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Abstract 

This study examined the validity of the Bose-Einstein (B-E) 
model of the Compound Stimuli Visual Information (CSVI) 
task, and its assumptions. Two experiments compared adults’ 
performance on the CSVI task in standard (5 sec) presentation 
condition and with shorter presentation times. Individual 
participants’ performance was analyzed with the B-E model, 
with different assumptions on the number of attending acts in 
each condition. Both experiments found that the capacity limit 
estimates found in both conditions were highly correlated 
with each other, and their means did not differ. The goodness 
of fit of B-E distributions to the data was also tested. It is 
concluded that the B-E model provides a valid estimate of 
attentional capacity limits in the CSVI. 
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Introduction 
There is currently widespread agreement that (i) working 
memory capacity is a major predictor of intelligence, 
reasoning ability, and other complex skills, (ii) the 
development of working memory capacity has an important 
role in many aspects of cognitive development, and (iii) 
domain-general, capacity-limited attentional resources are a 
core component of working memory and a basic 
determinant of its capacity (e.g., Anderson & Lebiere, 1998; 
Barrouillet, Bernardin & Camos, 2004; Cowan, 2002, 2005; 
Engle, Kane & Tuholski, 1999; Gathercole & Alloway, 
2007; Halford, Wilson & Phillips, 1998; Oberauer, 2002; 
Vergauwe, Devaele, Langerock & Barrouillet, 2012). 

A pioneering article by Pascual-Leone (1970) anticipated 
long ago these three statements, arguing that the motor of 
cognitive development throughout Piagetian stages and sub-
stages is the maturational increase of a general-purpose 
resource (called “central computing space” in that article). 
Pascual-Leone (1970) also suggested that the nature of that 
resource is a limited amount of attentional energy (or 
“mental energy”, from which the term “M capacity” to 
indicate the amount of this attentional resource), and that M 
capacity is at the core of Spearman’s general intelligence. 
Increase of M capacity with age would enable children to 
activate a larger number of Piagetian “schemes” and, 
therefore, to construct increasingly complex cognitive 
structures. 

To test his model of M capacity and cognitive 
development, Pascual-Leone (1970) created the Compound 
Stimuli Visual Information (CSVI) task and administered it 
to groups of children of different age. In a training phase of 
the task, participants acquired a repertoire of specific 
schemes, by learning to respond to different features of 
figures (e.g., square, red, dashed contour…) with different 
gestures (e.g., nod head, raise arm, stand up). When a child 
had fully learned these S-R pairs or “artificial schemes”, the 
testing phase started; figures with different numbers of 
relevant features were presented for 5 sec each, and the 
child’s task was to respond appropriately to each feature she 
could detect. Pascual-Leone assumed that children allocate 
attention to the task features according to a probabilistic 
model. Participants were assumed to have a limited capacity 
k (where k is an integer, increasing with age) that can be 
used to simultaneously activate no more than k schemes. 
Participants can attend repeatedly to the stimulus (having k 
units of capacity available on each attending act); in 
particular, Pascual-Leone (1970) assumed that after each 
attending act a participant evaluates whether she observed 
the stimulus well enough, and after k attending acts the 
participant feels attentional saturation and stops exploring 
the figure.1  Thus, with long stimulus presentation and 
unlimited response time, a participant will attend to each 
stimulus figure k times, each time with a capacity of k units, 
for a total of k2 available units of capacity. Pascual-Leone 
(1970) also assumed that the probability distribution of the 
number x of correct responses to items with n relevant 
features is a Bose-Einstein (B-E) distribution. 

The probability mass function of this distribution (see also 
Feller, 1968) is: 
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and, as a more intuitive metaphor, one can think of r 
undistinguishable balls thrown to a set of n distinguishable 

                                                           
1 The assumption that the participant attends to a stimulus k 

times is clearly a simplification; a capacity of k does not logically 
imply that also the number of attending acts is k. However, it 
seems at least plausible that, having in episodic short-term memory 
(on average) k evaluations of a stimulus, a participant may feel 
that, with that stimulus, all of the job is done. 
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boxes, with the random variable x representing the number 
of boxes that turn out to be occupied by at least one ball. 
Referring to the CSVI, n is the number of (distinct) relevant 
features in a stimulus, r is the number of (undistinguishable) 
units of attentional capacity allocated to the stimulus, which 
takes the value of k2 for the reasons given above, and x is 
the random variable that expresses the number of features 
detected and responded to. 

