
A Backjumping Technique
for Disjunctive Logic Programming

Wolfgang Faber, Nicola Leone, and Francesco Ricca

Department of Mathematics
University of Calabria

87030 Rende (CS), Italyffaber,leone,riccag@mat.unical.it
Abstract. In this work we present a backjumping technique for Disjunctive Logic
Programming (DLP) under the Answer Set Semantics. It buildsupon related tech-
niques that had originally been proposed for propositionalsatisfiability testing,
which have been adapted to non-disjunctive Answer Set Programming (ASP) re-
cently [1, 2].
We focus on backjumping without clause learning. We providea new theoreti-
cal framework for backjumping on Disjunctive Logic Programs. We optimize the
reason calculus, reducing the information to be stored, while fully preserving the
correctness and the efficiency of the jumping technique. We implement the pro-
posed technique in DLV, the state-of-the-art DLP system. Wehave conducted
several experiments on hard random problems in order to assess the impact of
backjumping. Our conclusion is that when lookahead is employed, there is ba-
sically no advantage when enabling backjumping. However, when lookahead is
disabled, we can observe that the number of choices in general decreases by a
non-negligible factor. In our (naive) implementation thisgain is (often more than)
compensated by the additional overhead incurred by the reason calculus. It is un-
clear whether one can reduce this overhead by a more efficientimplementation.
We therefore conjecture that, at least on hard unstructuredinstances, backjump-
ing only has an impact when lookahead is not active and when clause learning is
employed in addition.

1 Introduction

Answer Set Programming (ASP) in its general form allows for disjunction in rule heads
and nonmonotonic negation in rule bodies. This knowledge representation language
is very expressive in a precise mathematical sense:Everyproblem in the complexity
class�P2 and�P2 (under brave and cautious reasoning, respectively) can be expressed
[3]. Thus, ASP is strictly more powerful than SAT-based programming, as it allows
us to solve problems which cannot be translated to SAT in polynomial time. The high
expressive power of ASP can be profitably exploited in AI, which often has to deal with
problems of this complexity. For instance, several problems in diagnosis and planning
under incomplete knowledge are complete for the complexityclass�P2 or �P2 [4, 5],
and can be naturally encoded in ASP [6, 7].

Most of the optimization work on ASP systems has focused on the efficient evalu-
ation of non-disjunctive programs (whose power is limited to NP/co-NP), whereas the

A Backjumping Technique for Disjunctive Logic Programming 217

optimization of full (disjunctive) ASP programs has been treated in fewer works (e.g.,
in [8, 9]).

One of the more recent proposals for enhancing the evaluation of non-disjunctive
programs has been the definition of backjumping and clause learning mechanisms.
These techniques had been successfully employed in propositional SAT solvers before,
and were “ported” to non-disjunctive ASP in [1, 2], resulting in the system Smodels.

In this paper we address two issues:I A generalization of backjumping to disjunctive programs.I Is backjumping without clause learning effective?
We first present a generalization of the work in [1, 2] to disjunctive programs by

defining areason calculusfor the DetCons function of DLV (which roughly corre-
sponds to unit propagation in DPLL-based SAT solvers and AtLeast/AtMost in Smod-
els). These reasons allow for effective backjumping. We also describe the implemen-
tation of the reason calculus in the DLV system, the state-of-the-art disjunctive ASP
system. In fact, our implementation aims at reducing the information to be stored as
much as possible, while maintaining the best jumping possibilities.

Subsequently, we assess our method and implementation by experimentation on
hard, randomly generated instances. We observe several issues: 1. In conjunction with
lookahead, there is basically no advantage of backjumping.2. Without lookahead, we
observe that the number of choices often decreases by a non-negligible factor. 3. How-
ever, the time needed for maintaining the information for the reason calculus apparently
supersedes the gain of having fewer choices. It is unclear whether this is because of our
unoptimized implementation or a general problem.

Summarizing, we observe that backjumping without clause learning is not effective
(at least on unstructured instances), unless one is able to find a highly optimized im-
plementation of the reason calculus. Since this task appears to be difficult to achieve,
we conjecture (based on the results of [1]) that backjumpingshould be combined with
clause learning.

2 Preliminaries on Disjunctive Logic Programming

In this section, we provide a brief introduction to the syntax and semantics of Disjunc-
tive Logic Programming; for further background see [10, 11].

2.1 Syntax

A (disjunctive) ruler is a formulaa1 v � � � v an :- b1; � � � ; bk; not bk+1; � � � ; not bm:
wherea1; � � � ; an; b1; � � � ; bm are atoms1 andn � 0; m � k � 0. Given a ruler,
let H(r) = fa1; :::; ang denote the set of head literals,B+(r) = fb1; :::; bkg and

1 For simplicity, we do not consider strong negation in this paper. It can be emulated by intro-
ducing new atoms and integrity constraints.

218 Wolfgang Faber, Nicola Leone, and Francesco RiccaB�(r) = fnot bk+1; :::; not bmg the set of positive and negative body literals, resp.,
andB(r) = B+(r) [B�(r).

A rule r with B�(r) = ; is calledpositive; a rule withH(r) = ; is referred to as
integrity constraint. If the body is empty we usually omit the:- sign.

