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Abstract

The aim of the present paper is to show that, contrary to the
main current approach to numerical cognition, the link be-
tween space and numbers cannot be reduced to the concept of
a mental number line (MLN). A distinction between low-level
numerical skills, that involve MLN processing, and higher-
level arithmetical skills, which are related to algorithmic pro-
cessing, is needed in order to understand the different contri-
bution given by visuo-spatial skills.
I suggest that cognitive skills related to symbolic manipula-
tion should be analyzed on their own in order to better under-
stand the importance of spatial representation for arithmetical
processing and, to this purpose, I propose a model of algo-
rithmic skills that could be useful to study some typical fea-
tures of symbolic manipulation, such as the influence of spatial
schemes and the role for external resources in working mem-
ory offloading.
Keywords: Numerical cognition; Extended cognition.

Introduction
An important line of research in the field of numerical cogni-
tion is focused on the link between numbers and space. Many
empirical data suggest that spatial representation and visuo-
spatial skills are involved in various number related cognitive
activities, as magnitude representation, magnitude compari-
son, simple mental arithmetic and multidigit calculations.
A very influential explanation of space/number interaction,
which focuses on the concept of a mental number line (MLN),
is based on the fact that numerical and spatial representa-
tion are mediated by common parietal circuits (Dehaene,
Bossini, & Giraux, 1993; Hubbard, Piazza, Pinel, & Dehaene,
2005). However, this kind of explanation does not seem to fit
with other types of space/number correlations, like those im-
plied in the performance of multidigit arithmetical procedures
(Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013).
The aim of the present paper is to show that the link be-
tween space and numbers cannot be reduced to the concept
of a MLN. We should recognize different kinds of cognitive
contribution of space representation above numerical skills,
according to the level of cognitive activity considered. A
distinction between low-level numerical skills, that involve
MLN processing, and higher-level arithmetical skills, which
are related to algorithmic processing, is needed in order to
understand the different contribution given by space-related
skills.

Space and magnitude representation
A set of robust empirical data, mostly connected to the study
of the Spatial Numerical Association of Response Codes
(SNARC) effect, suggests that numerical representations trig-
ger spatial ones, with smaller numbers connected to the left
side, and bigger numbers to the right side of the space.

Verifications of the SNARC effect are based on simple nu-
merical tasks such as parity judgement (Dehaene et al., 1993)
and magnitude comparison (Brysbaert, 1995). In parity
judgement tasks, where subjects are asked to classify a num-
ber as odd or equal by pressing either a right or a left-hand po-
sitioned key, left-hand responses are faster for smaller num-
bers and right-hand responses are faster for larger numbers.
Magnitude comparison consists of judging whether a num-
ber is smaller or larger than a given one. Here, when left-
hand and right-hand keys stand for, respectively, “smaller
than” and “larger than”, responses are faster than the inverse
response-key configuration.
These cognitive effects led to the hypothesis of a MLN,
where numbers are ordered from smaller to larger accord-
ing to a left-to-right or right-to-left orientation, depending
on the writing direction (Restle, 1970; Seron, Pesenti, Noël,
Deloche, & Cornet, 1992; Dehaene et al., 1993). A recent
animal cognition study (Rugani, Vallortigara, Priftis, & Re-
golin, 2015) brings a strong evidence toward the existence of
a left-to-right oriented MLN in newborn chicks, suggesting
that experiential factors or even, in humans, cultural conven-
tions (as the writing direction) may intervene in modulating
or modifying the innately left-to right oriented MLN.
Evidence of the existence of a MLN come also from cogni-
tive neuropsychology. In line bisection tasks, in which sub-
jects are asked to indicate the midpoint of a line, hemi-neglect
patients have the tendency to move the midpoint towards the
portion of the line opposite to the controlesional (usually left)
portion of the space (Driver & Vuilleumier, 2001). Interest-
ingly, when tested on number bisection tasks, where subjects
are asked to specify the midpoint number of various numer-
ical intervals, these patients show a bias toward larger num-
bers, which suggests that spatial neglect affects also the MLN
(Vuilleumier, Ortigue, & Brugger, 2004; Zorzi, Priftis, &
Umiltà, 2002).1

