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Abstract 

We describe some Artificial Life simulations in which a 
situated model agent controlled by a feed-forward neural 
network has to solve a simple categorization task involving 
size constancy abilities in an online fashion. The results show 
that even a simple neural controller without internal recurrent 
dynamics is capable of solving a non-trivial size 
categorization task by exploiting the dynamical interaction of 
the agent with its environment. Even if at an early stage, this 
work suggests two possible implications for the study of size 
constancy and perceptual constancy in general. First, 
approaching the problem from a functional point of view may 
open new perspectives on the possible underlying 
mechanisms. Second, the adoption of an embodied and 
situated approach may help to explain why perceptual 
constancy is so efficient in biological cognitive systems.  

Keywords: perceptual constancy, size constancy, active 
perception, dynamical categorization 

Introduction 

Perceptual constancy can be either defined as a perceptual 

mechanism or as a behavior. In the first case we define it as 

the ability to perceive the stable properties of the 

surrounding environment despite the continuous change of 

the raw information reaching our sense organs. The second 

type of definition can be expressed saying that perceptual 

constancy allows us to behave in accordance with the stable 

properties of the surrounding environment. One definition 

puts emphasis on the mechanism (perception) and the other 

one on the behavior, but, as claimed by Ittelson (1951), 

“Any complete theory of perceptual constancy must 

encompass all its aspects” and therefore should consider 

both the mechanisms and the behaviors. Instead, most of the 

recent theories and computational models of perceptual 

constancy focus on the presumed underlying mechanisms, 

but tell us very little about how they translate into functional 

behaviors. Some examples of constancy mechanisms 

proposed in the literature are mental rotation (Jolicoeur & 

Humphrey, 1998), perceptual compensation (Bridgeman, 

2010), 3D reconstruction (Edelman & Weinshall, 1998) and 

hierarchical feature extraction (Foldiak, 1998).  

The behavioral aspects of perceptual constancy, instead, 

are hugely neglected except for certain animal research 

studies where constancy also reveals its great ecological 

relevance. Size-dependent food selection, evaluation of 

predator size and distance, foraging in different daylight 

conditions are some example of behaviors that have been 

studied showing some constancy abilities (but also failures) 

even in lower vertebrates. Size constancy has been studied 

in frogs and toads for example by Ingle (1968), Ingle and 

Cook (1977), Lettvin, Maturana, McCulloch and Pitts 

(1959). Shape invariance has been studied in fishes and 

amphibians (e.g. Ingle, 1963; Ingle, 1971; Ewert, 1984). A 

lot of research on color constancy has been conducted with 

experiments on bees, amphibians, fishes, cats and monkeys 

(Neumeyer, 1998). 

The approach proposed here is based on the methodology 

of Artificial Life (Langton, 1998) and Evolutionary 

Robotics (Nolfi, 1998; Nolfi & Floreano, 2000) and is an 

attempt to build a minimal but complete model of size 

constancy capable of simulating a functional behavior and 

able to explain some aspects of the cognitive mechanisms of 

size constancy. The general idea at the base of this approach 

is that perceptual constancy cannot be properly understood 

studying a cognitive system in isolation and detached from 

its natural context. It seems to be a research area in which an 

embodied and situated approach is essential. This idea is not 

completely new, since there have been some experiments on 

size constancy with an Evolutionary Robotic approach that 

started to envision the problem with an embedded and 

situated approach (Scheier, Pfeifer, Kunyioshi, 1998; Nolfi 

& Marocco, 2000). More recently Williams & Beer (2010) 

proposed some simulations in which a simulated model 

agent is evolved to discriminate between small and big 

circles. The work described here shares the same approach 

but uses different kind of sensors and actuators and an 

online task (not based on single trials). More in general, our 

goal is to develop an embodied and situated framework for 

studying different aspects of size constancy in a systematic 

way and from a functional perspective, and the results 

described in this work seem to support this endeavor. 

Methods 

The experimental setup proposed here is a computer 

simulation that represents a simplified model of a brain-

body-environment system with the following 

characteristics: 
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1) A simulated agent with a sensory-motor system acts in 

a virtual environment 

2) Sensory input and its variations are coherent with the 

environment structure and its laws 

3) Variation of the input is partly determined by the motor 

system 

4) The neural controller of the agent evolves through a 

Genetic Algorithm, with no prior hypothesis about its 

functioning 

5) The fitness function used to evolve the neural 

controller is based on the agent performance in a task that 

requires some degree of perceptual constancy 

 

The main goal of this experimental setup is to provide an 

embodied and situated context in which a simulated agent 

can evolve a size constancy behavior.  