The developmental theory proposed by Pascual-Leone to 
account for Piagetian stages claimed that k = 2 in typical 
five-year-olds, and k would increase on average by 1 unit 
every second year, until a capacity of 7 units (reminiscent of 
the “magical number seven” of Miller, 1956) is reached 
during adolescence. 

The results of that pioneering study were broadly in 
agreement with these hypotheses, and a number of other 
studies, with different methods, also supported this theory of 
capacity development in childhood and adolescence (see 
Morra, Gobbo, Marini & Sheese, 2008, for a review). 
Moreover, subsequent studies, using either the original 
CSVI task or a computerized version with a special 
keyboard for responses, yielded results consistent with the 
B-E model (e.g., Globerson, 1983; Johnson, Im-Bolter & 
Pascual-Leone, 2003); in our lab we obtained a mean 
estimate of k = 6.21 from an adult sample (Morra, 2015). 

Nevertheless, some aspects of the CSVI and its B-E 
model could be questionable. First, a long exposure of 
stimuli could afford chunking or rehearsal strategies, which 
in turn would yield invalid (over-)estimates of capacity 
(Cowan, 2001). Second, one could wonder how plausible 
the assumption that, with long stimulus presentation, 
participants actually attend k times to the stimulus. Finally, 
great progress has been made in the last decades in the field 
of methods to assess the goodness of fit of expected to 
observed distributions; it would be desirable to assess the fit 
of the B-E distributions with more refined methods than 
those used at the time of the original study. 

This paper aims to assess the validity of the B-E model 
and its assumptions. In particular, we assess whether brief 
presentation of the stimuli, followed by a mask, so that the 
participant can attend to the stimulus only once, yields 
capacity estimates equivalent to those obtained with the 
original 5 sec presentation under the assumption of k 
attending acts. Moreover, we shall evaluate the goodness of 
fit of B-E distributions to the distribution of correct 
responses observed in our participants. 

Experiment 1 
In this experiment we compared two conditions of the 
CSVI, one with stimuli presented for 5 sec as usual for this 
paradigm, and the other with a brief presentation of 80 msec 
followed by a mask. It was obviously expected that more 
features would be detected with long than brief presentation. 
The main hypotheses, however, were the following. 

First, a parameter k representing the participant’s limited 
attentional capacity (i.e., the number of units available on 
each attending act) can be estimated in both conditions, 

assuming that the stimulus is attended to k times in the long 
presentation condition, for a total of k2 available units. In the 
short presentation condition, however, we assume that only 
one attending act is possible, so that the number of available 
units is equal to k. Although more features can be detected 
in the long presentation condition, because k2 units are 
available in this condition and only k are available with 
short presentation, we hypothesize that the mean estimate of 
k is the same in the two conditions. 

Second, if the estimate of k obtained from the CSVI is a 
valid measure of participants’ capacity, then the individual 
participants’ k measures obtained in both conditions should 
be highly correlated. 

 

Method 
Participants A total of 20 adults (18 women and 2 men), all 
with university education, with a mean age of 22.1 years 
(s.d. = 2.7) volunteered for this experiment. 

 
Materials and Procedure The CSVI requires participants 
to respond to multiple features of a visual stimulus by 
pressing different keys on a special response box. The 
stimuli were presented on a 15-inch CRT monitor; the 
participant was comfortably sitting at a viewing distance of 
approximately 70 cm. The relevant features were square 
shape, red color, large size, dashed contour, presence of a 
frame around the figure, presence of an X in the centre, 
presence of an O in the centre, presence of a bar under the 
figure, and purple background. The response box had 12 
keys, clearly distinguishable by shape and color. Nine keys 
were associated each to one of the 9 relevant features, two 
more keys were dummy fillers, and a larger red key was an 
“enter” key to be pressed by the participant to signal that 
s/he had finished responding to a trial. 

The training stimuli were 72 figures, used to train 
participants on each of the 9 features; in each set of 8 
figures, the intended feature was present in 4 and absent in 
the other 4. For each feature, the experimenter told the 
participant which key was associated to it and required the 
participant to respond. The practice stimuli were 50 figures, 
including 45 with one relevant feature (5 per each feature) 
and 5 with no relevant feature. They were used to allow the 
participant to practice correct responses to each feature, 
until a criterion of perfect performance was reached. 
Finally, there were 2 more practice stimuli with 3 features 
each; one was presented for 5 sec and the other for 80 msec 
for the participant’s response. 