Some researchers argue that several cognitive strategies for
number processing have been developed to take advantage
from the interaction between numerical and spatial represen-
tations. Strategies based on the use of the MLN are involved
in some mental operations, like subtractions, more than in
others, like multiplications, which rely mostly on verbal facts
retrieval (Dehaene & Cohen, 1997; Ward, Sagiv, & Butter-
worth, 2009). Also, performances on visuo-spatial tasks in
preschool children are positively related to the development

1This topic is currently debated. A thorough study involving 16
right brain-damaged subjects shows a dissociation between devia-
tions in physical and number line-bisection tasks, suggesting that the
navigation along physical space and number lines is governed by dif-
ferent brain networks (Doricchi, Guariglia, Gasparini, & Tomaiuolo,
2005).
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of more advanced arithmetical skills (LeFevre et al., 2010).
This fact is a further sign of the importance of space-numbers
interaction. However, some aspects of the cognitive mecha-
nisms underlying this interaction remain unexplained.

Neurocognitive explanations
Since the last decade of the past century, many researchers
have inquired into the neural basis of numerical cognition.
An influential model is Dehaene’s triple-code model of num-
ber processing (Dehaene, 1992). According to Dehaene,
number representation involves different neural substrates in
which numerical information is encoded visually (as strings
of arabic digits), verbally (as number words, sets of number
facts etc.), and analogically (as magnitide). The latter kind
of numerical representation is mediated by a neurocognitive
system called “number module”, or Approximate Number
System (ANS), which is shared by different animal species
and makes for the representation of approximate quantities
(Dehaene, 2011; Landerl, Bevan, & Butterworth, 2004; Pi-
azza, 2010).
The typical problem in which the ANS comes into play is the
comparison between different sets of objects to decide which
is the largest. Some researchers suppose that the ANS is the
only preverbal representational system needed for the devel-
opment of basic numerical concepts (Piazza, 2010). Spelke
(2011) combines the work of the ANS with the information
gained by the Object Tracking System (OTS), which pro-
vides the capacity to recognize at a glance the number of
objects in sets less than or equal to 4 items (subitizing). In
this account, the OTS supports the representation of inte-
gers, which is needed for symbolic arithmetic processing. On
the contrary, Leslie, Gelman, and Gallistel (2008) propose
that the representation of exact quantities does not involve
the OTS. Instead, the natural number set is recursively con-
structed through the successor function on the base of some
innate concept of integer number—the concept of exactly one,
at least—and, then, is mapped on the approximate magnitude
representations given by the ANS.

A Theory Of Magnitude (ATOM)
Despite the aforesaid differences, all theoretical accounts rec-
ognize a crucial role of the ANS. Moreover, space-numbers
correlations, as those revealed by the SNARC effect, sug-
gest that there should be some kind of interaction between
neural circuitry involved in spatial and numerical process-
ing. In fact, functional MRI (fMRI) studies reveal that non-
symbolic number processing activates neurons of a bilateral
parietal cortical area, the Intra-Parietal Sulci (IPS), which
have a functional role also in visuo-spatial and manual tasks,
such as grasping and pointing (Butterworth, 2000; Hubbard
et al., 2005; Pinel, Dehaene, Rivire, & LeBihan, 2001; Si-
mon, Mangin, Cohen, Bihan, & Dehaene, 2002).
In 2003 an influential proposal, called A Theory Of Mag-
nitude (ATOM), was made in order to “bring together [...]
disparate literatures on time, space and number, and to show
similarities between these three domains that are indicative

