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Abstract

There is relatively little work in cognitive science that inves-
tigates the nature of heuristics and the mechanics of their op-
erations. This paper outlines a theory of how heuristics work
in cognition. A cognitive architecture is described which fa-
cilitates satisficing procedures which utilize little cognitive re-
sources, i.e., heuristics. An interesting feature of this account
is that heuristics are not assumed to operate with representa-
tional content, but with higher-order information (or knowl-
edge) implicit in informationally rich representational systems
and relations among them.
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Introduction
Heuristics are commonly understood as economical shortcut
reasoning procedures that may not lead to optimal or correct
results, but will generally produce outcomes that are in some
sense satisfactory or “good enough”. Since the seminal work
of Kahneman and Tversky in the 1970s, there has been an
explosion of research that tries to uncover various heuristics
that humans typically rely on in problem-solving or decision-
making. Yet there has been comparatively little research on
the general nature of heuristics and how they operate in cog-
nition.

An exception is the recent incarnation of heuristics re-
search in psychology, exemplified by Gigerenzer’s “fast and
frugal heuristics” research program. Gigerenzer and his col-
leagues make various attempts to explain how heuristics work
by proposing computational models and exposing the infor-
mation that a given heuristic is sensitive to. However, it is
not clear whether human cognition actually implements the
proposed computational models (Ayal & Hochman, 2009;
Dougherty, Franco-Watkins, & Thomas, 2008; Hilbig, 2010;
Hilbig & Pohl, 2008; Oppenheimer, 2003), and moreover,
those models are abstract with little care for how they would
fit within a general account of cognition.

Even less philosophical attention has been paid to the na-
ture of heuristics and heuristic reasoning. Yet philosophy as
a discipline possesses valuable resources to advance inves-
tigations into these important matters, such as accounts of
cognitive architecture, theories of representation, theories of
concepts, and theories of reason and cognition.

In this paper I outline a general theory of how heuris-
tics work in human cognition which enjoys inspiration from
philosophical reflections on cognitive archtiecture. While
heuristics research in the psychological literature focuses on
determining what specific information or knowledge is used
by given heuristics, I will here reorient the problem by dis-
cussing architectural properties of the mind that facilitate

heuristics generally. More specifically, I will investigate cog-
nitive architectural features that can constrain heuristic pro-
cesses in such a way that ensures that they satisfice, operate
systematically, and require little cognitive resources for their
recruitment and execution (Chow, in press; cf. Shah & Op-
penheimer, 2008). My suggestion is that heuristics exploit
informationally rich representational systems in cognition.
However, contrary to what is typically assumed in the psycho-
logical literature, this account maintains that heuristics gen-
erally don’t operate over representational content, but over
higher-order information (or knowledge) implicit in certain
structures embodied by representational systems. In this way,
heuristics indirectly exploit our representational systems, and
this, I maintain, is what enables heuristics to mitigate cogni-
tive costs presented by cognitive tasks.

Lessons from Philosophy
Let us begin with some informative remarks from Dennett to
guide our discussion. In his paper, “Cognitive Wheels”, he
writes:

Even if you have excellent knowledge (and not mere be-
lief) about the changing world, how can this knowledge
be represented so that it can be efficaciously brought to
bear? . . . A walking encyclopedia will walk over a cliff,
for all its knowledge of cliffs and the effects of gravity,
unless it is designed in such a fashion that it can find the
right bits of knowledge at the right times, so it can plan
its engagements with the real world. (Dennett, 1984, pp.
140-141)

Dennett is speaking here about the frame problem, but his
point can be generalized. For human cognition is confronted
with, but manages to solve, a general problem of achieving
and maintaining an organization of knowledge so as to en-
able access to the appropriate, relevant information in its cog-
nitive tasks. Dennett’s remarks suggest that humans must
possess certain cognitive structures that exhibit the requi-
site organization—that appropriately represent knowledge—
to ensure access to the right information for successful plan-
ning and action in a complex world. Thus, in general, without
the right kind of cognitive architecture we would be unable to
make the inferences that we in fact do, and which underlie
much of our cognition.

