Extending Conceptual Logic Programs with Arbitrary
Rules

Stijn Heymans, Davy Van Nieuwenborgtand Dirk Vermeit*

Dept. of Computer Science
Vrije Universiteit Brussel, VUB
Pleinlaan 2, B1050 Brussels, Belgium
{sheynmans, dvni euwe, dver nei r }@ub. ac. be

Abstract. We presenextended conceptual logic programs (ECLHe) which
reasoning is decidable and, moreover, can be reduced te &ngwer set pro-
gramming. ECLPs are useful to reason with both ontological eule-based
knowledge, which is illustrated by simulating reasoningumexpressive descrip-
tion logic (DL) equipped with DL-safe rules. FurthermoreZIHPs are more ex-
pressive in the sense that they enable nonmonotonic remse@nilesirable feature
in locally closed subareas of the Semantic Web.

1 Introduction

Reasoning with both ontological knowledge, in the form ofesdaiption logic (DL)
[1] knowledge base, and rule-based knowledge has receaityed in interest in the
Semantic Web community. The purpose of adding rules to ogichl knowledge is to
have additional expressiveness. E.g., [19] extends a Dwlatye base witlbL-safe
rules i.e. Horn clauses where variables must appear in non-bhstin the body of
rules. DL-safe rules can, e.g., express triangular knogdetbt expressible with DLs
alone:uncle(a, ¢) « brother(a, b), parent(b, c).

DL-safe rules do not include threegation as failure (nafpperator, and as a conse-
quence, do not cope well with incomplete or dynamically giiag knowledge: like rea-
soning with DL, reasoning with DL knowledge bases and Dlesales is monotonic.
However, nonmonotonic reasoning may be useful in apptioatithat involve well-
defined closed subareas of the Semantic Web, as illustnati ifollowing example.
Assume a business is setting up its website for processsigmer feedback. It decides
to commit to an ontology) which defines that if there are no complaints for a prod-
uct, it is a good productyood_product(X) <+ not complaint(X). The business has
its own particular business rules, eig. invest(tps, 10K) < not good_product(tps)
saying that if its particular top selling produgts cannot be shown to be a good product,
then the business has to invest 10Kgin. Finally, the business maintains a repository

* Supported by the FWO.
** This work was partially funded by the Information Societycfirologies programme of the
European Commission, Future and Emerging Technologiesruhd IST-2001-37004 WASP
project.



28 Heymans, Van Nieuwenborgh and Vermeir

of dynamically changing knowledge, originating from useedback collected on the
site, e.g. at a certain tim&, = {complaint(tps) < } with a complaint fortps.

If the business wants to know whether to invest moréyin it needs to check
O U {i} U Ry [ invest(tps, 10K), i.e. whether the ontology, combined with its own
business rules, and the information repository, demandrionvestment or not.

One can usextended conceptual logic programming (ECLt&express the above
knowledge. Intuitively, any model aP U {i} U Ry, must verify complaint(tps), and
thusgood_product(X) < not complaint(X) will not trigger andgood _product(tps)
will be false, which in turn, with rulg, allows to conclude that the business should
indeed invest.

Evaluating the same query with an updated reposiityy= { complaint(tps) < ,
good_product(tps) + } containing a survey result saying that is a good product,
no matter what complaints of individual users there may éedjl$ taO U {i} U R, [~
invest(tps, 10K), such that no further investments are necessary. Adding/lecige
thus invalidates previous conclusions making reasonimgnamotonic; similar scenar-
ios can easily be imagined in any environment with dynariadanging knowledge.

In this paper, we formally introduce ECLP programs whichgishof two (possi-
bly empty) parts: a@onceptual logic program (CLR)apable of expressing conceptual
knowledge, as in e.g. DL knowledge bases, and an arbifiaitg grounded program
which allows to relate constants/individuals in arbitraugys, enabling e.g. the expres-
sion of triangular knowledge. More specifically, ECLPs canutate reasoning in the
DL ALCHOQ(U, M) equipped with DL-safe rules. Besides the advantage of tmifo
syntax and semantics that ECLPs have over DLs equipped Witsate rules, ECLPs
are capable, as indicated above, of nonmonotonic reasasingll.

Furthermore, we will show that reasoning with ECLPs can bleiced to finite an-
swer set programming by virtue of the forest-model propartg the bounded finite
model property. The reduction to finite ASP makes reasoniitly RCLPs amenable
for existing answer set solvers suchmy [17] or SMODELS[20].

