A Backjumping Technique
for Digunctive L ogic Programming

Wolfgang Faber, Nicola Leone, and Francesco Ricca

Department of Mathematics
University of Calabria
87030 Rende (CS), Italy
{f aber, | eone,ricca}l@mat.unical.it

Abstract. Inthis work we present a backjumping technique for Disjivectogic

Programming (DLP) under the Answer Set Semantics. It buipds related tech-
niques that had originally been proposed for propositicaaisfiability testing,

which have been adapted to non-disjunctive Answer Set Bnagring (ASP) re-
cently [1, 2].

We focus on backjumping without clause learning. We prowvdeew theoreti-
cal framework for backjumping on Disjunctive Logic ProgariVe optimize the
reason calculus, reducing the information to be storediebily preserving the

correctness and the efficiency of the jumping technique. Weddment the pro-
posed technique in DLV, the state-of-the-art DLP system.hake conducted
several experiments on hard random problems in order teg$be impact of
backjumping. Our conclusion is that when lookahead is eygalpthere is ba-
sically no advantage when enabling backjumping. Howeveemlookahead is
disabled, we can observe that the number of choices in deteceeases by a
non-negligible factor. In our (naive) implementation thén is (often more than)
compensated by the additional overhead incurred by themezdculus. It is un-

clear whether one can reduce this overhead by a more effiopf¢mentation.

We therefore conjecture that, at least on hard unstructastdnces, backjump-
ing only has an impact when lookahead is not active and wtaarsellearning is
employed in addition.

1 Introduction

Answer Set Programming (ASP) in its general form allows fejuhction in rule heads
and nonmonotonic negation in rule bodies. This knowledgeesentation language
is very expressive in a precise mathematical seBseryproblem in the complexity
classX¥ andI1f (under brave and cautious reasoning, respectively) canjressed
[3]. Thus, ASP is strictly more powerful than SAT-based pergming, as it allows
us to solve problems which cannot be translated to SAT inrgmiyial time. The high
expressive power of ASP can be profitably exploited in Al,athdften has to deal with
problems of this complexity. For instance, several prolsiémdiagnosis and planning
under incomplete knowledge are complete for the complestigs XY or 111 [4,5],
and can be naturally encoded in ASP [6, 7].

Most of the optimization work on ASP systems has focused erefficient evalu-
ation of non-disjunctive programs (whose power is limited\tP/co-NP), whereas the

A Backjumping Technique for Disjunctive Logic Programming 217

optimization of full (disjunctive) ASP programs has beesated in fewer works (e.g.,
in [8,9]).

One of the more recent proposals for enhancing the evaluafioon-disjunctive
programs has been the definition of backjumping and clawsmileg mechanisms.
These techniques had been successfully employed in ptapp@diSAT solvers before,
and were “ported” to non-disjunctive ASP in [1, 2], resultim the system Smode|s

In this paper we address two issues:

» A generalization of backjumping to disjunctive programs.
» |s backjumping without clause learning effective?

We first present a generalization of the work in [1, 2] to digjive programs by
defining areason calculudor the DetCons function of DLV (which roughly corre-
sponds to unit propagation in DPLL-based SAT solvers anceAsit/AtMost in Smod-
els). These reasons allow for effective backjumping. We disscribe the implemen-
tation of the reason calculus in the DLV system, the statthefart disjunctive ASP
system. In fact, our implementation aims at reducing therimftion to be stored as
much as possible, while maintaining the best jumping pd#sls.

Subsequently, we assess our method and implementationfg@rieentation on
hard, randomly generated instances. We observe sevarakisk. In conjunction with
lookahead, there is basically no advantage of backjumg@ing/ithout lookahead, we
observe that the number of choices often decreases by aagigible factor. 3. How-
ever, the time needed for maintaining the information ferrdason calculus apparently
supersedes the gain of having fewer choices. It is uncleattven this is because of our
unoptimized implementation or a general problem.

Summarizing, we observe that backjumping without clauamiag is not effective
(at least on unstructured instances), unless one is abladafhighly optimized im-
plementation of the reason calculus. Since this task appedre difficult to achieve,
we conjecture (based on the results of [1]) that backjumphrauld be combined with
clause learning.

2 Préiminarieson Digunctive Logic Programming

In this section, we provide a brief introduction to the sydad semantics of Disjunc-
tive Logic Programming; for further background see [10,11]
2.1 Syntax
A (disjunctive) ruler is a formula
a1 v -+ V ap - by, -, bg, not by, -+, not by,.

wherea;,- -, an, b1, -+, by are atomsandn > 0, m > k > 0. Given a ruler,

let H(r) = {ay,...,a,} denote the set of head literalB*(r) = {by,...,b;} and

! For simplicity, we do not consider strong negation in thipgralt can be emulated by intro-
ducing new atoms and integrity constraints.

218 Wolfgang Faber, Nicola Leone, and Francesco Ricca

B~ (r) = {not bg41,...,n0t b, } the set of positive and negative body literals, resp.,
andB(r) = B*(r) U B~ (r).

A rule r with B~ (r) = 0 is calledpositive a rule withH(r) = { is referred to as
integrity constraintIf the body is empty we usually omit the sign.