of common processing mechanisms, rooted in our need for
information about the spatial and temporal structure of the
external world” (Walsh, 2003). According to Walsh, the pari-
etal cortex represents environmental information about dif-
ferent kinds of magnitudes—number, space, time, size, speed
etc.—whose interaction are supposed to have a specific—and,
to date, neglected—meaning for the guidance of action. In
Walsh’s view these cognitive interactions are due to overlap-
ping sets of parietal neurons that share a common metric for
magnitude representation, and this fact is at the base of the
SNARC effect. ATOM predicts that the SNARC effect is
an instance of a broader SQUARC (Spatial QUantity Asso-
ciation of Response Codes) effect, “in which any spatially
or action-coded magnitude will yield a relationship between
magnitude and space” (Walsh, 2003). In some cases this pre-
diction has, indeed, been verified (Bueti & Walsh, 2009).

Space and arithmetical skills
So far, ATOM represents the most convincing explanatory
account of the link between numerical and spatial represen-
tations. However, the question about the function of non-
symbolic magnitude representation in the development of
arithmetical skills remains opened.

Developmental dyscalculia and spatial skills
Developmental dyscalculia (DD) is a learning disability
which specifically affects the acquisition of arithmetical skills
in otherwise normal subjects. In its pure form (i.e., without
co-morbidity with other learning problems, such as dyslexia
or attention-deficit-hyperactivity disorder) it is estimated that
it affects 3−6,5% of school-age population. As other learn-
ing disabilities, it is thought to have a neural basis (Shalev &
Gross-Tsur, 2001).
Given the essential function in number processing accorded
to the ANS—which is neurally located in the bilateral intra-
parietal sulci—it is natural to suppose that DD is related to
impairments to this neurocognitive module (Dehaene, 2011;
Piazza, 2010).
However, a recent paper by Szucs et al. (2013) reviews previ-
ous experiments directed at verifying the implication of ANS
impairments for DD and denies that we have sufficient em-
pirical evidence to prove this correlation. They conducted an
extensive series of tests and experiments on a population of
1004 DD affected 9-10-year-old children, concluding that the
main cognitive factors that cause DD are visuo-spatial mem-
ory and inhibition impairments which, crucially, are related to
IPS activity as well as the ANS. Consequently, they propose a
different approach to the explanation of DD in which findings
about IPS morphological and functional differences between
DD subjects and controls (Mussolin et al., 2010; Price, Hol-
loway, Räsänen, Vesterinen, & Ansari, 2007; Rotzer et al.,
2008) are linked to general purpose cognitive processes in-
volving the IPS, rather than magnitude representation deficits.
In particular, inhibition impairments “could lead to mathe-
matical problems because Numerical Operations require the
temporal and spatial (in imagination) coordination of several
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processes and the retrieval of several highly similar facts—
impaired inhibition probably interferes with the organization
of these processes” (Szucs et al., 2013). Also, inhibitory
processes seem to have a crucial function for the central ex-
ecutive component of the working memory (WM) (Carretti,
Cornoldi, De Beni, & Palladino, 2004). Then, for DD sub-
jects, problem in visuo-spatial memory tasks may be sec-
ondary to the impairment of inhibition processes.