A disjunctive logic programP is a finite set of rules;P is a positiveprogram if
all rules inP are positive (i.e.,not-free). An object (atom, rule, etc.) containing no
variables is calledgroundor propositional.

Given a literall, letnot:l = a if l = not a, otherwisenot:l = not l, and given a setL of literals,not:L = fnot:l j l 2 Lg.
2.2 Semantics

The semantics of a disjunctive logic program is given by its (consistent) answer sets
[11]; on the language considered here these are equal to disjunctive stable models of
[12].

Given a programP , let theHerbrand UniverseUP be the set of all constants ap-
pearing inP and theHerbrand BaseBP be the set of all possible ground atoms which
can be constructed from the predicate symbols appearing inP with the constants ofUP .

Given a ruler,Ground(r) denotes the set of rules obtained by applying all possible
substitutions� from the variables inr to elements ofUP . Similarly, given a programP , theground instantiationP of P is the set

Sr2P Ground(r).
For every programP , we define its answer sets using its ground instantiationP in

two steps: First we define the answer sets of positive programs, then we give a reduction
of general programs to positive ones and use this reduction to define answer sets of
general programs.

A setL of ground literals is said to beconsistentif, for every atom` 2 L, its com-
plementary literalnot ` is not contained inL. An interpretationI for P is a consistent
set of ground literals over atoms inBP .2 A ground literal` is true w.r.t. I if ` 2 I ; ` is
falsew.r.t. I if its complementary literal is inI ; ` is undefinedw.r.t. I if it is neither true
nor false w.r.t.I .

Let r be a ground rule inP . The head ofr is true w.r.t. I if existsa 2 H(r) s.t.a
is true w.r.t.I (i.e., some atom inH(r) is true w.r.t.I). The body ofr is true w.r.t. I if8` 2 B(r), ` is true w.r.t.I (i.e. all literals onB(r) are true w.r.tI). The body ofr is
falsew.r.t. I if 9` 2 B(r) s.t.` is false w.r.tI (i.e., some literal inB(r) is false w.r.t.I).
The ruler is satisfied(or true) w.r.t. I if its head is true w.r.t.I or its body is false w.r.t.I .

InterpretationI is total if, for each atomA in BP , eitherA or not:A is in I (i.e.,
no atom inBP is undefined w.r.t.I). A total interpretationM is amodelfor P if, for
everyr 2 P , at least one literal in the head is true w.r.t.M whenever all literals in the
body are true w.r.t.M . X is ananswer setfor a positive programP if its positive part
is minimal w.r.t. set inclusion among the models ofP .

Thereductor Gelfond-Lifschitz transformof a general ground programP w.r.t. an
interpretationX is the positive ground programPX , obtained fromP by (i) deleting

2 We represent interpretations as sets of literals, since we have to deal with partial interpretations
in the next sections.

A Backjumping Technique for Disjunctive Logic Programming 219

(b)

e d}-� 6 Ic
ba

�
(a)

Ic
ba

�
Fig. 1. Graphs (a)DGP4 , and (b)DGP5

all rulesr 2 P whose negative body is false w.r.t.X and (ii) deleting the negative body
from the remaining rules.

An answer set of a general programP is a modelX of P such thatX is an answer
set ofPX .

2.3 Some ASP properties

Given an interpretationI for a ground programP ,we say that a ground atomA is
supportedin I if there exists asupportingrule r 2 ground(P) such that the body ofr
is true w.r.t.I andA is the only true atom in the head ofr. If M is an answer set of a
programP , then all atoms inM are supported [13–15].

An important property of answer sets is related to the notionof unfounded set[16,
14]. LetI be a (partial) interpretation for a ground programP . A setX � BP of ground
atoms is an unfounded set forP w.r.t. I if, for eacha 2 X and for each ruler 2 P such
thata 2 H(r), at least one of the following conditions holds: (i)B(r) \ not:I 6= ;, (ii)B+(r) \X 6= ;, (iii) (H(r) �X) \ I 6= ;.

Let IP denote the set of all interpretations ofP for which the union of all unfounded
sets forP w.r.t.I is an unfounded set forP w.r.t.I as well3. GivenI 2 IP , letGUSP(I)
(thegreatest unfounded setof P w.r.t. I) denote the union of all unfounded sets forP
w.r.t. I .

If M is a total interpretation for a programP .M is an answer set ofP iff not:M =GUSP(I) [14].
With every ground programP , we associate a directed graphDGP = (N;E),

called thedependency graphof P , in which (i) each atom ofP is a node inN and (ii)
there is an arc inE directed from a nodea to a nodeb iff there is a ruler in P such thatb anda appear in the head and body ofr, respectively.

The graphDGP singles out the dependencies of the head atoms of a ruler from the
positive atoms in its body.4

Example 1. Consider the programP4 = fa v b: ; :-a: ; :- b:g, and the programP5 = P4 [fd v e:-a: ; d:- e: ; e:- d; not b:g. The dependency graphDGP4 ofP4 is depicted in Figure 1 (a), while the dependency graphDGP5 ofP5 is depicted in
Figure 1 (b).

A programP is head-cycle-free(HCF) iff there is no ruler in P such that two atoms
occurring in the head ofr are in the same cycle ofDGP [17].