A disjunctive logic progranf is a finite set of rulesP is a positiveprogram if
all rules inP are positive (i.e.not-free). An object (atom, rule, etc.) containing no
variables is callegroundor propositional

Given a literal, letnot.l = a if I = not a, otherwisenot.l = not [, and given a set
L of literals,not.L = {not.l |l € L}.

2.2 Semantics

The semantics of a disjunctive logic program is given by dsnsistent) answer sets
[11]; on the language considered here these are equal tndisje stable models of
[12].

Given a progran®, let theHerbrand Universd/p be the set of all constants ap-
pearing in? and theHerbrand Base3p be the set of all possible ground atoms which
can be constructed from the predicate symbols appeariBgiith the constants dip.

Given a ruler, Ground(r) denotes the set of rules obtained by applying all possible
substitutionsr from the variables in to elements ol/». Similarly, given a program
P, theground instantiatior® of P is the set J, ., Ground(r).

For every progran®, we define its answer sets using its ground instantigfion
two steps: First we define the answer sets of positive progjriman we give a reduction
of general programs to positive ones and use this reduatiatetine answer sets of
general programs.

A set L of ground literals is said to beonsistentf, for every aton¥ € L, its com-
plementary literahot £ is not contained ir.. An interpretatiorn/ for P is a consistent
set of ground literals over atoms By.% A ground literall is truew.r.t. T if £ € I; £ is
falsew.r.t. I if its complementary literal is if; £ is undefinedv.r.t. I if it is neither true
nor false w.r.t.z.

Letr be a ground rule ifP. The head of is truew.r.t. I if existsa € H(r) s.t.a
is true w.r.t.I (i.e., some atom i (r) is true w.r.t.I). The body ofr is true w.r.t. I if
V¢ € B(r), £is true w.r.t.1 (i.e. all literals onB(r) are true w.r.tf). The body ofr is
falsew.r.t. T if 3¢ € B(r) s.t.£is false w.r.t7 (i.e., some literal inB(r) is false w.r.t.I).
The ruler is satisfied(or true) w.r.t. I if its head is true w.r.t or its body is false w.r.t.
L

Interpretation/ is total if, for each atomA in Bp, either4 ornot.A isin I (i.e.,
no atom inBp is undefined w.r.t]). A total interpretationV/ is amodelfor P if, for
everyr € P, at least one literal in the head is true w.A. whenever all literals in the
body are true w.r.tM. X is ananswer sefor a positive progran® if its positive part
is minimal w.r.t. set inclusion among the modelsiaf

Thereductor Gelfond-Lifschitz transformf a general ground prograf w.r.t. an
interpretationX is the positive ground prograf@~, obtained fronP by (i) deleting

2 We represent interpretations as sets of literals, sinceawe to deal with partial interpretations
in the next sections.

A Backjumping Technique for Disjunctive Logic Programming 219
c e—d ¢
a/\ b \L \ b
(a) (b)
Fig. 1. Graphs (a)DG»,, and (b) DG,

all rulesr € P whose negative body is false w.tX. and (ii) deleting the negative body
from the remaining rules.

An answer set of a general progrdfis a modelX of P such thatX is an answer
set of PX.

2.3 Some ASP properties

Given an interpretatiod for a ground progranP,we say that a ground ator is
supportedn I if there exists aupportingruler € ground(P) such that the body of
is true w.r.t.] and A is the only true atom in the head of If M is an answer set of a
programP, then all atoms in\/ are supported [13—15].

An important property of answer sets is related to the natiioinfounded seftl6,
14]. LetI be a (partial) interpretation for a ground progr®&mA setX C Bp of ground
atoms is an unfounded set fBrw.r.t. I if, for eacha € X and for each rule € P such
thata € H(r), at least one of the following conditions holds: B)r) N not.I # @, (ii)
Bf(r)n X #0, (i) (H(r)—X)NI#0.

LetIp» denote the set of all interpretations@for which the union of all unfounded
sets forP w.r.t. I is an unfounded set f@? w.r.t. I as welP. GivenI € Ip, letGUSp ()
(thegreatest unfounded sef P w.r.t. I) denote the union of all unfounded sets for
w.r.t. I.

If M is a total interpretation for a prograf M is an answer set @? iff not.M =
GUSp(I) [14].

With every ground prograr?, we associate a directed grapiGp» = (N, E),
called thedependency grapbf P, in which (i) each atom oP is a node in’V and (ii)
there is an arc itf directed from a node to a nodeé iff there is a ruler in P such that
b anda appear in the head and bodyrgfrespectively.

The graphDGp singles out the dependencies of the head atoms of & fuden the
positive atoms in its body.

Example 1. Consider the prograPy = {avb. ; c:- a. ; c:- b.}, and the program
Ps =PsU{dve:-a. ; d:-e. ; e:-d,notb.}. The dependency gragpGp, of

P4 is depicted in Figure 1 (a), while the dependency grdpfp, of P is depicted in
Figure 1 (b).

A programP is head-cycle-fre€HCF) iff there is no rule in P such that two atoms
occurring in the head of are in the same cycle dGp [17].