The remainder of the paper is organized as follows. Aftealiigg the open an-
swer set semantics in Section 2, ECLPs are formally intredilc Section 3. Section 4
describes the simulation of an expressive class of DLs @edipvith DL-safe rules.
Section 5 highlights some related work while Section 6 dasteonclusions and direc-
tions for further research. Due to space restrictions albfs have been omitted; they
can be found at http://tinf2.vub.ac.be/"sheymans/tedpew.ps.gz.

2 Answer Set Programming with Open Domains

Answer set programming (ASE3] is a logic programming paradigm where knowl-
edge is represented by programs and answer sets providaddntended seman-
tics of that knowledge. However, in certain cases ASP failsdpture the intention

of the program. Take the program consisting of the riles(X) < not good(X)

and good (heather) <+ , where one is bad if not good and Heather is a good per-
son. In ASP a program is grounded with the constants in thgram, resulting in

1 SWRL [15] also combines ontologies and rules in one unifoyritax and semantics; reason-
ing with it is, however, undecidable.



Extending Conceptual Logic Programs with Arbitrary Rules 9 2

bad(heather) < not good(heather) and good(heather) <« , after which the unique
answer sef good (heather)} can be calculated. One would thus wrongfully conclude
that there can never be bad individuals. In [13], this wasesbby consideringpen
domainsi.e. the program may be grounded with any superset of theepteonstants:
grounding with a universéz, heather} yields bad(heather) <+ not good(heather);
bad(z) < not good(z) andgood(heather) < , which has an answer set

{bad(z), good (heather)}, correctly capturing the intended meaning of the program.

We briefly recall the open answer set semantics from [13]. &llérdividual names
constantand write them as lowercase letterariableswill be denoted with uppercase
letters. Variables and constants &ens Atomsare of the formu(t) or f(t1,t2), with
a a unary predicatef a binary predicate, ang ¢, andt, terms. Aliteral is an atom or
an atom preceded by. An extended literals a literall or anaf-literal not [ wherel is a
literal. We will often denote a set of unary extended litefal; (s), . .., a,(s)}, ranging
over a common term, asa(s) with o = {a1, ..., a,}. A set of binary extended literals
can be similarly denoted ag(s, t). The positive part of a set of extended literglss

* = {l|1 € B, literal}, the negative parti§~ = {I | not I € 3}. Furthermore, we
assume the existence of a binary predigatevith the usual interpretation.

A disjunctive logic progranfDLP) is a finite set of rules : a < 5 wherea andg
are finite sets of extended literals dad | < 1. If a = (), the rule is called aonstraint
The setv is theheadof the ruler, denoted hedd), while 3 is called thebody, denoted
body(r). As usual, atoms, (extended) literals, rules, and progithatsdo not contain
variables arground For a setX of literals,—X = {-l |l € X}, where, by definition,
—=-a = a. A set of ground literals\ is consistentf X N =X = (.

For a DLPP, let Hp be the set of constants appearingiirand vars(P) the set
of its variables. A (possibly infinite) non-empty set of ctargs?{ such that{p C H,
is called auniversefor P. We call Py the grounded progranobtained fromP by
substituting every variable i by every possible constant . Let £Lp be the set of
literals that can be formed from a grounded prog@@npreds(P) the set of predicates
of P, andupreds(P) the set of unary predicates.

An interpretation/ of a grounded prograr® is any consistent subset 6f-. For a
ground literall, we write I =1, if [ € I, which extendstd = not [ if I [~ 1, and, for
a set of ground extended literal§, I = X if I = « for everyz € X. A ground rule
r:a ¢« (issatisfiedw.r.t. I, denoted |= r, if I = [ for somel € o wheneved = 3,
i.e.r is appliedwhenever it iapplicable A ground constraint— £ is satisfied w.r.t/
if I = (. For asimplegrounded progran® (i.e. a program withounot), 7 is amodel
of P if I satisfies every rule i; it is ananswer sebf P if it is a subset minimal model
of P. For grounded programB containingnot, the GL-reduct[10] w.r.t. I is defined
asP!, whereP! containsa® «+ gt fora « ginP,3~ NI =0anda” CI.Tis
ananswer sebf a grounded® if I is an answer set d?’. An open interpretatiorof P
is a pair(?, I) whereH is a universe foi? and! is an interpretation oP;;. An open
answer sebf P is then an open interpretatig¢{, //) with M an answer set Py, In
the following, we will usually omit the “open” qualifier. Wexpress the motivation of a
literal in an answer set formally by means of the operdtadhat computes the closure
of a set of literals w.r.t. a GL-reduct. For a DUP and an interpretatio(i{, M) of