3 While for non-disjunctive programs the union of unfounded sets is an unfounded set for all
interpretations, this does not hold for disjunctive programs (see [14]).

4 Note that negative literals cause no arc inDGP .

220 Wolfgang Faber, Nicola Leone, and Francesco Ricca

Example 2. The dependency graphs given in Figure 1 reveal that programP4 of Exam-
ple 1 is HCF and that programP5 is not HCF, as ruled v e a contains in its head
two atoms belonging to the same cycle ofDGP5 .

A componentC of a dependency graphDG is a maximal subgraph ofDG such
that each node inC is reachable from any other. Thesubprogramof C consists of all
rules having some atom fromC in the head. An atom is non-HCF if the subprogram
of its component is non-HCF. Thesubprogram for a componentconsists of all rules
having a head atom in the component. An atom is non-HCF if it occurs in a non-HCF
component.

3 Model Generation in DLV

In this section, we briefly describe the computational process performed by the DLV
system [14, 18] to compute answer sets, which will be used forthe experiments. Note
that, other ASP systems like Smodels [19, 20] employ a very similar procedure.

In general, an answer set programP contains variables. The computational step of
an ASP system eliminates these variables, generating a ground instantiationground(P)
ofP which is a (usually much smaller) subset of all syntactically constructible instances
of the rules ofP having precisely the same answer sets asP [21]. The nondeterministic
part of the computation is then performed on this simplified ground program by the
Model Generator, which is sketched below. Note that for reasons of presentation, the
description here is quite simplified; in particular, the choicepoints and search trees are
somewhat more complex in the “real” implementation. However, one can find a one-to-
one mapping to the simpler formalism described here. A more detailed description can
be found in [18]. Note also that the version described here computes one answer set for
simplicity, however modifying it to compute all orn answer sets is straightforward. For
brevity,P refers to the simplified ground program in the sequel.

bool MG (Interpretation& I)f
if (! DetCons (I))then return false;
if (“no atom is undefined in I”)then return IsAnswerSet(I);
Select an undefined atomA using a heuristic;
if (MG (I [fAg) then return true;

else return MG (I [fnot Ag); g;

Roughly, the Model Generator produces some “candidate” answer sets. Each can-
didateI is then verified by the function IsAnswerSet(I), which checks whetherI is a
minimal model of the programPI obtained by applying the GL-transformation w.r.t.I .

The interpretations handled by the Model Generator are partial interpretations. Ini-
tially, the MG function is invoked withI set to the empty interpretation (all atoms are
undefined at this stage). If the programP has an answer set, then the function returns
true and setsI to the computed answer set; otherwise it returns false. The Model Gen-
erator is similar to the Davis-Putnam procedure in SAT solvers. It first calls a function
DetCons, which extendsI with those literals that can be deterministically inferred. This
is similar to unit propagation as employed by SAT solvers, but exploits the peculiarities
of ASP for making further inferences (e.g., it uses the knowledge that every answer set
is a minimal model).

A Backjumping Technique for Disjunctive Logic Programming 221

DetCons(I) computes the deterministic consequences of I, and will be described in
more detail in the sequel. If DetCons(I) does not detect any inconsistency, an atomA is
selected according to a heuristic criterion and MG is recursively called on bothI [fAg
andI [fnot Ag. The atomA corresponds to abranching variablein SAT solvers.

The efficiency of the whole process depends on two crucial features: a good heuris-
tic to choose the branching variables and an efficient implementation of DetCons. Ac-
tually, the DLV system implements a so calledlookaheadheuristic [22, 23] and an
efficient DetCons implementation [24, 25].

It is worth noting that, if during the execution of the MG function a contradiction
arises, or the answer set candidate is not a minimal model, MGbacktracks and modifies
the last choice. This kind of backtracking is called chronological backtracking.

In the following sections, we describe a technique in which the truth value assign-
ments causing a conflict are identified and backtracking is performed “jumping” directly
to a point so that at least one of those assignments is modified. This kind of backtracking
technique is called non-chronological backtracking or backjumping.

4 Backjumping

In this section we first motivate by means of an example how a backjumping technique
is supposed to work, and then give a more formal account on howto extend the functions
DetCons and MG of DLV to accomplish this task in general. Since the functionality of
DetCons is crucial for this task, we start by describing a simplification of it.

4.1 DetCons

As previously pointed out, the role of DetCons is similar to the Boolean Constraint
Propagation (BCP) procedure in Davis-Putnam SAT solvers. However, DetCons is more
complex than BCP, which is based on the simple unit propagation inference rule, while
DetCons implements a set of of inference rules. Those rules combine an extension of
the Well-founded operator for disjunctive programs with a number of techniques based
on ASP program properties [24, 25].

While the full implementation of DetCons involves four truthvalues (apart from
true, false, and undefined, there is also “must be true”), we treat “must be true” as true
in this description, as they are treated in the same way with respect to backjumping.
Moreover, we group the inference rules using the same terminology as [1] for better
comparability:

1. Forward Inference,
2. Kripke-Kleene negation,
3. Contraposition for true heads,
4. Contraposition for false heads,
5. Well-founded negation.