3 While for non-disjunctive programs the union of unfoundetsss an unfounded set for all
interpretations, this does not hold for disjunctive progsgsee [14]).
4 Note that negative literals cause no ardi@p.

220 Wolfgang Faber, Nicola Leone, and Francesco Ricca

Example 2. The dependency graphs given in Figure 1 revetiptbgram?P, of Exam-
ple 1 is HCF and that prograrf®; is not HCF, as ruledve < a contains in its head
two atoms belonging to the same cycldgF p, .

A componenC of a dependency grapRG is a maximal subgraph adDG such
that each node i’ is reachable from any other. Tisetbprogranof C' consists of all
rules having some atom frod in the head. An atom is non-HCF if the subprogram
of its component is non-HCF. Theubprogram for a componebnsists of all rules
having a head atom in the component. An atom is non-HCF ifducein a non-HCF
component.

3 Modd Generation in DLV

In this section, we briefly describe the computational pssqeerformed by the DLV
system [14, 18] to compute answer sets, which will be usedh®experiments. Note
that, other ASP systems like Smodels [19, 20] employ a venylai procedure.

In general, an answer set progrghtontains variables. The computational step of
an ASP system eliminates these variables, generating admstantiatioryround(P)
of P which is a (usually much smaller) subset of all syntacticatinstructible instances
of the rules ofP having precisely the same answer set®421]. The nondeterministic
part of the computation is then performed on this simplifiedugd program by the
Model Generator, which is sketched below. Note that foraeaf presentation, the
description here is quite simplified; in particular, the iclepoints and search trees are
somewhat more complex in the “real” implementation. Howgwoge can find a one-to-
one mapping to the simpler formalism described here. A metailéd description can
be found in [18]. Note also that the version described heneprdes one answer set for
simplicity, however modifying it to compute all @ranswer sets is straightforward. For
brevity, P refers to the simplified ground program in the sequel.

bool MG (Interpretation& I){
if (! DetCons (1))thenreturn false;
if (“no atom is undefined in I” Jhen return IsAnswerSet(l);
Select an undefined atorhusing a heuristic;
if (MG (IU{A})thenreturntrue;
elsereturn MG (I U {not A}); };

Roughly, the Model Generator produces some “candidatefiansets. Each can-
didate! is then verified by the function IsAnswerSet(l), which chegkhetherl is a
minimal model of the prograr®’ obtained by applying the GL-transformation w.f.t.

The interpretations handled by the Model Generator arégbarterpretations. Ini-
tially, the MG function is invoked with set to the empty interpretation (all atoms are
undefined at this stage). If the progrdfrhas an answer set, then the function returns
true and setg to the computed answer set; otherwise it returns false. TheédiGen-
erator is similar to the Davis-Putnam procedure in SAT swlvk first calls a function
DetCons, which extendswith those literals that can be deterministically inferr€his
is similar to unit propagation as employed by SAT solvers$ éxploits the peculiarities
of ASP for making further inferences (e.g., it uses the krealgk that every answer set
is a minimal model).

A Backjumping Technique for Disjunctive Logic Programming 221

DetCons(l) computes the deterministic consequences afliyall be described in
more detail in the sequel. If DetCons(l) does not detect aognsistency, an aton is
selected according to a heuristic criterion and MG is raeelgcalled on botly U {4}
andI U {not A}. The atomA corresponds to Branching variablen SAT solvers.

The efficiency of the whole process depends on two crucistifea: a good heuris-
tic to choose the branching variables and an efficient imptgation of DetCons. Ac-
tually, the DLV system implements a so callembkaheadheuristic [22,23] and an
efficient DetCons implementation [24, 25].

It is worth noting that, if during the execution of the MG fuimn a contradiction
arises, or the answer set candidate is not a minimal modelbbdt®tracks and modifies
the last choice. This kind of backtracking is called chragatal backtracking.

In the following sections, we describe a technique in whightruth value assign-
ments causing a conflict are identified and backtrackingi®paed “jumping” directly
to a point so that at least one of those assignments is maditiéslkind of backtracking
technique is called non-chronological backtracking okipamping.

4 Backjumping

In this section we first motivate by means of an example howcjbeping technique
is supposed to work, and then give a more formal account orithewtend the functions
DetCons and MG of DLV to accomplish this task in general. 8ithe functionality of

DetCons is crucial for this task, we start by describing gpdification of it.

4.1 DetCons

As previously pointed out, the role of DetCons is similar ke Boolean Constraint
Propagation (BCP) procedure in Davis-Putnam SAT solveradver, DetCons is more
complex than BCP, which is based on the simple unit propagatference rule, while
DetCons implements a set of of inference rules. Those rdasme an extension of
the Well-founded operator for disjunctive programs withuamer of techniques based
on ASP program properties [24, 25].