30 Heymans, Van Nieuwenborgh and Vermeir

P, Tpy : Lpy — Lpu is defined &8T(B) = B U {ala +- § € P/ A3 C B}.
Additionally, we havel®(B) = B, andT""!(B) = T(T™(B)). More detail than the
T-operator is provided by theupportof a literal a in an answer set#, M), which
explicitly indicates the literals that support the preseata in the answer set. For the
leastn such thata € T, we inductively define the suppoft* (a) on a certain level
1<k<nasS"(a) ={a}andSk(a) ={B | b« Be P}, pC Tk g T be
Sk+1(a)}, 1 < k < n. A support fora is thenS(a) = Up_, S¥(a).

Take, for example, the prograf with a rulep(X) V not p(X) < . Grounding
w.r.t. to a universdz, y} yields the progran#, ,, consisting ofp(z) V not p(z) <
and p(y) v not p(y) «+ . We have that{p(z)} is an answer set oP, ,;, since
the GL-reduct isp(z) < which has only one minimal mode{p(z)} itself. Thus
({z,y},{p(x)}) is an answer set dP. Actually, a rule such as i allows one to freely
introducep-literals (provided no other rules constrain this). We egtredicate freeif
p(X,Y)Vnot p(X,Y) + orp(X)Vnot p(X) < isinthe program, for a binary
or unaryp respectively. Similarly, a ground literais free if we havd Vv not [ < .

A programP is consistentf it has an answer set. For a unary predigatappearing
in P, p is satisfiablew.r.t. P if there exists an answer sgi{, M) of P such thap(a) €
M for somea € H. A program can be consistent without satisfying some paletic
predicatep: a progranmp(X) «+ p(X) has only answer set$4, )) for some arbitrary
universef; the program is thus consistent hus not satisfiable. For a ground litekal
we haveP |= « if for all answer set§#, M) of P, « € M. Checking whetheP |= «
is calledguery answeringWe can reduce query answering to consistency checking, i.e
P = «iff PU{not a < }is not consistent. Consistency checking can be reduced to
satisfiability checking, by introducing some new free pcatkp.

Finally, satisfiability checking for DLPs under the open\aes set semantics is
undecidable since the undecidabdtEmino problenj2] can be reduced to it [13].

3 Adding Grounded Rules to Conceptual Logic Programs

In [13], the syntax of DLPs was restricted in order to regagcidability of reasoning
and to enable a reduction of reasoning to normal answer sgtaanming, resulting in
conceptual logic programs (CLPS)Ve recall the intuition and definition of CLPs.
Consider a program®; defining when one cheats one’s spouse, i.e. if one is married
to someone that is different than the person one is datinghdVe a specialized rule
saying when one is cheating one’s spouse with the spougersifjane. Furthermore,
some justice is introduced by a constraint ensuring thattene will in turn be cheated.

cheats(X) < marr(X, Y,), dates(X, Yo), Y, # Yo
cheats_with_jane(X) < marr(X,Y), friend(Y, jane), dates(X , jane), Y # jane
+ cheats(X), dates(X, Y), not marr(X, Y), not cheats(Y)

with marr, friend anddates free predicates. An (infinite) answer set of this program
that satisfiesheats_with_jane is depicted in Figure 1, where e.gheats in the label

2 We omit the subscript if it is clear from the context and, fiertmore, we will usually writd’
instead ofT’().



Extending Conceptual Logic Programs with Arbitrary Rules 1 3

of x indicates thatcheats(z) is in the answer set. One sees thatheats his spouse
with Jane sincer dates Jane but is married #d. Furthermore, by the constraint, we
must have that Jane is also a cheater, and thus, by mininoélitgswer sets, we must
have that Jane is married to sofia@e1 and dategane2, who in turn must be cheating,
resulting in an infinite answer SeFormally, a CLP is a DLP consisting of the following

{cheats, cheats_with_jane}

z {cheats}

marr -7 marr

’,,f”}r’iend

rle -~ janel {cheats}

Fig. 1. Forest-Model

types of rules [13]:

— freerulesl v not [ + for aliterall,

— unary rulesa(s) < 5(5), UmYm (S, tm), UmOm (tm), Uiz t; # t;, such that, if
Ym # 0 thenyt # 0, and, in case,, is a variable: if§,,, # 0 thenvy,, # 0,

— binary rulesf (s, t) «+ B8(s),v(s,t),(t) with v+ # (if ¢ is a variable,

— constraints « a(s).

wherei andj are within the range of. Note that the example prograf is not
directly a CLP due to the presence of the literalerr (X, V), friend(Y , jane) in the
second rule whergune is not directly connected t&’, as is required for unary rules.
However, we can rewrite it as a CLP rule by replacingnd (Y, jane) by somea(Y')
and adding the unary rule(Y) < friend(Y,jane). In general, programs where the
rules have a tree-like body can be easily rewritten as CLRsoAgh CLPs allow only
constraints of the very simple forma- a(s) we can reduce constraints- 5 to a CLP
rule by introducing the unary rule(s) <+ 5 and « a(s).

CLPs were designed to ensure theest-model propertfand to a lesser extent the
bounded finite model property, cfr. infra). This forest-rabgroperty ensures that if a
CLP has an answer set where a certain unary predicate iSeshtthen there must be an
answer set that has the form of a forest such that the predgctatie at the root of a tree
in such a forest. E.g., the answer set in Figure 1 consistdretawith ananonymous
elementz as root and the constajgne as the root of another tree. It appears that
the clean forest structure (i.e. disjoint trees) is perdrby the connections between

% We represent the successors of a node asz1, ..., zn.
4 .e. a domain element not appearing as a constant in thegsrogr



32 Heymans, Van Nieuwenborgh and Vermeir

x, 1 andjane. However, it is easy to see that we can encode éutps(z, jane) as
dates®(z) and thus keegates® in the label ofr. Since there are only a finite number of
constants in a program, the labels of the trees are also.finiedfect, a forest-model is
a set of trees, with arbitrary connections from element®testants. Consequently, the
connections between constants, i.e. the roots of the tmegsform an arbitrary graph.

A particular forest-model constructed from an answer setmfogram withn con-
stants contains + 1 trees, i.e. one for each constant (which is the root of tleaf)tand
an additional one for some anonymous element that contagmgredicate of which
satisfiability is being checked.

The syntax of a CLP ensures that the forest-model propexglid for CLPs [13].
E.g. one cannot havg X) < not f(X, Y), since an answer séfz,y}, {p(z)}) can-
not be transformed into a tree: we have nothing to conmewith y. Similarly, we
cannot have (X, Y) « p(X) since, forp(z), this would introduce arbitrary connec-
tions between: and all other domain elemengs and thus would clearly violate the
tree structure. However, it is allowed to haweX) < ¢(a) for a constant, since,
intuitively, a is a root of its own tree.

As the tree-like rules impose a rather strict format uporréipeesentation of knowl-
edge, we extend CLPs by allowing for a component with anyittz2L P rules that may
only be grounded with the combined program’s constants.

Definition 1. Anextended conceptual logic program (ECLP)is a pair(Q), R) where
Q isa CLP andR is a finite DLP. We denot@ with clp(P) and R with e(P). AnECLP
answer sebf (@), R) is an open answer set ¢f U Ry 4., - Satisfiability checking and
query answering w.r.{Q), R) are modified accordingly.

To avoid confusion with ECLP answer sets and open answengetassume an ECLP
P is a CLPQ extended with a ground DLR, i.e. P = () U R, under an open answer
set semantics. It is easy to see that the ECLP answer set Sesnafran ECLP can be
reduced to the open answer set semantics of a CLP with amaaybground part.

For example, in addition t&;, we may have a rule representing that if Leo is mar-
ried to Jane, Jane dates Felix, and Leo himself is not chigatien Leo dislikes Fe-
lix: dislikes(leo, felix) < marr(leo, jane), dates(jane, felix), not cheats(leo). This
ground rule does not have a tree structure, it relates tlee ttonstants in an arbitrary
graph-like manner. Note that the ground rules can be fullgéel DLP, i.e. with nega-
tion as failure. Moreover, predicates éiP) may be defined in the CLEIp(P), as is
the case formarr, dates andcheats. Vice versa, we may have predicates appearing in
the CLP part that are defined in the ground rule part, édgikes could appear in the
CLP part as alislikes(X, V) literal.