Simulation Environment 

The simulation environment is described in figure 1. A 

simulated agent moves in a 2D square arena with sides of 

length 60 populated with circles randomly placed in a grid 

of 5x5 cells positions (figure 1 top part). The diameters of 

the circles can be small (0.5) or big (1.0). There are 10 small 

and 10 big circles for a total amount of 20 objects. 

 

 
 

Figure 1: Experimental Setup 

 

The agent (see figure 1 bottom part), represented by a 

small circle of size 0.5, is provided with a linear array of 

visual receptors by which it is able to “see” objects in front 

of it with a field of view of 60°. The activation of the 

receptors is calculated with a perspective projection of the 

objects in the field of view of the agent so that a near small 

circle and a distant one can have the same retinal projection 

(as depicted in figure 1). Distance cues are provided through 

a sort of “fog effect” (not shown in figure 1) that makes the 

circles appear lighter and lighter as the viewing distance 

increases. The fog effect and the grid configuration of 

objects make the agent input clean and avoid cluttered input 

patterns.  The fog effect in particular avoids that too many 

objects are visualized at the same time on the retina. This 

would require the agent to develop some kind of attentional 

mechanism that would deserve a dedicated work.  

The controller of the agent is a three layer feed-forward 

neural network. The input layer is the above mentioned 

linear retina with 30 receptors whose activations range from 

0.0 to 1.0. The hidden layer has 10 units and the motor layer 

consists of 4 output units. Both hidden and motor layer 

neurons use a sigmoid activation function. Each layer is 

fully connected with the next one. So there are 300 input-

hidden weights (30x10) and 40 hidden-output weights 

(10x4).  Figure 2 shows the structure of the neural network. 

 

 
 

Figure 2: Neural Controller of the robot 

 

The agent can move forward or backward with a certain 

velocity and can rotate around its center to change direction. 

The four motor units control the movement of the agents 

with two couples of opposing real units. The linear 

movement of the robot is determined by the results of two 

opposing units that determines the forward and backward 

linear velocities. The agent moves forward if the output of 

the forward velocity unit is higher than the backward one, 

and vice versa. The agent direction is determined by two 

opposing units controlling the right and left angular 

velocity. 

Task 

The goal of the agent is to hit as much small circles as 

possible and to avoid the big ones during its lifetime that 

lasts 10,000 simulation steps. Circles that are hit by the 

agent are removed from the environment.  
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Evaluating circle size is not a trivial task because during 

environment exploration the sensory input varies 

continuously and produces ambiguous configurations. The 

same retinal projection, for example, can be that of a near 

small circle or the one of a big distant one. So the retinal 

subtense in itself is not correlated with object size. The 

same occurs for the object “lightness” that varies with 

distance. The organism faces a size constancy problem. 

The task is similar to the one proposed by Scheier, Pfeifer, 

Kunyioshi (1998) and Nolfi and Marocco (2000) and more 

recently by Williams and Beer (2010), but the motor system 

proposed here is different allowing for fast forward and 

backward linear movements. Moreover with respect to the 

work of Nolfi and Marocco (2000) and Williams and Beer 

(2010) the task is not based on single separate trials but 

requires an online behavior in which the single 

discriminations occur seamlessly during the entire life of the 

robot without resetting the experimental setup after each 

robot response. 

Genetic Algorithm 

A genetic algorithm is used to evolve the weights of the 

neural network to solve the simple size discrimination task 

described above. As mentioned before, the goal of the agent 

is to hit as much small objects as possible and to avoid the 

big ones. Objects that are hit by the agent are removed from 

the environment. The fitness function is calculated with the 

following formula: 

 

F = Cs – Cb 

 

where Cs and Cb are the number of small and big circles 

hit at the end of the agent life. Since there are a total of 10 

small circles and 10 big ones, the highest fitness score is 10 

and the lowest is -10. The evolutionary experiment consists 

in evolving the weights of the neural controllers in a 

populations of 100 agents for 100 generations with a 

selection criterion based on the fitness function described 

before. 

The weights of the neural networks in the first generation 

are initialized in the range (-1/sqrt(d), +1/sqrt(d)) where d is 

the number of input to each neuron. When all the 

individuals of one generation have been tested they are 

sorted based on their fitness scores and the 20% of the best 

individuals are selected to produce the next generation of 

agents. The genetic operator consists of a mutation 

mechanism that changes 10% of the weights of the neural 

network adding a random number between -0.5 and +0.5. 

The genetic algorithm uses elitist selection allowing the best 

individual of one generation to carry over to the next 

generation with unaltered connection weights. 

Results 

The genetic algorithm described above was used to run 10 

seeds of the same simulation some of which gave interesting 

results. Figure 3 shows the best and mean fitness along each 

generation of the best simulation obtained. The best fitness 

of the best individual in the last generation is 9, which is 

nearly the maximum score possible for the fitness. This 

result indicates that the evolution process produced some 

kind of behavior capable of avoiding big circles and 

approaching and hitting the small ones. 