While the full implementation of DetCons involves four tiualues (apart from
true, false, and undefined, there is also “must be true”) rest t must be true” as true
in this description, as they are treated in the same way we#pact to backjumping.
Moreover, we group the inference rules using the same telogy as [1] for better
comparability:

. Forward Inference,

. Kripke-Kleene negation,

. Contraposition for true heads,
. Contraposition for false heads,
. Well-founded negation.

abrwdNBE

Rule 1 derives an atom as true if it occurs in the head of a rulghich all other
head atoms are false and the body is true. Rule 2 derives enagdalse if no rule
can support it. Rule 3 applies if for a true atom only one rhl&t ttan support it is

222 Wolfgang Faber, Nicola Leone, and Francesco Ricca

Fig. 2. Backtracking vs Backjumping.

left, and makes inferences such that the rule can suppoatdtime, i.e. derives all other
head atoms as false, atoms in the positive body as true ant @cthe negative body
as false. Rule 4 makes inferences for rules which have a ffidad: If only one body
literal is undefined, derive a truth value for it such thatlleely becomes false. Finally,
rule 5 sets all members of the greatest unfounded set to ¥&tsaote that rule 5 is only
applied on recursive HCF subprograms for complexity rea$2s|

4.2 Backjumping by Example
Consider the following program

ri: avb. 1o cvd. r3: evf.
re: gi-a,e. r5: -g,a,e. rg: g.-a,f. rr: -g,a,f.

and suppose that the search tree is as depicted in Fig. 2.

According to this tree, we first assurdo be true, deriving to be false (because
of r; and rule 3). Then we assuméo be true, deriving to be false (because of and
rule 3). Third, we assumeto be true and derivé to be false (because of and rule 3)
andg to be true (because of and rule 1). This truth assignment violates constrajnt
(because rule 4 derivggo be false), yielding an inconsistency. We continue thectea
by inverting the last choice, that is, we assurte be false and we derivgto be true
(because of; and rule 1) ang to be true (because of and rule 1), but obtain another
inconsistency (because of constraipgnd rule 4g must also be false).

At this point, MG goes back to the previous choicepoint, iis ttase inverting the
truth value ofe (cf. the arc labelled BK in Fig. 2).

Now it is important to note that the inconsistencies obtdiae independent of the
choice ofc, and only the truth value af ande are the “reasons” for the encountered
inconsistencies. In fact, no matter what the truth valueisf if a is true then any truth
assignment foe will lead to an inconsistency. Looking at Fig. 2, this meamet tin
the whole subtree below the arc labelledio answer set can be found. It is therefore
obvious that the chronological backtracking search exgslbranches of the search tree
that cannot contain an answer set, performing a lot of uselesk.

A Backjumping Technique for Disjunctive Logic Programming 223

A better policy would be to go back directly to the point at alhiwe assumed
to be true (see the arc labelled BJ in Fig. 2). In other worfdsgiknow the “reasons”
of an inconsistency, we can backjump directly to the closbsice that caused the
inconsistent subtree.

4.3 Reasonsfor Inconsistencies

Until now, we used the term “reason” of an inconsistency inranitive way. We will
now define more formally what such reasons are and how thegehandled.

We start by describing the intuition of “reason” of a grouitdral (representing a
truthvalue of the literal’s atom). A rule: - b, ¢, notd. intuitively means: Ifb andc are
true andd is false in the current partial interpretation, then derive be true. We can
equivalently say that is true “becaused andc are true and is false. In other words,
the reasons of the truth value of a derived ground literatlz@eeasons of literals that
entail its truth. For “chosen” literals, their only reasartheir choice.

We define the reason of a literalin the following way: (i) if 2 is a chosen literal
(a “branching variable”) then the reasonaofs x. (ii) if x is a derived literal, then the
reason of: is the union of the reasons of literals that entail its tridbte that the reason
of a literal basically is the set of chosen literals that giitsatruth.

Now we are able to define the reason of an inconsistency. Amsistency occurs
whenl is determined to be both true and false. Therefore the reafsominconsistency
is the union of the reasons bandnot /. Referring to the example in Section 4.2, the
reason of the first inconsistency is the union of the reasmmgdndnot g, which is the
setR = {a, e}. This means that ande “entail” this inconsistency.

When, during the search, we assumed a litekadth true and false (and we found,
in both cases, an inconsistency) we have two inconsiste&asons, the first on&(1),
is found assumingtrue, and the second onB(not), is found assumingfalse. It is
straightforward to see that to avoid such inconsistenceekave to change one assump-
tion in R(l) U R(not) which is different froml. It is worth to note that, in order to
obtain a complete search we have to change the assumptiare'ste(chronologically)
tol (in R(1) U R(not 1)). If such an assumption does not exist the problem is uffisatis
able (there is no way to avoid that inconsistency). In thegla of Section 4.2 is e,
andR(e) U R(not e) = {a}.

4.4 Extending DetConswith the Reason Calculus

In this section we describe how to compute the reason of aatkliteral. In particular,
we will modify DetCons to compute the reasons of the deriiteddls in order to allow
for backjumping.

First of all, we introduce a numeric representation of reaszased on the recursion
level of the search algorithm (corresponding to the deptthefsearch tree). We as-
sociate an integer number (starting from 0), represenkiagtirrent recursion level, to
each literal which has been chosen during the computatieh HEerall derived during
the propagation (through DetCons) will have an associatedfpositive integers(l)
representing the reasonlpfwvhich stand for the set of choices entailihdror instance,
if R(a) = {1, 3,4}, then the literals chosen at recursion level 1,3 and 4 emtail

224 Wolfgang Faber, Nicola Leone, and Francesco Ricca

Moreover, given a rule, a "satisfying literal” is either a true head atom or a false
body literal inr. Ruler is satisfied if it has a satisfying literal.