Rule 1 derives an atom as true if it occurs in the head of a rule in which all other
head atoms are false and the body is true. Rule 2 derives an atom as false if no rule
can support it. Rule 3 applies if for a true atom only one rule that can support it is

222 Wolfgang Faber, Nicola Leone, and Francesco Riccaace n o t eB KB J
n o t ee

Fig. 2. Backtracking vs Backjumping.

left, and makes inferences such that the rule can support theatom, i.e. derives all other
head atoms as false, atoms in the positive body as true and atoms in the negative body
as false. Rule 4 makes inferences for rules which have a falsehead: If only one body
literal is undefined, derive a truth value for it such that thebody becomes false. Finally,
rule 5 sets all members of the greatest unfounded set to false. We note that rule 5 is only
applied on recursive HCF subprograms for complexity reasons [25]

4.2 Backjumping by Example

Consider the following programr1 : a v b: r2 : v d: r3 : e v f:r4 : g :-a; e: r5 : :- g; a; e: r6 : g :-a; f: r7 : :- g; a; f:
and suppose that the search tree is as depicted in Fig. 2.

According to this tree, we first assumea to be true, derivingb to be false (because
of r1 and rule 3). Then we assume to be true, derivingd to be false (because ofr2 and
rule 3). Third, we assumee to be true and derivef to be false (because ofr3 and rule 3)
andg to be true (because ofr4 and rule 1). This truth assignment violates constraintr5
(because rule 4 derivesg to be false), yielding an inconsistency. We continue the search
by inverting the last choice, that is, we assumee to be false and we derivef to be true
(because ofr3 and rule 1) andg to be true (because ofr7 and rule 1), but obtain another
inconsistency (because of constraintr7 and rule 4,g must also be false).

At this point, MG goes back to the previous choicepoint, in this case inverting the
truth value of (cf. the arc labelled BK in Fig. 2).

Now it is important to note that the inconsistencies obtained are independent of the
choice of, and only the truth value ofa ande are the “reasons” for the encountered
inconsistencies. In fact, no matter what the truth value of is, if a is true then any truth
assignment fore will lead to an inconsistency. Looking at Fig. 2, this means that in
the whole subtree below the arc labelleda no answer set can be found. It is therefore
obvious that the chronological backtracking search explores branches of the search tree
that cannot contain an answer set, performing a lot of useless work.

A Backjumping Technique for Disjunctive Logic Programming 223

A better policy would be to go back directly to the point at which we assumeda
to be true (see the arc labelled BJ in Fig. 2). In other words, if we know the “reasons”
of an inconsistency, we can backjump directly to the closestchoice that caused the
inconsistent subtree.

4.3 Reasons for Inconsistencies

Until now, we used the term “reason” of an inconsistency in anintuitive way. We will
now define more formally what such reasons are and how they canbe handled.

We start by describing the intuition of “reason” of a ground literal (representing a
truthvalue of the literal’s atom). A rulea:- b; ; notd: intuitively means: Ifb and are
true andd is false in the current partial interpretation, then derivea to be true. We can
equivalently say that:a is true “because”b and are true andd is false. In other words,
the reasons of the truth value of a derived ground literal arethe reasons of literals that
entail its truth. For “chosen” literals, their only reason is their choice.

We define the reason of a literalx in the following way: (i) if x is a chosen literal
(a “branching variable”) then the reason ofx is x. (ii) if x is a derived literal, then the
reason ofx is the union of the reasons of literals that entail its truth.Note that the reason
of a literal basically is the set of chosen literals that entail its truth.

Now we are able to define the reason of an inconsistency. An inconsistency occurs
whenl is determined to be both true and false. Therefore the reasonof an inconsistency
is the union of the reasons ofl andnot l. Referring to the example in Section 4.2, the
reason of the first inconsistency is the union of the reasons for g andnot g, which is the
setR = fa; eg. This means thata ande “entail” this inconsistency.

When, during the search, we assumed a literall both true and false (and we found,
in both cases, an inconsistency) we have two inconsistency reasons, the first one,R(l),
is found assumingl true, and the second one,R(not l), is found assumingl false. It is
straightforward to see that to avoid such inconsistencies we have to change one assump-
tion in R(l) [R(not l) which is different froml. It is worth to note that, in order to
obtain a complete search we have to change the assumption “nearest” (chronologically)
to l (in R(l) [R(not l)). If such an assumption does not exist the problem is unsatisfi-
able (there is no way to avoid that inconsistency). In the example of Section 4.2,l is e,
andR(e) [R(not e) = fag.
4.4 Extending DetCons with the Reason Calculus

In this section we describe how to compute the reason of a derived literal. In particular,
we will modify DetCons to compute the reasons of the derived literals in order to allow
for backjumping.

First of all, we introduce a numeric representation of reasons based on the recursion
level of the search algorithm (corresponding to the depth ofthe search tree). We as-
sociate an integer number (starting from 0), representing the current recursion level, to
each literal which has been chosen during the computation. Each literall derived during
the propagation (through DetCons) will have an associated set of positive integersR(l)
representing the reason ofl, which stand for the set of choices entailingl. For instance,
if R(a) = f1; 3; 4g, then the literals chosen at recursion level 1,3 and 4 entaila.

