we decided to also
use explicit representation is to compare them with implicit
representation.
Our exlicit representation abstracts from the problem of

feature binding, which implies that all features are already
linked to corresponding objects. It uses boolean vector of
length 6 for description of one object. Every element of this
vector defines which attribute is present. The first three bits
define the color and the last three bits define the shape. Figure
6 provides an example.
To represent the whole scene, vector representation is cre-

Figure 6: Explicit representation of green square.

Figure 7: Explicit representation of the whole scene.

ated for each object and all vectors are simply concatenated to
form one vector of length 6×4 = 24. Example of this repre-
sentation is shown in Figure 7. Position of a selected object is
defined the same as in implicit representation (Figure 4).

Analogator model

Connectionist model Analogator (Blank, 1997) is a domain-
independent model that learns part–whole analogies based on
examples. The basic difference between Analogator and other
models is that Analogator was not explicitly designed to make
analogies. It is based on a simple recurrent network (Elman,
1990). The input layer is divided into two groups of neurons:
the first group contains representation of the whole scene, while
the second group (context neurons) stores the selected object,
or a copy of the hidden layer activation. The output layer also
comprises two groups of units where the first group contains
the position of the selected object and the second group outputs
the remaining two objects at correct positions (see Figure 9).
Computation related to processing a source–target pair of

inputs is executed in two steps (see Figure 8): In step 1, the
network learns to properly separate in the source scene the
figure (selected object) from the ground (the remaining two
objects). The source scene with a selected object is presented
to the network and the output layer activations are calculated
(step 1a). Afterwards, the correct targets (figure–ground pair)
are placed at the output and the weights are trained (step 1b).
In step 2, the model learns to apply the previous transformation
(from step 1) to the target scene. Here the target scene is placed
at the input, the hidden layer activations from previous step
are copied into context neurons and the outputs are calculated
(step 2a). The network weight are then updated to produce
analogical figure–ground pair at the output layers (step 2b).

The limitation of this architecture is that the number of neu-
rons in the hidden layer and the context part must be identical.
Because the context part also stores the position of a selected
object (dual purpose layer), four neurons (there are 4 places
the selected object) may be too restrictive for the hidden layer.
On the other hand, increasing the number of neurons would
introduce redundant neurons in representing the position of a
selected object.
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Figure 8: Analogy making between the source scene and the target scene (Blank, 1997). For explanation, see the text.

Modifications of the basic model

We have proposed and tested several modifications of the basic
model which eliminated its restrictions. First, we split the
input layer into three groups of neurons instead of two. The
first group remained unchanged (the whole scene), while the
second group was split to separately represent the position
of the selected object (in step 1) and the context. In step 1
the context neurons are set to zeros (they are not required at
that time) and in step 2 the hidden layer is copied into context
neurons while the neurons storing the position of a selected
object (the second group) are set to zero.
Second, we applied linear transformation to hidden layer

activations via Principal Component Analysis to project the
patterns into a lower dimension and stored its result into neu-
rons representing the position for a selected object. In this
model, PCA layer served as the layer of context neurons. To
implement online PCA learning, we used the Generalized Heb-
bian learning algorithm (GHA, Sanger 1989). Model with
this modification is trained simultaneously with BP and GHA
algorithms.
Third, we introduced the second hidden layer to the model

assuming it would increase its ability to learn analogies, speed
up convergence and improve generalization. Combination of
these three modifications yielded a variety of models as shown
in Table 1.6 Architectures of these novel models can also be
retrieved from Figure 9.

6Combination of PCA and the split input layer would not make
much sense, since both attempt to solve the same problem.

Training the models All models were trained on both types
of analogy (rotational and categorical, having two subtypes).
All weights were initialized to random values with uniform
distribution (−0.05,0.05). In each step, the standard error
backpropagation (BP) algorithm was applied. Each epoch con-
sisted of several thousands of input–target patterns (i.e. pairs of
a source and a target scene). For interpretation of the network
outcome, the values were rounded to 1/0 (with the threshold
0.5). These values were afterwards compared with desired
outputs to calculate the error. Learning was stopped after the
fixed number of epochs.

Table 1: Overviews of the tested models. Each model could be
combined with explicit or implicit representations (B = basic,
S = split, P = PCA, 2 = extra hidden layer).

Model PCA split inp. hid2
AB1
AP1 X
AS1 X
AB2 X
AP2 X X
AS2 X X

Experiments
Because training the model on one type of analogy (either
rotational or categorical) is an easy task (it was demonstrated
by Blank) we decided to simultaneously train our models on
both types of analogy. In order to analyse the impact of the
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Figure 9: Proposed model modifications. The original model
(Analogator) consists of solid boxes, novel elements are illus-
trated by dashed boxes.

modifications we also trained the basic models with both types
of representation to be used as a reference. We trained each
model five times to get an estimate of average training and test-
ing errors. Every simulation used different patterns for training
and testing sets but lasted the same number of epochs. The set
of patterns was generated as follows: First, we generated all
categorical analogies from which we randomly selected a sub-
set of 20000 patterns. Then we extended this set by all (3888)
rotational analogies which yields 23888 training patterns in
total. We used 90:10 ratio for training and testing sets (five
different splits). Parameters for BP were taken from Blank
(1997), assuming they were appropriately selected: learning
rate 0.1 and momentum 0.7. The overview of results is shown
in Table 2. In case of PCA, the learning speed for GHA had to
be set to a much lower value 0.0001 (higher values hindered
the performance and the value around 0.1 prevented the model
from learning completely).