We now define an ordering among satisfying literals of a given rule, which is
basically a lexicographic order over the numerically oedereasons of the literals.
We first give two technical definitiongR,, () denotes the set of reasons without the
greatest reasons, add A Xy (1) gives thek-th reason in descending order (et if less
thank reasons exist).

_ [RQ), k=1
B(l) = {R“(n\{max(Rkl(l))}, k> 1

B (Ri (1)), Rr(1) # 0
MAX () = {T_TL;MU * otilierwise.

wheremazx(z) is the maximum element in the setlf sq, s, are satisfying literals
forruler, thens; < s (s1 precedes,) iff one the following conditions holds:

(l) MAXl(Sl) < MAX1(82) /\MAXl(Sl) > 0/\MAX1(82) >0
(i) MAX1(s1) = —1 A MAX (s5) > 0
(i) Fk:k>1:Ve:l<z<k:MAX,(s1)=MAX,(s2) # —1and
MAXk(Sl) < MAXk(Sg) AMAXk(Sl) > OAMAXk(SQ) >0
(iv) 3k:k>1:Ve:l<ax<k:MAX,(s1) = MAX,(s2) # —1 and
MAXk(Sl) =-1 AMAXk(Sg) >0

Lets; ~ so if S1 74 So and52 74 s1. We Write51 < 89 iff S1 < 82 OISy ~ So.

Let besy,...s,, satisfying literals for rule-, if s; < s; for eachj = 1,...,n then
R, = R(s;) is acancelling assignmetfibr ». Note that, the cancelling assignment of a
ruler represents the “earliest” reason causirtg be satisfied.

In the following, we describe how reasons of derived liteile computed for the
respective inference rules of DetCons with respect to agbamterpretation/.

Forward Inference
Given aruler, if 3a; € H(r) suchthali) Vb € B(r), b € I, (ii) Ya € (H(r) \ {a:}),
not a € I, then infera;. The reason of; is set toR(a;) = UaeH(T)\{ai} R(nota) U
UlEB(r) R(1), which is the union of the reasons of all head atoms apart frpto be
false, and the reasons for the body literals to be true. Famgie, given the following
program:

ri: avb:- ¢,notd. ry: c:-notd,e. r3: fvb. r4: gvd. r5: evh.

Supposel = {not b,¢,not d, f,g,not h}, andR(f) = R(not b) = {1}, R(c) =
{2,3}, R(g9) = R(not d) = {2}, andR(e) = R(not h) = {3}. We have that: is
derived to be true from rule; (all body literals are true and the only head atbiis
false) and the reason afto be true is set td?(a) = R(notb) U R(c) U R(notd) =
{1,2,3}.
Kripke-Kleene negation

Given an atona, if for each ruler such that. € H(r) (i) 3b € B(r) suchthahot.b € I
or (i4) 3¢ € H(r) such thata # c andc € I, then infernot.a. We then sefR(a) =
Us.acri(r) Bir. WhereR, is a cancelling assignment of rute So, a becomes false

A Backjumping Technique for Disjunctive Logic Programming 225

because each rule within the head is cancelled. For example, consider the follgwin
subprogram:

ri: avb:i- ¢c,notd. ro: bi-emotf. rz3: bi- g, h.

Supposel = {a,c,d,e, f,g,not h} andR(a) = {7}, R(¢) = {5}, R(d) = {6},
R(e) = {3}, R(f) = {4}, R(g9) = {1}, R(not h) = {2}. The atomb is undefined
and it is contained in the head of all rules. The cancellirgiggsnents are as follows:
R,, = R(c) = {5}, R, = R(e) = {3}, andR,, = R(g) = {1}. DetCons then infers
b to be false and?(not b) = R, U R,, U R, = {1,3,5}.

Contraposition for true heads
Given an atomu € I and a ruler such that € H(r), if for each ruler’ # r such that
a€ H(r') (1) 3" € B(r'):not.b € ITor(ii) I¢ € H(r'): ' #a A € I,thenfor
eachc € H(r) s.t.c # a infernot.c, and for eacld € B(r) infer b.

For each rule’ with a in the head (different from) take a cancelling assignment
R, and set, for each derived literiadf r, R(l) = R(a) UU,.,e (1 ynr 2 Brr- SO the
reason for the derived literals is the reasond@nd the reasons for all other rules with
a in the head to be cancelled. For example, consider the follpaubprogram:

ri: avb:i- ¢notd. ro: avgi-f. r3: a:-k.