224 Wolfgang Faber, Nicola Leone, and Francesco Ricca

Moreover, given a ruler, a ”satisfying literal” is either a true head atom or a false
body literal inr. Ruler is satisfied if it has a satisfying literal.

We now define an ordering� among satisfying literals of a given rule, which is
basically a lexicographic order over the numerically ordered reasons of the literals.
We first give two technical definitions:Rk(l) denotes the set of reasons without thek
greatest reasons, andMAXk(l) gives thek-th reason in descending order (or�1 if less
thank reasons exist).Rk(l) = �R(l); k = 1Rk�1(l)nfmax(Rk�1(l))g; k > 1MAXk(l) = �max(Rk(l)); Rk(l) 6= ;�1; otherwise:

wheremax(x) is the maximum element in the setx. If s1, s2 are satisfying literals
for ruler, thens1 � s2 (s1 precedess2) iff one the following conditions holds:

(i) MAX1(s1) < MAX1(s2) ^MAX1(s1) > 0 ^MAX1(s2) > 0
(ii) MAX1(s1) = �1 ^MAX1(s2) > 0
(iii) 9k : k > 1 : 8x : 1 < x < k :MAXx(s1) =MAXx(s2) 6= �1 andMAXk(s1) < MAXk(s2) ^MAXk(s1) > 0 ^MAXk(s2) > 0
(iv) 9k : k > 1 : 8x : 1 < x < k :MAXx(s1) =MAXx(s2) 6= �1 andMAXk(s1) = �1 ^MAXk(s2) > 0

Let s1 � s2 if s1 6� s2 ands2 6� s1. We writes1 � s2 iff s1 � s2 or s1 � s2.
Let bes1,...sn satisfying literals for ruler, if si � sj for eachj = 1; :::; n thenRr = R(si) is acancelling assignmentfor r. Note that, the cancelling assignment of a

ruler represents the “earliest” reason causingr to be satisfied.
In the following, we describe how reasons of derived literals are computed for the

respective inference rules of DetCons with respect to a partial interpretationI .
Forward Inference

Given a ruler, if 9ai 2 H(r) such that(i) 8b 2 B(r); b 2 I , (ii) 8a 2 (H(r) n faig);not a 2 I , then inferai. The reason ofai is set toR(ai) = Sa2H(r)nfaigR(nota) [Sl2B(r)R(l), which is the union of the reasons of all head atoms apart fromai to be
false, and the reasons for the body literals to be true. For example, given the following
program:r1 : a v b:- ; not d: r2 : :-not d; e: r3 : f v b: r4 : g v d: r5 : e vh:
SupposeI = fnot b; ; not d; f; g; not hg, andR(f) = R(not b) = f1g, R() =f2; 3g, R(g) = R(not d) = f2g, andR(e) = R(not h) = f3g. We have thata is

derived to be true from ruler1 (all body literals are true and the only head atomb is
false) and the reason ofa to be true is set toR(a) = R(notb) [R() [R(notd) =f1; 2; 3g.

Kripke-Kleene negation
Given an atoma, if for each ruler such thata 2 H(r) (i) 9b 2 B(r) such thatnot:b 2 I
or (ii) 9 2 H(r) such thata 6= and 2 I , then infernot:a. We then setR(a) =Sr:a2H(r)Rr, whereRr is a cancelling assignment of ruler. So, a becomes false

A Backjumping Technique for Disjunctive Logic Programming 225

because each rule witha in the head is cancelled. For example, consider the following
subprogram:r1 : a v b:- ; not d: r2 : b:- e; not f: r3 : b:- g; h:
SupposeI = fa; ; d; e; f; g; not hg andR(a) = f7g, R() = f5g, R(d) = f6g,R(e) = f3g, R(f) = f4g, R(g) = f1g, R(not h) = f2g. The atomb is undefined

and it is contained in the head of all rules. The cancelling assignments are as follows:Rr1 = R() = f5g,Rr2 = R(e) = f3g, andRr3 = R(g) = f1g. DetCons then infersb to be false andR(not b) = Rr1 [Rr2 [Rr3 = f1; 3; 5g.
Contraposition for true heads

Given an atoma 2 I and a ruler such thata 2 H(r), if for each ruler0 6= r such thata 2 H(r0) (i) 9b0 2 B(r0): not:b0 2 I or (ii) 90 2 H(r0): 0 6= a ^ 0 2 I , then for
each 2 H(r) s.t. 6= a infer not:, and for eachb 2 B(r) infer b.

For each ruler0 with a in the head (different fromr) take a cancelling assignmentRr0 and set, for each derived literall of r,R(l) = R(a)[Sr0:a2H(r0)^r0 6=r Rr0 . So the
reason for the derived literals is the reason fora and the reasons for all other rules witha in the head to be cancelled. For example, consider the following subprogram:r1 : a v b:- ; not d: r2 : a v g :- f: r3 : a:- k:
SupposeI = fa; f; g; not kg andR(a) = f2g,R(f) = f2g,R(g) = f3g,R(not k) =f1g. The only unsatisfied rule havinga in the head isr1 and the cancelling assignments
areRr2 = R(a) = R(f) = f2g andRr3 = R(not k) = f1g. In this case we infer andnot d andnotb and setR(not b) = R() = R(not d) = R(a) [Rr2 [Rr3 = f1; 2g.