In a vein similar to Dennett’s remarks, some theorists
believe that a modular architecture enables fast and frugal
heuristics (e.g., Gigerenzer, 2000; Carruthers, 2006). There
are many ways that one can characterize a module, but there
are two core features that are generally believed to facili-
tate quick and computationally cheap reasoning (i.e., the sort
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of reasoning characteristic of heuristics). These features are
domain-specificity and informational encapsulation.1

Informational encapsulation is supposed to confine the
amount of information that can be surveyed to a highly re-
stricted proprietary database, which significantly reduces the
computational burden associated with information search.
Nevertheless, there are at least two reasons to doubt that
heuristics owe their ability to be fast and frugal to informa-
tional encapsulation. First, heuristics are pervasive in central
cognition, and yet central systems don’t exhibit modular en-
capsulation: a widely recognized feature of central systems is
that they allow for the free exchange of information,2 which is
antithetical to encapsulation (cf. Samuels, 2005). Second, if a
system is informationally encapsulated, there would be little
need for heuristics: information search would be sufficiently
restricted, and the role for heuristics would be superfluous.3

On the other hand, perhaps it is domain-specificity that en-
ables heuristics to operate fast and frugally. Indeed, the po-
tential benefits of domain-specificity and its role in cognition
are especially apparent. As Samuels explains, “if a mecha-
nism is sufficiently domain specific, then it becomes possible
to utilize a potent strategy for reducing computational load,
namely, to build into the mechanism substantial amounts of
information about the domain in which it operates” (Samuels,
2005, p. 111). The suggestion is that heuristics can be fast
and frugal in virtue of the domain-specific information built
into the systems in which they operate.

Nevertheless, if we are to take the lessons from Dennett
seriously, then we must add to this that the information built
into a system must be encoded in a highly organized fash-
ion. A mechanism can take advantage of generous amounts
of domain-specific information encoded in a system, and
thereby enable quick and efficient cognition, but if the infor-
mation is structured or organized in specific ways, it would
enable quicker and more efficient cognition. Contrariwise,
if such information is not structured or organized in specific
ways, it would retard the speed and efficiency of search and
processing. Characteristic human performance on many cog-
nitive tasks suggests that the structures heuristics exploit are
distinctly organized to produce systematicity and robustness
in reasoning and inference.

Moreover, it would seem that a system must not only have a
specific internal structure, but also bear specific intra-system
relations, which would further facilitate quick and efficient
reasoning. Reasoning within one domain often bears in a

1These two properties were, of course, those (among others) that
Fodor (1983) had originally used to define the input-output modules
that he argued subserve peripheral systems.

2This is a feature acknowledged by those who deny central sys-
tems modularity (e.g., Fodor, 1983, 2000; Samuels, 2005) as well as
those who advocate for it (e.g., Carruthers, 2006; Sperber, 1994).

3Of course, there may be other reasons why an encapsulated sys-
tem might deploy heuristics other than information search (e.g., pat-
tern matching), but the claim that I’m trying to make here is that
informational encapsulation and heuristics can be divorced in such
a way that warrants resisting the idea that heuristics satisfice and
require little cognitive resources in virtue of informational encapsu-
lation.

number of ways on other domains. Without such connections
between bodies of knowledge, we would not be able to make
the rich heuristic inferences we characteristically do.

But for all this, there is no need to refer to these organized
systems as “domain-specific”. It seems rather that what is re-
ally doing the work in facilitating fast and frugal cognition
is not domain-specificity per se, but the manner in which the
specific kinds of information is encoded and organized.4 For,
similar to what was recently observed, it is possible that one
can have an unorganized system of lots of domain-specific
information, but it will be doubtful that a cognitive mecha-
nism would exhibit the same speed and efficiency operating
with this unorganized body of knowledge as it would operat-
ing with a highly structured system. Moreover, it is possible
that one can have a domain-specific body of knowledge that
is quite impoverished; and although a cognitive mechanism
would likely be able to operate quickly and efficiently with
such a system, owing primarily to the little information that
ever gets considered, the inferences made would not be as
robust as those made by operations over richer systems.