Supposd = {a, f,g,not k} andR(a) = {2}, R(f) = {2}, R(g9) = {3}, R(not k) =
{1}. The only unsatisfied rule havingin the head ig; and the cancelling assignments
areR,, = R(a) = R(f) = {2} andR,, = R(not k) = {1}. In this case we inferand
not d andnotb and setR(not b) = R(c) = R(not d) = R(a) U R,, U R, = {1,2}.
Contraposition for false heads
Given aruler such thati) Va € H(r) : not.a € I, (i1) 3l € B(r) : 1 ¢ I Anot.l ¢ I,
(i11) Vb € B(r) \ {l} : b € I, then infernot.l. We setR(l) = U,cp(,) R(nota) U
Use B\ g3 £2(b), so the reason fok is the union of reasons for the head atoms to
be false and the reasons for the body literals (apart fipto be true. Consider the
following subprogram:

ri: avb:-c,d. ro: dvavb. r3: eva. ro: :-d,b.

Supposel = {not a,not b,d,e}, andR(not a) = {1}, R(not b) = R(d) = {3},
R(e) = {2}.Byri, we getnot candR(not ¢) = R(not a)UR(not b)UR(d) = {1, 3}.
Well-founded negation
LetS be an HCF subprogram éf, I be an unfounded-free interpretation, aXide the
greatest unfounded set §fw.r.t. I. Then infer all atoms iX to be false. For each atom
a € X and for each rule with a in the head, sek(a) = U, cs.qe () 7, WhereR]
is the cancelling assignment ofif r is satisfied w.r.tZ, or R} = { if r is not satisfied
w.r.t. I (in the latter case contains some element frof).
In other words, if an atom; is unfounded we derive it as false. This casgbe-
comes false because each rulewith a; in the head, has been cancelledugiis sup-
ported by an unfounded atom. For example, consider thedoitpprogram:

ri: avb. ro: a:-notc. ry3: a:-d. rq: di-a. r5: bve. rg: cvf.

226 Wolfgang Faber, Nicola Leone, and Francesco Ricca

Supposel = {b,c,not e,not f}, R(b) = R(not e) = {1}, R(¢) = R(not f) =
{2}. The greatest unfounded setXs = {a, d}, then infera andd to be false and set
R(not a) = R(not d) = Ry, UR;, UR; URy, = {1,2}, whereR; = R(b) = {1},
R, = R(c) = {2} andR;, = R;, = 0.

Inconsistency reasons In general, an inconsistency occurs if a litekahould be
true and false in the same interpretation. We call such awconflicting literal The
reason of the detected inconsistency is the(set R(l) U R(not.l) (the union of the
reason of to be true and to be false). This computation is independent of the infegen
rule used during the propagation to determine the inccersigts.

45 Model Generator with backjumping

In this section we describe MGBJ (shown in Fig. 3), a modificabf the MG function
(as described in section 3), which is able to perform nomieblogical backtracking. It
extends MG by introducing additional data structures, oheoto keep track of reasons
and to control backtracking. In particular, two new varesilj _level andcurr_level
are used to store the current level of recursion and to chveicktracking, respectively.
bj level represents the level to which we (back)jump at the end of &@BJ call.
In addition, inconsistency reasons are stored in the didivatack by means of the
callerI R parameter.

Initially, the MGBJ function is invoked witll andcallerI R set to the empty inter-
pretation, and; _level set to zero (decision levels, corresponding to MGBJ catls, a
counted by using nonnegative integers). Like the MG fumctibthe programP has
an answer set, then the function returns true and Eétsthe computed answer set;
otherwise it returns false. Again, it is easy to modify thisqedure in order to obtain
all or at mostn answer sets.

MGBJ first calls the enhanced version of the DetCons proeedeferred to as
DetConsH. DetConsH extends the current interpretatioh thibse literals that can be
deterministically inferred, and, at the same time, Det€bosmputes their “reasons”
as described in Section 4.4. In particular, reasons are gtadpy means of a data
structure which maps literals to their corresponding reaso

If during the propagation step an inconsistency is detedetdConsH builds the
reason of this inconsistency, stores itiriler] R and returns false. Otherwise, an atom
A is selected according to a heuristic criterion and MGBJésirgively called on both
I'U{A} andI U {not A}. If MGBJ returns true, a model has been found, otherwise an
inconsistency has been determined. In the latter casee#ts®n of this inconsistency
is stored in the variablesosI R or neglI R, respectively. In both cases, when MGBJ
fails, bj_level is compared witkcurr_level. If bj_level is less tharcurrent_level we
backjump to levebj_level, and return false. Otherwise, if an inconsistency has been
found both for the positive and the negative assumptionh(bd&BJ subcalls failed)
we perform the union of the two inconsistency reasons, diseg levels which are
greater than or equal to current level (this is accompligmedhe function Union)).
The obtained set represents the reason of the failure olthvrses below the current
assumption, and is recursively stored by usingddiéerI R variable.