Neuropsychological studies

Some hints about the correlation of spatial and numerical
skills also come from the field of neuropsychology. Here,
some interesting cases have been described that seem consis-
tent with the findings of Szucs et al. (2013) reported in the
previous paragraph.
Semenza, Miceli, and Girelli (1997) report a case where arith-
metical difficulties seem to be related to the lack of monitor-
ing of arithmetical procedures. The patient, M.M., 17 years
old, was affected by hydrocephalus with the posterior portion
at the right dorso-frontal cortex and the right upper parietal
lobe severely damaged. His mental calculation abilities were
excellent and, in some cases, surprising (he could solve 2×2
digit multiplications where the two factors were the same, as,
e.g., 24×24, with the same speed as for table problems). In
written calculation, however, his performances were dramat-
ically poorer. His problems, especially manifest in complex
multidigit multiplications, were of different nature, but the
mostly committed errors were connected to wrong factor se-
lection. M.M. often repeated subsequently the same opera-
tion, and did not realized when he had reached the end of the
procedure—the authors report that “[h]e kept asking the ex-
aminer whether the operation was finished” (Semenza et al.,
1997). In some cases, M.M. made errors also in the spatial
arrangements of numbers.
In another study, Granà, Hofer, and Semenza (2006) report a
case of “spatial acalculia”, i.e. a specific deficit in the spatial
arrangement of numbers in written calculation. The patient,
PN, had a vast parietal damage as a consequence of a brain
haemorrage. In addition to spatial arrangements errors, PN
committed errors in factor selection. According to the au-
thors, “the best explanation for PNs problems is that he might
have difficulties in relying on a visuo-spatial store containing
a layout representation specific to multiplication. As a conse-
quence, while knowing what, when and how to carry out the
various steps, PN does not know where” (Granà et al., 2006).
The procedural problems described in these neurospycholog-
ical reports seem consistent with the functional interpretation
of inhibition processes in arithmetical procedures given by
Szucs et al. (2013). M.M.’s problems with factor selection
and operation ordering may be explained as a consequence
of the interference of previously performed operational steps.
On the other hand, visuo-spatial deficits like those manifested
by PN may be also linked to inhibition impairments by a sim-
ilar mechanism as that seen in the previous paragraph.

Different cognitive contributions
To sum up, we have seen at least two very different cognitive
contribution of spatial skills to numerical abilities:

1. Numerical and spatial representations are linked by the ex-
istence of a MLN, where numbers are represented as or-
dered from smaller to larger according to a precise orienta-
tion. This hypothesis is supported by, e.g. , experiments on
the SNARC effect and the number bisection task in hem-
ineglect patients.

2. Visuo-spatial skills are implied in arithmetical processing
for monitoring the temporal and spatial coordination of the
many processes needed in order to carry out an arithmetical
operation—selecting the right factor, keeping track of the
partial results, arranging numbers correctly in the space,
performing operation steps according to a given schema
etc. In this case, the link between space and numbers is
explained by resorting to general purpose cognitive capac-
ities, such as inhibition processes, which are crucial for the
central executive component of the working memory.

The two points sketched above may be put in correspondence
with different skill levels in which a link between numbers
and space is on hand.

Point 1 corresponds to low level skills, based on innate
cognitive systems of magnitude representation. These skills
are needed to perform tasks such as non-symbolic magnitude
comparison, number comparison and parity judgments. Also,
strategy based on the representation of numbers on a MLN
are very likely involved in some types of mental operations,
like simple mental subtractions and, to a lesser extent, mental
additions.
Point 2, on the other hand, corresponds to higher level skills,
mostly based on learned abilities. These capacities, which
may be included in the specific concept of algorithmic skills,
are needed in order to apply computing strategies, i.e. to ex-
ecute set of rules for symbolic transformation, and often rely
on the use of paper and pen or equivalent external resources.