Table 2: Results of of five models combined with implicit and
explicit representations.

implicit explicit
Model error #ep error #ep
AB1 12.60% 400 2.2% 200
AP1 0.60% 75 2.0% 100
AS1 0.40% 75 1.0% 75
AB2 0.40% 50 0.1% 35
AP2 0.14% 35 0.0% 100
AS2 0.19% 45 0.04% 45

We started with AB1-I model, that had at the input 49×6 =
294 neurons representing the scene, 49 neurons representing
the position of the selected object of the source scene and one
bias input, together 344 input neurons. The hidden layer con-

sisted of 49 + 1 = 50 neurons and the output layer contained 49
+ 49 = 98 neurons. The AB1-I model did not manage to learn
both types of analogy even when trained for a large number
of epochs (∼1000). Average testing error was 12.6% which
roughly corresponds to 310 incorrectly made analogies. There-
fore we considered the explicit representation (AB1-E model),
in order to test its possible benefit in analogy learning. We
used 24 input neurons representing the scene and 49 neurons
representing the position of the selected object in the source
scene, amounting to 24 + 49 + 1 = 74 input neurons (hence, a
much smaller input size). The hidden and output layers were
the same as in the previous experiment, i.e. 50 hidden and
98 output neurons. AB1-E model revealed a significant im-
provement but it still did not manage to simultaneously learn
both types of analogy well enough. Testing error remained
at about 2.2%. This model also required a smaller number of
epochs in order to converge (∼200) and it also had smaller
time complexity (thanks to smaller input).
Inclusion of the PCA module (AP1 model) led to a signifi-

cantly improved performance, in case of implicit representa-
tion, both in terms of accuracy (0.6%) and convergence time
(75 epochs). Explicit representation did not help in this model,
unlike the basic model.

In case of AS1 model, we split the input, so the hidden layer
was no longer tied to the second group of inputs. Hence we
increased the size of the hidden layer to 100 neurons. Simula-
tions have shown that this model was able to successfully learn
both types of analogy with even smaller number of epochs.
After 75 epochs the model converged to testing error 0.4%.
Since explicit representation had a positive impact on accu-
racy in the basic model, we tested this effect also at this point,
using the AS1-E model. It had identical parameters to the
previous model, except for input and output sizes. The model
showed slightly worse results and after 75 epochs, testing er-
ror was 1.0% (vs. 0.4% in case of AS1-I). This experiment
showed that in AS1 model does not benefit from either type of
representation.

The last three models were equipped with two hidden layers,
both with 100 neurons. In AB2model we used identical param-
eter setting as in AB1. Interestingly, both implicit and explicit
versions of this model worked very well (accuracies 0.4% and
0.1%), whereas the latter had a little bit faster convergence (50
vs 35 epochs).

As a best model, the combination of two hidden layers with
PCA (AP2 models) led to perfect generalization (0%) in case
of explicit representation, and quite a small error (0.14%) with
implicit representations. The error-free AP2-E model took
somewhat longer to converge (100 epochs), though.
Finally, the combination of input splitting with two hidden

layers (AS2 models) also led to converging models with both
types of representations. Not the best ones (errors 0.19% and
0.04%) but very fast ones (45 epochs).
As a next step, we wanted to get insight into a well trained

model. We recorded hidden-layer activations after training,
taken from step 1 (which serves as context information for step
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Figure 10: The SOM winners for hidden-layer activation vec-
tors of the trained AS1-I model, corresponding to two types
of categorical analogy. Symbol ’x’ denotes type 1 (differs in
color), and symbol ’o’ denotes type 2 (differs in shape).

2). We anticipated that the hidden layer had learned to orga-
nize its space by splitting the categories. The best separability
could be seen in a AS1 model with 50 hidden neurons, trained
on categorical analogies only (differs in color or shape), so
we present it here (in order models, the hidden organization
was not so well discernible). These patterns (with recorded
category labels) were then submitted during training to the self-
organizing map (SOM; Kohonen 1982 with 25×29 neurons.
For each 50-dim. input pattern, the position of the best match-
ing unit was recorded after training. Figure10 displays the
superimposed both classes in the same map. It is evident that
the classes are well separated suggesting that the two subsets
of hidden vector activations are well separable in the hidden
space, hence enabling error-free generalization.

Conclusion
In this article we focused on the problem of geometrical analo-
gies that are a subset of part–whole analogy, and we attempted
to solve this problem using a connecionist system. The original
Analogator model (Blank, 1997) was not able to learn both
types of analogy (rotational and categorical) so we designed
improvements of this model. We also tried using explicit repre-
sentations, and showed that they had a positive impact in some
of the models.

In total, we have evaluated behaviour of the original model
and five modifications. The best model combines PCA and two
hidden layers, using explicit representation. This AP2-E model
learned the task with testing error 0.0% in every simulation. Its
minor drawback is that the higher number of training epochs (in
comparison to other models) and also a higher time complexity
for each iteration. On the other hand, it only needed 8500 pairs
for training (around 35%), as opposed to twice as many pairs
in case of other models.
We did not thoroughly search for optimal parameters, and

used the ones in Blank (1997). The following research in this
topic could also investigate our models on different part–whole
analogies in order to test their potential.
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