At this point, the next recursion level is computed by settif level to the max-
imum of the set Union(posIR,negIR) erl if such a maximum does not exist (i.e., if

A Backjumping Technique for Disjunctive Logic Programming 227

bool MGBJ (Interpretation& I, InconsistencyReason& callerii®& bj_level) {
bj_level ++;
int curr_level = bj level;
if (! DetConsH (I, curtevel, callerIR)
return false;
if (“no atom is undefined in 1")
return IsAnswerSet (|);
InconsistencyReason posIR, neglR;
Select an undefined atorhusing a heuristic and sét 4 =curr_level,
if (MGBJ(I U {A}, posIR, bjlevel)
returntrue;
ese
callerIR = posIR;
if (bj_level < curr_level)
return false;
ese
bj_level = curtlevel;
if (MGBJ (I U {not A}, negIR, bjlevel)
return true;
ese
callerIR = Union (posIR, negIR);
if (bj_level < curr_level)
return false;
bj_level = MAX (callerIR);
return false; };

Fig. 3. Computation of Answer Sets with backjumping

the set is empty). This corresponds to backtracking or lo@ekjng to the closest recur-
sion level involved in the conflict or, if the set Union(poshRgIR) is empty, to abort
the search because the problem is unsatisfiable. Such &mitoacurs if the conflict

depends only on the current choice, and we find an inconsigt@hatever truth value
we assume for it.

5 Comparison and Benchmarks

In order to evaluate the backjumping technique describ@ddawious sections, we have
implemented it as an experimental extension of the DLV systed we compared it

to standard DLV by using 3-SAT problem instances. Condgdtimther experiments

is on our agenda, but the picture and conclusions are ralésar when looking at just

these experiments. We do not expect other benchmarks tdostasiially different.

5.1 Experimental Results

Our experiments have been performed on a Power Mac G4 933 Mithime with
1MB of Level 2 Cache and 256MB of RAM, running Mac OSX 10.2.8.

228 Wolfgang Faber, Nicola Leone, and Francesco Ricca

00000 5000000
500000 | ey
—p-570)
o 5
600000 _/
500000

/-

as00000 -t 1‘ p

n
H
g

4000000

3500000

3000000 7

2500000

P

2000000

Average Number of Choices

Maximum Number of Choices

200000

1000000 r
100000 500000
o 0

S0 85 S0 85 100 105 110 115 120 125 130 135 140 80 85 90 95 100 105 110 115 120 125 130 135 140

Number of Propositional variables Number of Propositional variables

Fig. 4. Choice points on Random 3-SAT problems

We have generated 20 random 3-SAT instances for each praditenas indicated
in [23]. The number of clauses for each generated instancealveays 4.3 times the
number of propositional variables (in order to generatel resstances).

We measured both the time required to solve each instancehendumber of
choices made by DLV. Time measurements have been done b&tigne command
shipped with Mac OSX 10.2.8, counting total CPU time for tesprective processes.

In Figure 4 we show the result obtained measuring choicetgoivhile in Figure
5 we show time measurements. For every instance, we allowedxégmum running
time of 3600 seconds (one hour). In each graph, the horikaxigreports a parameter
representing the size (number of variables) of the instandgoth cases, we disabled
the lookahead heuristic, which is the default setting in DIVFigure 4, on the vertical
axis, we report, respectively, the average and the maximumber of choices made
over the 20 instances of the same size we run.

On average, DLV with backjumping (labellgd./) requires a smaller number of
choices than standard DLV (labellé&d" D) to solve an instance of the same size. The
difference betweeBJ and ST D becomes rather evident starting from instances of
size 120, where3.J has made 150176 choices whB& D has made 172282 choices
(22106 more choices) on average, and the gap grows with #tanice size. In fact,
for instances of size 14@.J has made 699792 choices, whii& D has made 845649
choices (145857 more) on average. This trend is confirmddrigat the second graph
in Figure 4, wherd3 J did at most 4582079 choices for an instance size of 140, which
more than one million choices less th& D, which required at most 3144722 choices.

[B | , PR M e ,
o 2 e
$] g oo /
£ =
£)
S = 5 [/
£ e E N
g w0 g
3 S a0
& 150 H
g)
£ - o / v
P! r] =" 2~
50 200
e L e

o
80 85 9 95 100 105 110 115 120 125 130 135 140 80 85 90 95 100 105 110 115 120 125 130 135 140

Number of Propositional variables Number of Propositional variables

Fig.5. Running Times on Random 3-SAT problems

A Backjumping Technique for Disjunctive Logic Programming 229

Summarizing, we observed that the number of choices dezs@da non-negligible
factor by using our backjumping technigue.

The situation looks quite different when we look at Figureviere on the vertical
axis, we report, respectively, the average and the maximuarution time required to
solve the 20 instances of the same size. It is evidenttfid? outperformsB.J in these
experiments. On averag8] D took 110.8 seconds to solve an instance of 140 vari-
ables, whileB.J took 351.53 seconds. This can be interpreted in the follgwiay: On
the averageB.J explores a smaller search tree, but the corresponding gaimmpen-
sated by the overhead introduced by the reason calculesa&ttih our implementation).

We performed the same experiments with the lookahead hiewgizabled but we
noticed virtually no difference in choice points betweBd and ST D. This means
that when lookahead is employed, there is basically no @dganwhen employing
backjumping in addition — on the contrary, the overheadiireziiby the reason calculus
increases the computation time even more.

The ineffectiveness with respect to lookahead does not @@madig surprise. Since
with lookahead (without the optimizations reported in [PZBEtCons will be activated
for each atom upon assuming its truth and falsity, respelgtimany inconsistent sub-
trees will be identified immediately after the relevant degiin this way anticipating a
large amount of potential backjumps.