In summary, a plausible feature of cognitive architecture
that would enable the fast and frugal operations of heuris-
tics is the possession of numerous highly-organized epistemic
systems that allow easy access to certain information in cer-
tain circumstances. Since neither informational encapsula-
tion nor domain-specificity really play a role here, it would
be improper to call these systems modules. But what, then,
could these systems be? It turns out that this philosophically-
inspired analysis converges on some important psychological
models of cognition.

Turning to Psychology and Neuroscience
There is a long tradition in psychology which describes hu-
man representational systems in terms of networks. These
models have roots in semantic processing theories, accord-
ing to which information about words and their meanings
are stored and organized in complex webs of nodes. Nodes
are understood to be specific representations—variously con-
ceived as concepts, features, or lexical items—with connec-
tions that reflect associative and/or semantic relations. (See
Collins and Loftus (1975) for the most popular account of
such a model, which was inspired by Quillian’s (1962) theory
of semantic memory for “an understanding machine”.) A key
idea behind these network models is that a given node can be
activated by some stimulus (e.g., someone uttering the word
“red” activates the node that represents red) and activation
spreads from this node-of-origin to other nodes along exist-
ing connections (e.g., to the fire engine, apple, rose nodes,
and perhaps nodes representing other colours, depending on
existing connections). An initial activation will be specified

4That a system of information is dedicated to a specific domain
no doubt contributes to the extent to which the system is organized,
since there are natural relations among items of information within
a domain. However, domain-specificity itself does not seem to be
necessary for a body of knowledge to be structured and organized in
ways conducive to quick and efficient exploitation.
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by a certain degree of activation which will in turn be divvied
out to other nodes through spreading; those downstream ac-
tivations will thus be correspondingly weaker, and activation
will be divvied up and spread from them, exciting yet weaker
activations of further nodes, and so on until activation peters
out. On some models, the connections are directional and
weighted (according to contextual features, such as recency
or repeated activation) such that activation is more easily fa-
cilitated along certain connections and less easily along oth-
ers.

Such network models have been used as paradigms to in-
vestigate conceptual cognition, memory recall and organiza-
tion, semantic priming, and the properties of lexical systems
(Lucas, 2000), and they are successful in explaining and pre-
dicting a variety of these phenomena (Baronchelli, Ferrer-i-
Cancho, Pastor-Satorras, Chater, & Christiansen, 2013). All
of this can be seen as corroborating the philosophically-
inspired architectural view sketched above. Networks may
be understood to embody the organization of representational
information required for fast and frugal cognition, where
heuristic search is guided by spreading activation.

A Cognitive Architecture
Nevertheless, the usual characterizations of network nodes
are insufficient for an account of cognition. As recently
stated, nodes are usually understood variously as concepts,
features, or lexical items; and qua nodes, they are gener-
ally conceived to be unstructured units. Now, lexical items
really seem to be unstructured units, and as such their na-
tures and roles in cognition may very well be captured
by network models. However, the embodiment view of
concepts or semantics maintains that semantic representa-
tions (at least partly) consist of sensory-motor representa-
tions (e.g., Barsalou, 1999; Meteyard, Rodriguez Cuadrado,
Bahrami, & Vigliocco, 2012; Patterson, Nestor, & Rogers,
2007; Thompson-Schill, 2003). If the embodiment view is
correct—and there is a growing body of evidence favouring
it—concepts and other conceptual representations (e.g., fea-
tures) are not unstructured, but rather are constituted by nu-
merous multimodal representations.5

As I am advancing a theory of how heuristics work, these
considerations urge me to recast network models for spread-
ing activation in such a way that nodes are conceived to be
structured units consisting of numerous multimodal represen-
tations (including affective and lexical information; Meteyard
et al., 2012). In a way, nodes might be understood as net-
works unto themselves where activation of a given node is
spread among the various representations belonging to it, de-
pending on contextual features. For example, one’s apples

5There has been significant discussion regarding the relation be-
tween lexical knowledge and semantic knowledge, and the implica-
tion this would have for network models. Treating these matters
is beyond the scope of this paper. However, I take it as plausi-
ble that semantic information is not exhausted by semantic content
(Meteyard et al., 2012), and that lexical networks are separate but
embedded within semantic networks (Lucas, 2000; cf. Barsalou,
Santos, Simmons, & Wilson, 2008).

node may consist of various representations related to its se-
mantic content (pertaining to colour, shape, taste, use, cat-
egory, etc.). If a stimulus activates this node, a subset of
multimodal representations6 are initially tokened and activa-
tion would spread from there. For instance, representations
concerning the shape and (typical) colour of apples may be
initially activated, and activation would spread to representa-
tions concerning the taste and texture of flesh of apples. Ac-
tivations from those representations would then spread from
the apples node outward to, for instance, representations of
the shapes and colours of other fruits, and perhaps of other
small roundish objects, such as baseballs.