There were 56 test stimuli, i.e., 8 trials for each level from 
2 to 8, where a “level” is defined as the number of relevant 
features present in a stimulus. The stimuli were arranged in 
a pseudo-random fixed sequence, the same for all 
participants. This sequence was divided into four blocks, 
each of which included two trials of each level. Each 
stimulus in the first and third block was presented for 80 
msec, followed by a mask, and those in the second and 
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fourth block for 5 sec each; the sets of stimuli presented in 
each condition were counterbalanced over participants. 

 
Results and discussion Each trial was scored for number of 
correct responses, i.e., number of correctly detected 
features. Each participant’s total number of correct 
responses (maximum possible = 140) was computed in both 
short and long presentation conditions.  

The participants’ total number of correct responses ranged 
from 52 to 115 (mean = 85.10, s.d. = 17.56) with short 
presentation, and from 114 to 138 (mean = 125.40, s.d. = 
6.50) with long presentation. The effect of presentation time 
was significant, t(19) = 13.59, p < .001. This outcome was 
expected as quite obvious, and this analysis was carried out 
merely as a manipulation check, to ensure that short 
presentation actually reduced participants’ ability to detect 
the relevant features. 

The point of actual interest was the comparison of the 
capacity estimates obtained in both conditions. A 
participant’s vector of mean number of correct responses on 
levels 2 to 8 was compared with all vectors of expected 
means generated by the Bose-Einstein model for each value 
of k from 2 to 9. In the B-E distributions, n was the number 
of features in each level, x was the number of correct 
responses (1 ≤ x ≤ n), and r was set as k in the short 
condition and k2 in the long condition. The k value that 
yielded the smallest chi-square was selected as the best 
fitting estimate, in that condition, of the measure k of the 
participant’s capacity. 

As explained above, we assumed k attending acts with 
long presentation, but only 1 with short presentation. Under 
these assumptions, the mean estimated value of k was 6.55 
(s.d. = 1.50) with long presentation, and 6.90 (s.d. = 2.25) 
with short presentation. The difference between these means 
was nonsignificant, t(19) = -1.02, p > .32. 

The implication of this finding seems clear; although 
fewer relevant features were detected correctly with short 
presentation, the B-E estimates of attentional capacity in the 
two conditions were equivalent, provided that adequate 
assumptions were made on the number of attending acts in 
each condition. In other words, the different number of 
correct responses in the two presentation conditions was due 
to the different number of attending acts in each condition, 
but the participants’ capacity limit remained the same across 
conditions. 

The correlation between the estimates of k obtained with 
long and short presentation was highly significant, r(18) = 
.73, p < .001. This high correlation, together with the 
nonsignificant difference between the means, strongly 
suggests that the k estimates obtained in the two conditions 
measure the same construct. 2 

                                                           
2 The estimate of a participant’s k is based on the distribution of 

correct responses in the whole task. As a proxy to reliability of 
measurement, we computed the correlation between the number of 
correct responses in the first and second half of the task, which was 
r = .88 for short presentation and r = .68 for long presentation. 

Experiment 2 
This experiment was identical to the previous, with only one 
change. We replaced the short presentation (80 msec + 
mask) condition with a condition in which the participant 
would see the stimulus for three times,3 each of them with a 
presentation of 80 msec, followed each time by a different 
mask. We assumed that, in this condition, the participant 
would attend to each stimulus exactly three times. 
Therefore, the long condition (in which we assume, 
according to Pascual-Leone’s task analysis, k attending acts 
for a total of k2 units of attentional capacity) can be 
compared with a triple-short condition, in which we assume 
3 attending acts for a total of 3k available units. 

Method 
Participants A total of 20 adults (11 women and 9 men), all 
with university education, with a mean age of 21.7 years 
(s.d. = 2.4) volunteered for this experiment. 

 
Materials and Procedure Everything was identical to the 
previous experiment, except that the short presentation 
condition was replaced by a triple-short condition, in which 
the stimulus was presented for three times in a row, each 
time for 80 msec, and each time followed by a different 
mask. 

 
Results and discussion The way of scoring and analyzing 
the data was the same as in the previous experiment, except 
that, to estimate the amount k of the participant’s capacity, 
in the B-E distributions r was set as k2 in the long condition 
and 3k in the triple-short condition. 

The participants’ total number of correct responses ranged 
from 87 to 129 (mean = 108.55, s.d. = 11.86) with short 
presentation, and from 115 to 137 (mean = 123.80, s.d. = 
5.96) with long presentation. The effect of presentation time 
was significant, t(19) = 6.69, p < .001. This shows that, 
compared with long presentation, also the triple-short 
presentation actually reduced participants’ ability to detect 
the relevant features. 