 

 
 

Figure 3: Graph of the best and mean fitness for each of 

the 100 generations of the best run 

 

Considering that, as explained before, the size of the 

circle cannot be evaluated relying on a single retinal 

projection at a given moment, or the intensity of retinal 

receptors, we can expect the evolved neural system to 

develop a form of size constancy behavior based on the 

dynamical interaction of the agents with its environment to 

exploit the information contained in the optic flow as 

theorized by Gibson (1950/1966) and demonstrated in some  

classical research studies(Lee, 1980; Franceschini et Al. 

1992). 

It could sound strange that a simple neural controller like 

the one used in this experiment is capable of such complex 

behaviors. Actually a feed-forward neural network is a 

simple type of controller with no internal states, where 

information flows in only one direction, with each input 

producing always the same output. In this respect it is 

comparable with a simple associative mechanism. What 

makes this experiment interesting is that the neural network 

is inside an embodied and situated agent whose sensor and 

motor systems allow it to interact with its environment 

(Figure 4). Each input, at a given time, produces an output 

that is used to move the agent. The agent movement, in turn, 

changes the next input, which produces a new output and so 

on. This mechanism gives rise to interesting “organism-

environment” dynamics that allow the agent exhibit a 

functional size discrimination behavior. 

Some preliminary behavior analysis have been performed 

on the best organism of the last simulation and gave some 

interesting results. First of all, to accomplish their task, most 

of the successful organism develop a sort of exploratory 

behavior consisting in turning around their centers and 

moving slowly until some object fall in their receptive field. 

Once an object shows up in the receptive field the agent gets 
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close to the object and then start to oscillate back and forth 

for a few times. 

 

 
 

Figure 4: Organism-Environment relationships 

 

At this point the behavior is different depending on whether 

the object is a small circle or a big one. In the case of small 

circles the agent goes forward and hit it (see figure 5).  

 

 
 

Figure 5: Graph of the interaction with small circles (y-

axis = distance from the object, x-axis = simulation steps) 

 

In the case of big circles the oscillating behavior ends 

with the agent getting away from the object (see figure 6) 

towards a location favorable for the complete exploration of 

the environment. The oscillating behavior could be 

interpreted as a discrimination phase and always takes place 

at approximately the same distance (about 2.0) from the 

target object. 

At a first glance it could be thought that a simple “hand –

made” linear function using the number and intensity of 

receptors should be enough to discriminate between the 

large and small circles. But looking at the results and 

considering the dynamical context in which the agent lives 

it is clear that a far more complex behavior is required to 

solve the task. Indeed, the behavior obtained with the 

genetic algorithm is quite articulated and comprises at least 

five sub components: explore, approach, discriminate, hit 

object, avoid object. Moreover, each of this sub components 

of the behavior has a time course and therefore is more 

complex than a one shot discrete response. This should be 

enough to convey the idea that designing by hand a system 

capable of acting in a dynamical environment is not a trivial 

task.  

 

 
 

Figure 6: Graph of the interaction with big circles (y-axis = 

distance from the object, x-axis = simulation steps) 

 

Further analysis are required to better understand what 

happens inside the neural controller and to explain the agent 

behavior in more detial. The most tempting hypothesis, at 

the moment, is that the agent performs some kind of 

expansion gradient assessment during the discrimination 

phase as suggested by the fact that the oscillating behavior 

occurs more or less at the same distance from the object, 

and rather close to it. Indeed, the expansion gradient of two 

objects must be evaluated at the same distance, and the 

nearer an object is to the observer the wider and more 

informative its expansion gradient is. Some “laboratory” 

manipulation are needed to clarify this and many other 

aspects. For example we don’t know how robust this 

behavior is in different environmental conditions,  what 

happens if the agent starting position is changed or if the 

objects are not placed in a grid pattern. 

Conclusions and future work 

We described an Artificial Life simulation in which a 

simulated agent controlled by an evolved neural network 

shows some size constancy abilities in solving a simple 

categorization task. Even if a more detailed analysis is 

required, the preliminary results described here seem to 

confirm that a simple feed-forward sensory-motor system 

can solve a rather complex size constancy problem 

exploiting its dynamical interaction with the surrounding 

environment. These results strongly support an embodied-

situated approach to perceptual constancy, and also suggest 

that the ability of a cognitive system can be better 

understood in a framework that fully considers the 

importance of the brain-body-environment dynamics. 

In the future work we are planning to explore different 

experimental conditions varying the size constancy task, the 

agent sensory-motor apparatus and its neural controller. 
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