Algorithmic skills
With the word “algorithm” I refer to any finite set of rules for
symbolic transformation which can be performed by a sub-
ject with the only aid of paper and pen (or equivalent external
resources) and without resorting to any particular insight or
ingenuity.
This informal definition may be dated back to the work of
Alan Turing (Turing, 1936). Only in recent past (Giunti,
2009; Wells, 2005) the cognitive importance of this work has
been fully recognized.
Algorithmic skills consist on all those cognitive skills that
employ algorithms. The possibility of using external tools
such as paper and pen, which is included in the concept of al-
gorithm, seems particularly relevant for the issue about num-
bers/space interaction. Algorithmic strategies (e.g., the stan-
dard multiplication algorithm), indeed, make extensive use
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of spatial schemes in order to subdivide arithmetical opera-
tions into simple computational steps and for working mem-
ory offloading. Rumelhart, Smolensky, McClelland, and Hin-
ton (1986) consider such kind of cognitive tasks as cases of
online symbolic transformation. Here, visuo-spatial skills are
involved in order to “maintain on-line the spatial layout and
digits of an ongoing multi-digit calculation” (Dehaene & Co-
hen, 1995).
The spatial layout may in itself facilitate carrying out compu-
tational steps, e.g., by simplifying the individuation of each
single step or by making easier to recognize the temporal or-
der of single operations.
Landy and Goldstone (2007) experimentally tested the hy-
pothesis that symbolic spatial layout is organized to reflect
syntactic relations among symbols. They start from suggest-
ing that “formal notations are diagrammatic as well as senten-
tial and that the property conventionally described as syntac-
tic structure is cognitively mediated, in part, by spatial infor-
mation. Elements of expressions are bound together through
perceptual grouping, often induced by simple spatial proxim-
ity.” (Landy & Goldstone, 2007). To test this hypothesis, they
designed two experiments.
In the first, subjects had to write down with paper and pen
simple equations they found written on a computer screen.
In one side of the equation were three single-digit numbers
with two operands (addition and/or multiplication sign); the
other side contained the same expression, but with one oper-
ation completed (e.g, x× y+ z = w+ z). The experimenters
found that subjects tended to leave a tighter space between
numbers and the operand in the operations that, according to
syntactic rules, had to be completed earlier—e.g, the space
between numbers and sign in multiplications was tighter than
in additions—even if they need not perform any operation.
The second experiment consisted in the production and writ-
ing (with paper and pen) of formal propositional logic ex-
pressions. Even in this case, the result was that the spac-
ing around logical connectives reflected syntactic rules (e.g.,
the blank space around principal connectives were wider than
that around secondary connectives).
These results seem to point toward a confirmation of the cen-
tral function earlier ascribed to spatial representations in al-
gorithmic skills. In particular, the fact that similar spatial fea-
tures are found in the production of both numerical and logi-
cal expressions is consistent with the definition of algorithmic
skills given above, for this definition does not limit them to
numerical transformation but refers to all kinds of symbolic
manipulation. This, interestingly, suggests that we are facing
some kind of broad set of cognitive skills, which deserves to
be investigated in its own right.

Sketch of a model2

A model of algorithmic skills3 should include different parts
in order to reflect a set of relevant features that I previously
highlighted, i.e.:

(i) a central unit, in which rules of execution and knowledge
of arithmetic facts are embedded;

(ii) a temporary store, where, at each step of a computation,
the relevant data are hold;

(iii) an external store, which contains written symbols;

(iv) a perception/action mechanism, which connects the central
unit to the stores and makes for rules execution.

If we take the cue from algorithmic execution with pa-
per and pen, part (i) and (ii) may be specified as the inter-
nal side of the model— respectively, the long-term memory
and the WM’s slave systems (Baddeley & Hitch, 1974; Bad-
deley, 2000)—, while part (iii) is the external memory (the
paper and its content). However, the model should be flexible
enough to include examples where, e.g., rules to be executed
are found written or symbolic transformation is made men-
tally. In the latter case, part (iii) may be omitted.
Part (iv) is needed for making rules of execution effective by
correctly connecting the other parts of the model, and incor-
porates the executive component of the WM. The cognitive
work carried out by this part may help understanding the con-
tribution of spatial representation to algorithmic skills. For
instance, let us think of any case of algorithmic execution
with paper and pen. A mechanism of perception/action, at
each computational step, has to complete the following cycle:

• take inputs from the external store, i.e. draw subject’s at-
tention to relevant data among written symbols;

• choose from the central unit a rule to be executed, on the
basis of the symbol or set of symbols on which subject’s
attention is drawn;

• apply the rule to the right symbol or set of symbols and
elaborate the output or retrieve it from the central unit;

2Anderson, Lee, and Fincham (2014) have recently proposed a
neuro-functional model of mathematical problem solving. Although
relevant for this issue, it should not be seen in contrast with the
model sketched here, for it is meant to explain a different set of
cognitive activities, i.e., mathematical problems where the cognitive
subject does not necessarily know in advance what is the best solv-
ing strategy. The model I propose, on the contrary, deals only with
symbol transformation activities with clear-cut sets of rules of com-
putation, such that the subject should be able to access them without
particular cognitive effort.