Conceiving network nodes in this way seems to be pre-
cisely what is needed for the philosophically-inspired anal-
ysis of cognitive architecture above. The main lesson there
was that highly organized epistemic structures are needed to
facilitate fast and frugal cognition. In light of what has just
been discussed, the internal structure of nodes together with
the structure of the embedding network appear to provide the
right sort of structures to facilitate access to salient repre-
sentations (to be used to make inferences and judgments) by
means of spreading activation.

Moreover, it would be worthwhile to maintain the fea-
tures of many network models mentioned above, namely that
the connections between nodes are directed and weighted
(Baronchelli et al., 2013). Directed connections determine
the flow of information from one node to another. This means
that, if the connection between node A and node B is directed
from the first to the second, activation of A will spread to B
but not necessarily the other way around, unless there also
exists a directed connection from B to A. On the other hand,
weighted connections can be roughly understood as a param-
eter that helps facilitate information flow between connected
nodes, where heavily weighted connections allow for greater
information flow than less-heavily weighted connections. If
we assume that node activation can vary in strength, then
greater information flow will affect the degree to which nodes
are activated downstream through spreading. For example, if
node A has directed connections to nodes B and C, but A’s
connection to B has a greater weight than its connection to C,
activation will be spread more readily to B enabling it to be
more strongly activated relative to C.

Consider an example. Activating representations of cats
might almost always activate representations of furriness
for an individual, but activating representations of furriness
might activate representations of cats only in certain contexts
(the directed connection is heavily weighted from cats to fur-
riness, and the directed connection is lighter the other way).
Furthermore, if this individual is very familiar with cats, rep-
resentations of furriness might be more readily activated rel-
ative to representations of purr, even though both furriness
and purr bear directed connections from cats. This will entail

6Henceforth, when I refer to representations I mean to refer to
multimodal representations, even though I omit explicit mention of
their multimodal character.
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that, for this individual across contexts involving cat repre-
sentations, cats’ furriness will in general be more salient than
their purring. In short, these features add to the organized
structure of one’s representational system that, as we saw, is
so important to facilitate access to the right representations at
the right times.7

How Heuristics Work
When faced with a cognitive task, the relations among nodes
in a network embody a rich source of implicit (putative)
knowledge concerning the active representations, but which
is not contained within the representations themselves. Such
implicit information includes which representations are as-
sociated with others, structural or hierarchical relation infor-
mation among representations (cf. Lenat, 1982), the measure
and strength of association among representations, and which
representations appear to be salient. This information is there
to be used in various ways by cognitive processes that have
access to it. The present account suggests that heuristics ex-
ploit this implicit (putative) knowledge, not primarily the rep-
resentational content of the representations concerned8 (cf.
Clark, 2002).

To illustrate, let us briefly consider Gigerenzer’s Take the
Best heuristic (Gigerenzer & Goldstein, 1999):

(i) Search among cues; (ii) stop search when one cue
discriminates between two alternatives; (iii) choose the
object picked out by step (ii).