ECLPs still have the forest-model property, since, ineltj, graph-like connec-
tions between constants are allowed in a forest, which ihalground part(P) of an
ECLP P can ever introduce.

Theorem 1. Extended conceptual logic programs have the forest-madekpty.

A forest-model of the example ECLP would be the forest-madéligure 1 with ad-
ditionally {dislikes(leo, feliz), marr(leo, jane), dates(jane, feliz)}. As for CLPs in
[13], we would like to establish a bounded finite model proyp&r ECLPs. This prop-
erty enables the transformation of an (infinite) answer gt & finite one, and, more



Extending Conceptual Logic Programs with Arbitrary Rules 3 3

specifically, it establishes a bound on the number of domaments that are needed for
such a construction. Moreover, this bound depends solefg@program at hand, such
that, by introducing a sufficient number of domain elemeniésgan simulate reasoning
with ECLPs by normal finite answer set programming.

We sketch theuttingtechnique from [13]to transform an infinite forest-model into
a finite answer set. For every path in a tree in such a foresteinand every first pair
of nodes with equal labels on such a path from the root, wewayahe tree below the
second node in the pair and duplicate the outgoing edge® dirgh node in the second
node in the pair. Intuitively, once we encounter on a pattballéa “state”) we already
encountered, we act as if in the first occurrence of the lais#éad of going down the
tree thereby ignoring the infinite part. For example, Fig2igshows the cutting of the
forest-model on the left, resulting in the finite answer setlee right. Sincer1 and

Fig. 2. Cutting a Forest-Model

x2 have the same label asz we replace all outgoing edges fram andx2 with the
outgoing edges from: we have connections fromto x1, from z to 2, and fromz to

the constant. Thus we introduce foxi, i € {1,2} connections fromx: to 21, from

xi to 22, and fromzi to a. The tree with constant root is cut in a similar way, but note
that one only starts considering duplicate pairs from belmwoot and thugal, all)

is the first pair with duplicate labels to consider. This hesgit might be that a rule
t(a) + introduceg in the label ofa, however, such a rule cannot be used to motivate
the presence dflower in the tree. Below the root,tavould be motivated by a rule with
headt(X), which can be matched against any lower node.

Taking into account that forest-models have a finite bourdiedching, and that on
every path we must always encounter duplicate labels ateuaded depth, together
with the fact that there are + 1 trees, forn constants, leads to a finite boukdf
needed domain elements, which can be read from the proghentoiranching can be
determined from the branching of the unary rules, and thebaumf possible labels de-
pends on the number of unary predicates in the program. Tidweuof different labels
is exponential in the size of the program such that, takitgaccount the branching of
the programk is in general double exponential.

5 For a formal definition of cutting, we refer the reader to thegb of Theorem 4 in
http://tinf2.vub.ac.be/"sheymans/tech/oasp-sw.ps.gz



34 Heymans, Van Nieuwenborgh and Vermeir

However, one has to be cautious with this cutting, e.g. thegg@m with rules
a(X) « f(X,Y),a(Y), anda(X) < b(X) with b and f free, has a tree-model
{a(z), f(z,21),a(z]), f(z1,211),a(x11),b(x11)}. If one cuts at the first occurrence
of a duplicate label, which would be a1 in this case, then(z) would no longer have
a valid support b(x11) has been cut away - and thus the resulting model would not
be minimal. Note that cutting is somewhat similar in spioittiocking in description
logics [1], howeverminimalitydemands some extra precautions, as indicated above.

This problem was solved in [13] for CLPs by enforcing the laoadel property:
forest-models of a CLP should tecally supportedi.e. for every literak(z) (f(x,y))
the forest-model can only be motivated byone ofz’s successors, and/or constants.
This way, when we cut the trees we never remove the suppomyhiher nodes
in the tree. An extra condition for local supportedness vhas &g(zi, a), although it
involves only a successor ofand a constant, cannot be in the suppott(@f) (f(z, y))
since upon cutting ati, g(zi, a) could be removed while it provides support fdr)
(f(z,y))- In the cheating example we have that the forest-modettiegin Figure 1 is
not locally supported sincgiend(z1, jane) is in the support otheats_with_jane(z)

- to derivecheats_with_jane(z) we needfriend(z1, jane).