6 Conclusion and Future Work

We have presented a backjumping technique for computingribever sets of disjunc-
tive logic programs. It is based on a reason calculus and éaboration of the work
in [1,2]. In particular, we do not build an implication grapdnd thanks to the rea-
son calculus determining the point to jump back to can beutatied more efficiently.
Moreover, our framework is suitable for disjunctive pragsa

We have implemented the technique in the DLV system, and banducted sev-
eral experiments with it. For these tests, backjumping evtthclause learning is not
effective, unless one can come up with a highly optimizedi@mgntation of the rea-
son calculus. In any case, backjumping without clause legrput with lookahead is
clearly ineffective. We conjecture that backjumping neeldsise learning in order to
have a beneficial effect. However, our benchmark consistarafomly generated in-
stances with little structure. It is possible that backjimgpwithout clause learning is
more effective on structured problems; we leave this issuéture studies.

Future work in this direction is therefore along two lines:Refining the reason
calculus and optimizing its implementation, and 2. implatirgy clause learning in
DLV. The latter task is not trivial, as the DLV model generatarrently heavily re-
lies on the assumption that the program it works on is fixedr&lare several ways
of overcoming this difficulty, ranging from a redesign of thetastructures to an addi-
tional datastructure which is dedicated to the learnedselsuFinally, we plan to extend
our experimentation in order to get a more complete pict@it@impact of our new
techniques. As pointed out by one of the reviewers, the reaatzulus could also be
exploited for debugging purposes.

230 Wolfgang Faber, Nicola Leone, and Francesco Ricca
References
1. Ward, J., Schlipf, J.S.: Answer Set Programming with €alearning. In: LPNMR-7.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

LNCS, (2004) 302—-313

. Ward, J.: Answer Set Programming with Clause Learnin@ fPlsis, Ohio State University,

Cincinnati, Ohio, USA (2004)

. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalo§CM TODS 22 (1997) 364-418
. Rintanen, J.: Improvements to the Evaluation of Quadtifieolean Formulae. In Dean, T.,

ed.: IJCAI 1999, Sweden,(1999) 1192-1197

. Eiter, T., Gottlob, G.: The Complexity of Logic-Based Alation. JACM42 (1995) 3-42
. Baral, C.: Knowledge Representation, Reasoning andabssle Problem Solving. CUP

(2002)

. Leone, N., Rosati, R., Scarcello, F.: Enhancing AnsweP%&ning. In: IJCAI-01 Workshop

on Planning under Uncertainty and Incomplete Informat{@001) 33-42

. Janhunen, T., Niemela, I., Simons, P., You, J.H.: Raytiand Disjunctions in Stable Model

Semantics. In: KR 2000, 12-15,(2000) 411-419

. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctivegic Programming Systems by

SAT Checkers. Atrtificial Intelligenc#5 (2003) 177-212

Eiter, T., Faber, W., Leone, N., Pfeifer, G.: DeclamtRroblem-Solving Using the DLV
System. In Minker, J., ed.: Logic-Based Artificial Intekigce. Kluwer (2000) 79-103
Gelfond, M., Lifschitz, V.: Classical Negation in Log®tograms and Disjunctive Databases.
NGC9 (1991) 365-385

Przymusinski, T.C.: Stable Semantics for DisjunctivegPams. NGO (1991) 401-424
Marek, W., Subrahmanian, V.: The Relationship betweegidProgram Semantics and
Non-Monotonic Reasoning. In: ICLP’89, MIT Press (1989) 6607

Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stalledels: Unfounded Sets, Fixpoint
Semantics and Computation. Information and Computélt8%(1997) 69-112

Baral, C., Gelfond, M.: Logic Programming and Knowledgepresentation. JLEP9/20
(1994) 73-148

Van Gelder, A., Ross, K., Schlipf, J.: The Well-Foundedn&ntics for General Logic Pro-
grams. JACM38 (1991) 620-650

Ben-Eliyahu, R., Dechter, R.: Propositional SemanfiicsDisjunctive Logic Programs.
AMAI 12 (1994) 53-87

Faber, W.: Enhancing Efficiency and Expressiveness swén Set Programming Systems.
PhD thesis, TU Wien (2002)

Niemela, I., Simons, P.: Efficient Implementation oé #ell-founded and Stable Model
Semantics. In Maher, M.J., ed.: ICLP’96, Bonn, Germany, RI€ss (1996) 289-303
Simons, P.: Extending and Implementing the Stable M8deatantics. PhD thesis, Helsinki
University of Technology, Finland (2000)

Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using bate Optimization Techniques for
Nonmonotonic Reasoning. In DDLP’99, Prolog Associatiodaban (1999) 135-139
Faber, W., Leone, N., Pfeifer, G.: Experimenting withuHstics for Answer Set Program-
ming. In: IJCAI 2001, Seattle, WA, USA,(2001) 635-640

Faber, W., Leone, N., Pfeifer, G.: Optimizing the Conagpioh of Heuristics for Answer Set
Programming Systems. In: LPNMR’01. LNCS 2173

Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derrath DLP Computations. In: LP-
NMR’99. LNCS 1730

Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Prur®perators for Answer Set Program-
ming Systems. In: NMR’2002. (2002) 200-209