Contraposition for false heads
Given a ruler such that(i) 8a 2 H(r) : not:a 2 I , (ii) 9l 2 B(r) : l 62 I ^ not:l 62 I ,(iii) 8b 2 B(r) n flg : b 2 I , then infernot:l. We setR(l) = Sa2H(r)R(nota) [Sb2B(r)nflgR(b), so the reason forl is the union of reasons for the head atoms to
be false and the reasons for the body literals (apart froml) to be true. Consider the
following subprogram:r1 : a v b:- ; d: r2 : d v a v b: r3 : e va: r2 : :- d; b:
SupposeI = fnot a; not b; d; eg, andR(not a) = f1g, R(not b) = R(d) = f3g,R(e) = f2g. By r1, we getnot andR(not) = R(not a)[R(not b)[R(d) = f1; 3g.

Well-founded negation
LetS be an HCF subprogram ofP , I be an unfounded-free interpretation, andX be the
greatest unfounded set ofS w.r.t.I . Then infer all atoms inX to be false. For each atoma 2 X and for each ruler with a in the head, setR(a) = Sr2S:a2H(r)R�r , whereR�r
is the cancelling assignment ofr, if r is satisfied w.r.t.I , orR�r = ; if r is not satisfied
w.r.t. I (in the latter caser contains some element fromX).

In other words, if an atomai is unfounded we derive it as false. This case,ai be-
comes false because each ruleri, with ai in the head, has been cancelled orai is sup-
ported by an unfounded atom. For example, consider the following program:r1 : a v b: r2 : a:-not : r3 : a:- d: r4 : d:-a: r5 : b v e: r6 : v f:

226 Wolfgang Faber, Nicola Leone, and Francesco Ricca

SupposeI = fb; ; not e; not fg, R(b) = R(not e) = f1g; R() = R(not f) =f2g: The greatest unfounded set isX = fa; dg, then infera andd to be false and setR(not a) = R(not d) = R�r1 [R�r2 [R�r3 [R�r4 = f1; 2g, whereR�r1 = R(b) = f1g,R�r2 = R() = f2g andR�r3 = R�r4 = ;.
Inconsistency reasons In general, an inconsistency occurs if a literall should be

true and false in the same interpretation. We call such anl a conflicting literal. The
reason of the detected inconsistency is the setC = R(l) [R(not:l) (the union of the
reason ofl to be true andl to be false). This computation is independent of the inference
rule used during the propagation to determine the inconsistencies.

4.5 Model Generator with backjumping

In this section we describe MGBJ (shown in Fig. 3), a modification of the MG function
(as described in section 3), which is able to perform non-chronological backtracking. It
extends MG by introducing additional data structures, in order to keep track of reasons
and to control backtracking. In particular, two new variablesbj level andurr level
are used to store the current level of recursion and to control backtracking, respectively.bj level represents the level to which we (back)jump at the end of eachMGBJ call.
In addition, inconsistency reasons are stored in the activation stack by means of theallerIR parameter.

Initially, the MGBJ function is invoked withI andallerIR set to the empty inter-
pretation, andbj level set to zero (decision levels, corresponding to MGBJ calls, are
counted by using nonnegative integers). Like the MG function, if the programP has
an answer set, then the function returns true and setsI to the computed answer set;
otherwise it returns false. Again, it is easy to modify this procedure in order to obtain
all or at mostn answer sets.

MGBJ first calls the enhanced version of the DetCons procedure, referred to as
DetConsH. DetConsH extends the current interpretation with those literals that can be
deterministically inferred, and, at the same time, DetConsH computes their “reasons”
as described in Section 4.4. In particular, reasons are computed by means of a data
structure which maps literals to their corresponding reasons.

If during the propagation step an inconsistency is detected, DetConsH builds the
reason of this inconsistency, stores it inallerIR and returns false. Otherwise, an atomA is selected according to a heuristic criterion and MGBJ is recursively called on bothI [fAg andI [fnot Ag. If MGBJ returns true, a model has been found, otherwise an
inconsistency has been determined. In the latter case, the reason of this inconsistency
is stored in the variablesposIR or negIR, respectively. In both cases, when MGBJ
fails, bj level is compared withurr level. If bj level is less thanurrent level we
backjump to levelbj level, and return false. Otherwise, if an inconsistency has been
found both for the positive and the negative assumption (both MGBJ subcalls failed)
we perform the union of the two inconsistency reasons, discarding levels which are
greater than or equal to current level (this is accomplishedby the function Union)).
The obtained set represents the reason of the failure of the sub-trees below the current
assumption, and is recursively stored by using theallerIR variable.