3Giunti (2009) proposed a Turing machine-inspired model—the
Bidimensional-Turing machine—of what he calls “Phenomena of
human computation”, a concept that roughly corresponds to the idea
of algorithmic skills proposed above. An implementation of Giunti’s
approach to the study of human computational skills is in Pinna and
Fumera (in press). Here, I will describe intuitively and without deep-
ening into technicalities the main features that a model of algorith-
mic skills should include, in order to help explaining some issues of
numerical cognition as the importance of the spatial component of
the WM for arithmetic.
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• hold in the temporary store, if necessary, some data relative
to the output, e.g., a carry;

• transcribe the output of actual symbolic operation into the
external store;

• hold in the temporary store the relevant information needed
to start the next cycle.

Features of the spatial schema used in a paper and pen al-
gorithm must be hold correctly to complete a cycle of compu-
tation. Spatial features seem to be particularly important, e.g.,
for choosing the right symbols to which apply a rule of trans-
formation, and to transcribe in the right place of the schema
the result of an operation. An incorrect execution of these
functions, indeed, may be a source of arithmetical errors, as
in cases of spatial acalculia (Granà et al., 2006).
Moreover, the possibility to include in the model external
resources such as paper and pen may help clarifying the
use of externalized strategies for working memory offloading
and, broadly, the value of inner/outer interactions for cog-
nition (Clark, 2008; Smith & Thelen, 1993; Tschacher &
Dauwalder, 2003).

Conclusion
We can distinguish two different cognitive contributions of
spatial skills to numerical knowledge:

(a) The concept of a MLN, on the one hand, seems to be
implied in some low level numerical skills, based on innate
cognitive systems of magnitude representation. These low
level skills are at work in some tasks such as non-symbolic
magnitude comparison, number comparison and parity judg-
ments, and are likely involved in simple mental arithmetic,
e.g., simple mental additions and subtractions.
(b) On the other hand, visuo-spatial skills are crucial in more
complex arithmetical tasks—such as paper and pen strategies
used in multidigit calculations—for monitoring the temporal
and spatial coordination of the many processes needed in or-
der to carry out symbolic transformations. These tasks seem
to rely on higher level skills, mostly based on learned abil-
ities, which are not specific to numerical knowledge but are
implied in any kind of strategy for symbolic manipulation.
I proposed that type (b) of cognitive capacities may be in-
cluded in what I called algorithmic skills, which are all cog-
nitive skills employed in the execution of finite sets of rules
for symbolic manipulation (algorithms).
The multi-part model of algorithmic skills sketched above
could be useful to study some typical features of symbolic
manipulation, such as the influence of spatial schemes and
the use of external resources for working memory offloading.
The formalization of specific algorithmic strategies through
the model should, in particular, give a precise idea of the
weight of the various cognitive components at each step of a
computation. These theoretical hints may be used for making
predictions and design experimental settings about, e.g., the
level of WM resources needed to perform a certain symbol

manipulation task, or the similarity/difference between men-
tal and externalized strategies.
The empirical adequacy of the model may be tested, e.g,
by inspecting to what extent different spatial schemes used
for performing similar symbol manipulation tasks influence
WM load. On the other hand, indirect indications may also
come from behavioral experiments, e.g., by analyzing re-
sponse times to the solution of similar tasks presented accord-
ing to different spatial layouts.
Such kind of cognitive analysis may be useful to shed
light on the relation between space and numbers and, by a
broader perspective, to further investigate the issue of organ-
ism/environment interaction for cognition.
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