Assuming k attending acts with long presentation and 3 
with short presentation, the mean estimated value of k was 
6.25 (s.d. = 1.59) with long presentation, and 6.30 (s.d. = 
2.23) with triple-short presentation. The difference between 
these means was nonsignificant, t(19) = -.12, p > .90. 

The correlation between the estimates of k obtained with 
long and short presentation was significant, r(18) = .53, p < 
.02. Once again, the significant correlation between the two 
estimates of k, together with the nonsignificant difference 
between their means, indicates that the k estimates obtained 
in the two conditions measure the same construct.4 The 

                                                           
3 The authors are very grateful to Nelson Cowan for suggesting 

this experiment. 
4 In this experiment, the correlation between the number of 

correct responses in the first and second half of the task was r = .73 
for short presentation and r = .59 for long presentation. 
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findings of the first experiment can be generalized to the 
comparison between the two conditions of the current one.  

Fit of Probability Distributions 
Both experiments reported above included conditions in 
which the manipulation of presentation times ensured that 
participants could attend to the stimulus only once or three 
times, respectively. The estimates of k obtained with long 
presentation were equivalent to those obtained, respectively, 
with short or triple-short presentation; therefore, we can 
conclude that the assumption of k attending acts in the long 
condition was supported. It can also be concluded that the 
capacity estimates obtained from the CSVI task with short 
or long presentation have a similar degree of validity. 

However, it remains to examine whether the distribution 
of correct responses in the CSVI task actually approximates 
the B-E distribution. In the short and triple-short conditions 
we only have the data of 20 participants per condition – too 
few for assessing the form of their distributions. In the long 
condition, however, we can use the data from 60 people, 
i.e., 20 from each of the experiments reported above, and 20 
more from another similar experiment (Morra & Patella, 
2012, Exp.1).  Because each participant performed 4 trials 
per level, with 60 participants we can rely on 240 data 
points for each of the distributions from level 2 to 8 in the 
long condition. 

The participants were classified according to their k-value 
estimated in the long presentation condition. B-E 
distributions were generated for all values of n from 2 to 8 
and all values of k from 4 to 9 (i.e., for the complete range 
of values found in the participants). Then, expected 
distributions for the total sample were obtained, for each n, 
as a weighted average of the distributions for each k value, 
with weights proportional to the number of participants who 
obtained that k value. The goodness of fit of these 
distributions to the data was assessed by mean of chi-square 
tests. For these tests, whenever the expected frequency of a 
value of x (i.e., for a certain number of correct responses) 
was < 1, both the expected and the observed frequencies for 
that x were collapsed with the following value of x. 

The observed distributions and the distributions predicted 
from the B-E model are shown in Figure 1. Table 1 presents 
the goodness of fit of the B-E model (i.e., the chi-squares 
for the comparisons between observed and expected 
distributions, along with their probabilities) for each of 
these distributions. 

As an alternative model, to be contrasted with the B-E 
model, we devised a binomial model. In this binomial 
model we assumed that, when a stimulus was presented, at 
least one feature would be detected, and the other features 
would be detected with a certain probability p, to be 
estimated from the data. The estimated value of p was .866. 
This alternative model has some face plausibility, because it 
makes simple assumptions on dichotomous events (each 
feature can either be detected or not), but it does not assume 
limited attentional capacity or indistinguishable units of 
attentional resources. The goodness of fit of the 

distributions predicted by this binomial model was tested in 
the same way as for those predicted by the B-E model. 

The distributions predicted from the binomial model are 
also shown in Figure 1. Table 2 presents the goodness of fit 
of the B-E model for each of these distributions. 

 
 

    

       

   
 

Figure 1: Observed distributions of correct responses 
(each from 240 data points) and expected distributions from 

the Bose-Einstein and the binomial models, for each 
stimulus level from 2 to 8. 