At this point, the next recursion level is computed by setting bj level to the max-
imum of the set Union(posIR,negIR) or�1 if such a maximum does not exist (i.e., if

A Backjumping Technique for Disjunctive Logic Programming 227

bool MGBJ (Interpretation& I, InconsistencyReason& callerIR,int& bj level)f
bj level ++;
int curr level = bj level;
if (! DetConsH (I, currlevel, callerIR)

return false;
if (“no atom is undefined in I”)

return IsAnswerSet (I);
InconsistencyReason posIR, negIR;
Select an undefined atomA using a heuristic and setRA=curr level;
if (MGBJ(I [fAg, posIR, bjlevel)

return true;
else

callerIR = posIR;
if (bj level< curr level)

return false;
else

bj level = curr level;
if (MGBJ (I [fnot Ag, negIR, bjlevel)

return true;
else

callerIR = Union (posIR, negIR);
if (bj level< curr level)

return false;
bj level = MAX (callerIR);
return false; g;

Fig. 3. Computation of Answer Sets with backjumping

the set is empty). This corresponds to backtracking or backjumping to the closest recur-
sion level involved in the conflict or, if the set Union(posIR,negIR) is empty, to abort
the search because the problem is unsatisfiable. Such a situation occurs if the conflict
depends only on the current choice, and we find an inconsistency whatever truth value
we assume for it.

5 Comparison and Benchmarks

In order to evaluate the backjumping technique described inprevious sections, we have
implemented it as an experimental extension of the DLV system and we compared it
to standard DLV by using 3-SAT problem instances. Conducting further experiments
is on our agenda, but the picture and conclusions are rather clear when looking at just
these experiments. We do not expect other benchmarks to be substantially different.

5.1 Experimental Results

Our experiments have been performed on a Power Mac G4 933 MHz machine with
1MB of Level 2 Cache and 256MB of RAM, running Mac OSX 10.2.8.

228 Wolfgang Faber, Nicola Leone, and Francesco Ricca

BJ

STD

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

80 85 90 95 100 105 110 115 120 125 130 135 140

Number of Propositional variables

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

C
h

o
ic

e
s BJ

STD

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

80 85 90 95 100 105 110 115 120 125 130 135 140

Number of Propositional variables

M
a

xi
m

u
m

 N
u

m
b

e
r

o
f

C
h

o
ic

e
s

Fig. 4. Choice points on Random 3-SAT problems

We have generated 20 random 3-SAT instances for each problemsize as indicated
in [23]. The number of clauses for each generated instance was always 4.3 times the
number of propositional variables (in order to generate hard instances).

We measured both the time required to solve each instance andthe number of
choices made by DLV. Time measurements have been done using the timecommand
shipped with Mac OSX 10.2.8, counting total CPU time for the respective processes.

In Figure 4 we show the result obtained measuring choice points, while in Figure
5 we show time measurements. For every instance, we allowed amaximum running
time of 3600 seconds (one hour). In each graph, the horizontal axis reports a parameter
representing the size (number of variables) of the instance. In both cases, we disabled
the lookahead heuristic, which is the default setting in DLV. In Figure 4, on the vertical
axis, we report, respectively, the average and the maximum number of choices made
over the 20 instances of the same size we run.

On average, DLV with backjumping (labelledBJ) requires a smaller number of
choices than standard DLV (labelledSTD) to solve an instance of the same size. The
difference betweenBJ andSTD becomes rather evident starting from instances of
size 120, whereBJ has made 150176 choices whileSTD has made 172282 choices
(22106 more choices) on average, and the gap grows with the instance size. In fact,
for instances of size 140,BJ has made 699792 choices, whileSTD has made 845649
choices (145857 more) on average. This trend is confirmed looking at the second graph
in Figure 4, whereBJ did at most 4582079 choices for an instance size of 140, whichis
more than one million choices less thanSTD, which required at most 3144722 choices.

BJ

STD

Number of Propositional variables

A
v

e
ra

g
e

 E
xe

cu
ti

o
n

 T
im

e
 (

s)

BJ

STD

Number of Propositional variables

M
a

xi
m

u
m

 E
xe

cu
ti

o
n

 T
im

e
 (

s)

400

0

50

100

150

200

250

300

350

80 85 90 95 100 105 110 115 120 125 130 135 140

0

200

400

600

800

1000

1200

1400

1600

1800

80 85 90 95 100 105 110 115 120 125 130 135 140

Fig. 5. Running Times on Random 3-SAT problems

A Backjumping Technique for Disjunctive Logic Programming 229

Summarizing, we observed that the number of choices decreases of a non-negligible
factor by using our backjumping technique.

The situation looks quite different when we look at Figure 5,where on the vertical
axis, we report, respectively, the average and the maximum execution time required to
solve the 20 instances of the same size. It is evident thatSTD outperformsBJ in these
experiments. On average,STD took 110.8 seconds to solve an instance of 140 vari-
ables, whileBJ took 351.53 seconds. This can be interpreted in the following way: On
the average,BJ explores a smaller search tree, but the corresponding gain is compen-
sated by the overhead introduced by the reason calculus (at least in our implementation).

We performed the same experiments with the lookahead heuristic enabled but we
noticed virtually no difference in choice points betweenBJ andSTD. This means
that when lookahead is employed, there is basically no advantage when employing
backjumping in addition – on the contrary, the overhead incurred by the reason calculus
increases the computation time even more.

The ineffectiveness with respect to lookahead does not comeas a big surprise. Since
with lookahead (without the optimizations reported in [23]) DetCons will be activated
for each atom upon assuming its truth and falsity, respectively, many inconsistent sub-
trees will be identified immediately after the relevant choice, in this way anticipating a
large amount of potential backjumps.