Gigerenzer’s explication of Take the Best assumes that an in-
dividual has a subjectively ranked order of beliefs about cues
that may discriminate between objects, and which are con-
sidered sequentially when making predictions about the ob-
ject along certain dimensions. The highest ranked cue which
discriminates is termed “the best”, and the object that has a
positive value with respect to this best cue will be predicted
to possess some criterion. For example, suppose you had to
choose which of a pair of cities is larger. You might take
recognition as a cue that would discriminate and thereby in-
form your choice. However, if both cities are recognized, you
move down your ordered list of cues to the next one that dis-
criminates. Suppose that having a university is the next cue

7This sort of account of cognitive architecture is notably different
from what is assumed by classical architectures such as ACT-R and
Soar. The latter sorts of architectures assume that cognition consists
of operations over propositions, and further that rules of inference
(e.g., productions) are explicitly represented propositionally. On the
present account, there is no assumption that cognition is proposi-
tional, even though the account is compatible with this assumption.
Further, there is no assumption that heuristics are rule-like, even
though (again) the account is compatible with rule-governed oper-
ations. Thus, the present account has certain advantages over classi-
cal architectures insofar as it is more general, and can accommodate
non-classical architectures as well as multimodal representations.
In addition, unlike what is needed for ACT-R or Soar, the present
account does not assume that problems and problem-spaces are or
must be well-defined.

8I say “primarily” since some representational content may fig-
ure into some heuristic processes. My point, nonetheless, is that rep-
resentational content is not what heuristics generally operate with.

that discriminates on the criterion of city size, and you know
that one city has a university while the other does not. Having
a university would be “the best” cue on this occasion—you
would thus use Take the Best and infer that the city with the
university is the larger of the two (Gigerenzer & Goldstein,
1999).

To explain how this heuristic works in terms of the ac-
count outlined in the present paper, we begin by observing
that a set of representations will be activated by the cogni-
tive task. Network nodes that might be active in this task
can include clusters of representations for city, infrastructure,
roads, traffic, buildings, university, among others; the sorts of
nodes and representations that get activated in a given task is
open-ended depending on the representational and concep-
tual wherewithal of the individual. Now, it is important to
understand that certain beliefs are implied about the cue upon
which the choice in question is made. At the very least, we
can infer that the said cue was believed to be “the best” on
which to make the choice in question, and believing that cue
to be “the best” implies certain things about the representa-
tional content of the cue (as possessed by the chooser), as well
as certain things about how the cue fits within the chooser’s
representational system. For instance, if one believes that
having a university is a good predictor of relative city size,
one’s university representations must be rich enough to sup-
port such a belief, or at least to support the belief that hav-
ing a university is a better predictor of relative city size than
some other cue (e.g., having a major highway). All of this
knowledge is conceived as constituting a particular node as
a cluster of university representations (as indicated above).
Implicit information built into one’s university node might
include, in addition to various representations and conceptu-
alizations that are required to understand what a university
is, information about a university’s function in society; how
it houses a number of faculty, staff, and students; perhaps
the relative social classes of members of a community typical
of such faculty, staff, and students; maybe the ways in which
having a university relates to the economy of a city; and prob-
ably much more. Indeed, it is such information that generally
makes one believe that having a university is a good predictor
of relative city size. In other words, this implicit knowledge
will help guide one’s reasoning to infer that the city with the
university is a large city, or at least larger than the other. (We
might recall here the lesson from Dennett discussed above.)

The diagram in Figure 1 is a rough characterization of a
possible network that would be active in the Take the Best
task we have been discussing. The structure exhibited sug-
gests to the chooser that having a university, being a capi-
tal city, having an airport, and having a major highway run
through the city are implicitly believed to indicate relative
city size. Take the Best can thus be viewed as operating with
the suggested structure to deliver an inference that the city
in question is the larger of the two under consideration. In
general, heuristics are conceived to exploit active structures
made available through spreading activation (i.e., heuristics
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Figure 1: Proposed network structure arising from Goldstein and
Gigerenzer’s (1999) task of predicting which of two cities is larger.
Each node is understood to be structured clusters of representations.
Arrows represent directed connections and line thickness represents
weights of connections.

don’t operate over non-active connections). Note in the Fig-
ure the multiple, heavily-weighted connections pointing to
the large city node—the Take the Best heuristic would ex-
ploit this information made available through the spreading
activation process.