 
 
 

 
Table 1: Goodness of fit of the Bose-Einstein model to 

the observed distributions. 
 

n     χ2 d.f.    p 
2   6.47 1 .011   * 
3   3.39 2 .183 
4   8.34 2 .015   * 
5   1.66 3 .647 
6   4.47 3 .215 
7   7.65 4 .105 
8 13.84 4 .008   ** 

 

(Note: * p<.05, ** p<.01 for the discrepancy between an 
observed and an expected distribution) 
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Table 2: Goodness of fit of the binomial model to the 
observed distributions. 

 
n     χ2 d.f.    p 
2 28.50 1 9 E-8    *** 
3 25.93 2 2 E-6    *** 
4 27.25 2 1 E-6    *** 
5   4.62 3 .202 
6   4.32 3 .229 
7 15.31 3 .002      ** 
8 63.18 4 6 E-13  *** 

 

(Note: * p<.05, ** p<.01, *** p<.001 for the discrepancy 
between an observed and an expected distribution) 

 
Both Figure 1 and Table 1 indicate that the Bose-Einstein 

distributions fit the data reasonably well. Four out of seven 
distributions showed a good fit (p > .1) and in two other 
cases (n=2 and n=4) the discrepancies between expected and 
observed distributions, although significant, were actually 
very small. Only for n=8 there is some notable difference 
between observed and observed distributions, the observed 
scores being slightly lower than predicted by the model. 

Figure 1 and Table 2 show that the binomial model, 
instead, did not fit well the data. Only two of the seven 
distributions fit the data well, and in the other five cases the 
discrepancies between observed and expected distributions 
were much larger. Also in the case (n=8) where the fit of the 
B-E model was least satisfactory, still the B-E model was 
much closer to the observed data than the binomial model 
was. 

One could still wonder whether the good fit of the B-E 
model to the data was not an artifact, due to the calculation 
of a weighted average of six B-E distributions (for the six 
estimated values of k found in different participants). To 
check for this possibility we computed, in the same way as 
above, the goodness of fit of 42 B-E distributions (i.e., 7 
values of n times 6 values of k), in order to detect any 
possible bias or interaction between k values and the fit of 
the distributions. We do not report here the details of this 
analysis, but we only mention that, out of 42 tests, only 4 
showed a significant (p<.05) discrepancy between the 
observed and expected distributions. In particular, the 
participants with k=5 performed better than predicted on 
level 2 stimuli, and with smaller variance than predicted on 
level 7 stimuli; the participants with k=7 performed better 
than predicted on level 4 stimuli; and the participants with 
k=9 performed better than predicted on level 7 stimuli. No 
systematic bias or effect for different values of k could be 
detected, and therefore we can rule out the possibility that 
there was any artifact due to averaging B-E distributions for 
different groups of participants. 

Conclusions 
A detailed comparison between the predicted and observed 
distributions supported the validity of the B-E model, with 
parameters n and k2, for the number of features that 
participants can detect in stimuli presented for 5 sec. The 

results of both experiments 1 and 2 showed that the 
estimates of k obtained for each participant from stimuli 
presented for 5 sec do not differ from, and correlate highly 
with, the estimates obtained in conditions of shorter 
stimulus presentation. 

Therefore, all of the results of this study support the view 
that the B-E model, with the assumption of k attending acts 
to stimuli presented for 5 sec, with k units of attentional 
capacity available on each attending act, offers a valid and 
reliable estimate of the participants’ attentional capacity. 

The estimated capacity of the participants in both 
experiments, averaged across experiments and conditions, 
was 6.5. 

This study differed from the original (Pascual-Leone, 
1970) because the participants were adults instead of 
children, the responses were given pressing different keys 
on a special keyboard, the stimuli were presented for either 
5 sec or shorter times, and the testing technology and the 
statistical tools were more refined than they could be when 
the original study5 was carried out. Despite all these 
differences and, in some cases, methodological refinements, 
all of the results supported the original B-E model. We can 
conclude that the CSVI task, analyzed according to the B-E 
model, can be used reliably to estimate the limits of 
attentional capacity. 

It would be useful to compare the estimates of k derived 
from the CSVI with the capacity estimates obtained with 
other procedures, such as complex span or change detection. 
Complex span tasks (e.g., the counting span; Case, 1985) 
are often used as working memory measures; a comparison 
would require modelling the encoding and retrieval 
operations of the memory task, as well as the capacity 
demands of the interpolated task. Other researchers (e.g. 
Cowan, 2001) used a visual array task to derive capacity 
estimates that are generally lower than the ones proposed by 
Pascual-Leone, and obtained here. Morra and Patella (2012) 
suggested that this discrepancy could be explained, noting 
that Cowan’s estimate only considers the declarative 
information involved in the visual array task, but if one also 
takes into account the attentional capacity allocated to the 
procedural information, then the two estimates come closer. 
Space limitations prevent extensive discussion here of this 
problem, which will be the topic of a subsequent paper. 
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