6 Conclusion and Future Work

We have presented a backjumping technique for computing theanswer sets of disjunc-
tive logic programs. It is based on a reason calculus and is anelaboration of the work
in [1, 2]. In particular, we do not build an implication graph, and thanks to the rea-
son calculus determining the point to jump back to can be calculated more efficiently.
Moreover, our framework is suitable for disjunctive programs.

We have implemented the technique in the DLV system, and haveconducted sev-
eral experiments with it. For these tests, backjumping without clause learning is not
effective, unless one can come up with a highly optimized implementation of the rea-
son calculus. In any case, backjumping without clause learning but with lookahead is
clearly ineffective. We conjecture that backjumping needsclause learning in order to
have a beneficial effect. However, our benchmark consists ofrandomly generated in-
stances with little structure. It is possible that backjumping without clause learning is
more effective on structured problems; we leave this issue for future studies.

Future work in this direction is therefore along two lines: 1. Refining the reason
calculus and optimizing its implementation, and 2. implementing clause learning in
DLV. The latter task is not trivial, as the DLV model generator currently heavily re-
lies on the assumption that the program it works on is fixed. There are several ways
of overcoming this difficulty, ranging from a redesign of thedatastructures to an addi-
tional datastructure which is dedicated to the learned clauses. Finally, we plan to extend
our experimentation in order to get a more complete picture of the impact of our new
techniques. As pointed out by one of the reviewers, the reason calculus could also be
exploited for debugging purposes.

230 Wolfgang Faber, Nicola Leone, and Francesco Ricca

References

1. Ward, J., Schlipf, J.S.: Answer Set Programming with Clause Learning. In: LPNMR-7.
LNCS, (2004) 302–313

2. Ward, J.: Answer Set Programming with Clause Learning. PhD thesis, Ohio State University,
Cincinnati, Ohio, USA (2004)

3. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS22 (1997) 364–418
4. Rintanen, J.: Improvements to the Evaluation of Quantified Boolean Formulae. In Dean, T.,

ed.: IJCAI 1999, Sweden,(1999) 1192–1197
5. Eiter, T., Gottlob, G.: The Complexity of Logic-Based Abduction. JACM42 (1995) 3–42
6. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP

(2002)
7. Leone, N., Rosati, R., Scarcello, F.: Enhancing Answer Set Planning. In: IJCAI-01 Workshop

on Planning under Uncertainty and Incomplete Information.(2001) 33–42
8. Janhunen, T., Niemelä, I., Simons, P., You, J.H.: Partiality and Disjunctions in Stable Model

Semantics. In: KR 2000, 12-15,(2000) 411–419
9. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by

SAT Checkers. Artificial Intelligence15 (2003) 177–212
10. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV

System. In Minker, J., ed.: Logic-Based Artificial Intelligence. Kluwer (2000) 79–103
11. Gelfond, M., Lifschitz, V.: Classical Negation in LogicPrograms and Disjunctive Databases.

NGC9 (1991) 365–385
12. Przymusinski, T.C.: Stable Semantics for Disjunctive Programs. NGC9 (1991) 401–424
13. Marek, W., Subrahmanian, V.: The Relationship between Logic Program Semantics and

Non-Monotonic Reasoning. In: ICLP’89, MIT Press (1989) 600–617
14. Leone, N., Rullo, P., Scarcello, F.: Disjunctive StableModels: Unfounded Sets, Fixpoint

Semantics and Computation. Information and Computation135 (1997) 69–112
15. Baral, C., Gelfond, M.: Logic Programming and KnowledgeRepresentation. JLP19/20

(1994) 73–148
16. Van Gelder, A., Ross, K., Schlipf, J.: The Well-Founded Semantics for General Logic Pro-

grams. JACM38 (1991) 620–650
17. Ben-Eliyahu, R., Dechter, R.: Propositional Semanticsfor Disjunctive Logic Programs.

AMAI 12 (1994) 53–87
18. Faber, W.: Enhancing Efficiency and Expressiveness in Answer Set Programming Systems.

PhD thesis, TU Wien (2002)
19. Niemelä, I., Simons, P.: Efficient Implementation of the Well-founded and Stable Model

Semantics. In Maher, M.J., ed.: ICLP’96, Bonn, Germany, MITPress (1996) 289–303
20. Simons, P.: Extending and Implementing the Stable ModelSemantics. PhD thesis, Helsinki

University of Technology, Finland (2000)
21. Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Database Optimization Techniques for

Nonmonotonic Reasoning. In DDLP’99, Prolog Association ofJapan (1999) 135–139
22. Faber, W., Leone, N., Pfeifer, G.: Experimenting with Heuristics for Answer Set Program-

ming. In: IJCAI 2001, Seattle, WA, USA,(2001) 635–640
23. Faber, W., Leone, N., Pfeifer, G.: Optimizing the Computation of Heuristics for Answer Set

Programming Systems. In: LPNMR’01. LNCS 2173
24. Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In: LP-

NMR’99. LNCS 1730
25. Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: PruningOperators for Answer Set Program-

ming Systems. In: NMR’2002. (2002) 200–209