On this view, we might thus understand one’s belief that
having a university is a good predictor of relative city size to
be implicit in metainformational structures that exist among
representations comprising the network. In this way, beliefs
about discriminating cues need not be explicitly represented.
This is contrary to Gigerenzer’s view that the belief that a
cue discriminates is explicitly represented and searched. Also
contrary to Gigerenzer’s view is that heuristics are here un-
derstood to operate by generally ignoring representational
content. Instead, heuristics utilize cognitive structures (viz.
connections that exist among nodes and representations) that
implicitly embody higher-order information (or knowledge)
about active representations and their content9 (cf. Clark,
2002).

In addition, on the present account, it will be very com-
mon for one to activate lots of conceptual content. This is
because the cognitive tasks we typically face have a high cog-
nitive load, and as such, navigating these tasks invoke large
amounts of representations and informationally rich connec-
tions among them. This is antithetical to Gigerenzer’s as-
sumption that heuristic decision-making is often based on one
reason (Gigerenzer & Goldstein, 1999; Gigerenzer, 2000).
Indeed, it is unlikely that one will only invoke a handful of
cues to decide, especially if one possesses significant knowl-
edge about the task (cf. Hilbig, 2010). For instance, as illus-
trated in Figure 1, one might invoke numerous representations
concerning not only universities, but also concerning whether

9I propose as a possibility that the information embodied by the
wighted, directed connections among representations may be stored
in convergence zones (A. R. Damasio, 1989; H. Damasio, Tranel,
Grabowski, Adolphs, & Damasio, 2004), which is accessible to
heuristics.

a major highway runs through one or both cities in question;
whether one or both cities have a professional sports team;
whether one has heard one city in the news more often than
the other; whether there is a famous museum in one or both
cities; whether one knows of a major river in either of the two
cities; whether one has any friends or relatives who have vis-
ited either city; and much more. And all the activated nodes
and representations would bear various connections to one
another, thus providing structures to be exploited by heuris-
tics and other processes.

Importantly, despite the exploitation of generous amounts
of information, none of this implies that heuristics are not
frugal. Frugality is a key feature of heuristics, and moreover,
heuristics are supposed to satisfice (Simon, 1957). And this
entails that most information will not get considered in their
processing (Gigerenzer & Gaissmaier, 2011); that is, satis-
ficing and frugality go hand-in-hand. According to the ac-
count advanced here, one’s representational wherewithal does
most of the heavy lifting in cognition, not the heuristics them-
selves. That is, the cognitive architecture bears the informa-
tional burden. Heuristics are cognitively cheap solutions to
problems for which an expensive cost has been requisitely
paid.10

Conclusion
The theory outlined in this paper was advanced to explain
how heuristics work in cognition. It is my hope that it will
also serve to motivate researchers to take seriously the need
to better understand what cognitive heuristics are and how
they operate. Since heuristics are supposed to play a large
role in our cognitive lives, our picture of human cognition
will remain incomplete without such an understanding.

I acknowledge that more work needs to be done to corrob-
orate the foregoing understanding of how heuristics work. I
(all too briefly) illustrated how the Take the Best heuristic can
be understood in terms of the theory outlined in this paper.
Other heuristics in the literature can be similarly understood,
but it is not possible to show this here. Further research must
be done to explore more fully the nature of our representa-
tional structures and systems, the nature of the relations be-
tween representations and representational content, as well as

10van Rooij, Wright, and Wareham (2012) have recently (and
compellingly) argued that the common conception that heuristics are
solutions to computationally intractable (NP-hard) problems is mis-
taken. Roughly, they argue that, since intractable problems are by
definition intractable, any solution (heuristic or otherwise) would be
a solution to some other tractable problem (cf. Besold, 2013). I lack
the space to fully discuss this matter. However, the theory offered
here avoids the problem discussed by van Rooij et al. since, as noted,
there is no assumption that there are prepackaged, well-defined,
computationally intractable problems that are solved by heuristics
(cf. footnote 7 above). Instead, the problems that heuristics solve
are ones that arise from the (dynamic) patterns of spreading activa-
tion in the network. In this way, problem-spaces are sort of defined
on the fly, and heuristics set about navigating those spaces. Impor-
tantly, the relevant problems can very well be understood as fully
tractable. Of course, we are then faced with the (separate) task of
producing a clear computational-level characterization of the prob-
lems that are solved.
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to provide more detail on how heuristics are sensitive to and
interact with the structures that comprise a network.
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