In the ECLP case, however, where we have an arbitrary groantg fhe local
model property of [13] is not sufficient. Take, for exampleye doesnt _care(feliz) +
marr(leo, jane), dates(jane, felix), cheats(leo), where Felix does not care about dat-
ing the married Jane if her husband Leo is cheating as wajleth@r with thecheats
rule from the cheating example, one has thatsnt_care(feliz) is in an answer set if
marr(leo, jane), dates(jane, feliz),cheats(leo), marr(leo, leol), anddates(leo, leo2)
for successor&o! andleo2 of leo are in the answer set. Thus, although the cheats rule
in itself does not violate the local model property, addirgyeund rule does so, since
supports may involve also successors of constants whidt ellowed according to the
local model property definition for CLPs in [13].

However, cutting of forest-models never removes any ssoee®f constants and,
moreover, a successor of a constant is never consideredeasi@ate for the second
node in a duplicate pair since, by definition, the root in astant tree is not taken into
account as a candidate for the first node in a duplicate phirs,Twe can safely relax
the local model property definition from [13] for ECLPs by@lallowing successors
of constants in the support. In the definition below, we Hsg;) to denote the domain
elements inS (1), the support of.

Definition 2. A forest-mode{?{, M) of an ECLPP is locally supportedf

Vi=q(x) e MVI=f(x,y) € M-

(Hsqy € {=,zi | zi successor of} U {a,ai | a € Hp,ai SUccessor oi})A

(Vf(z,a) € S(I),a € Hp -z # zi), p € upreds(P) is locally satisfiablew.r.t. P if

there is a locally supported forest-model)acal modelfor short, (H, M) such that
p(e) € M for aroote in H. An ECLPP has thelocal model propertyif the following
holds: ifp € upreds(P) is satisfiable w.r.tP then it is locally satisfiable.

Thus, a forest-model is locally supported if the supportdeeryq(x) or f(z,y)
involves onlyz itself, successors af, constants and/or successors of constants. ECLPs

6 A tree-model is a forest-model containing only one tree.



Extending Conceptual Logic Programs with Arbitrary Rules 5 3

with the local model property then have the desired boundhéte finodel property, i.e.
if a (unary) predicate is satisfiable w.r.t. an ECLPP then it is satisfiable by a finite
answer setH, M) with || < k wherek is solely determined by the prograf

Theorem 2. Let P be an ECLP with the local model property. Théhhas the bounded
finite model property.

Thanks to this property we can reduce reasoning with ECLR®tmal answer set
programming by introducing a sufficiently large bound.

Theorem 3. Let P be an ECLP with the local model property.€ upreds(P) is sat-
isfiable w.r.t. P iff there is an answer se¥/ of ¢)(P) containing ap(z;), 1 < i < k,
wherek is as derived above and(P) = P U {cte(z;) + |1 <i < k}.

The local model property characterizes those ECLPs for lwheasoning can be re-
duced to normal finite answer set programming. Howeverdtismantical characteri-
zation, which makes it non-trivial to recognize ECLPs dgitig) this property. We now
identify a class of ECLPs, based on their syntactic stregtilvat have the local model
property.

Local CLPsare CLPs where each unatys) < a(s), Ym/($, tm), Bm (tm), ti # t;
and each binary (s,t) < a(s),vy(s,t),[(t) is such that every € B(tn) is either a
free predicate, or if(,,, is a constanty((,,)) is a free literal, or for every : b(u) «+
body(r), body(r)™ = 0. Intuitively, to prove aru(s) (f(s, ¢)) one needs to descend at
most one level in the tree, where one can locally preig (f(s,t)), i.e. without the
need to go further down the tree. Of course, in the level belowe may need to check
more literals which could amount going further down the time whilst doing this one
does not need to remember which literals need to be proveckahohe tree - in a way
a local CLP is memoryless. In [13] local CLPs were shown toehiée local model
property.

We then defindocal ECLPsas the union of a local CLP and an arbitrary ground
DLP.

Definition 3. Alocal ECLP P is an ECLP wherelp(P) is local.

By the extension of the local model property of CLPs to accamate for ECLPS,
where also successors of constants are allowed in the loppbst, local ECLPs have
the local model property, i.e. the arbitrary ground rulessha@o influence on the locality.

Theorem 4. Local ECLPs have the local model property.

Furthermore, adding a finite number of ground rules to a CLE&sdwt augment the
complexity of reasoning.

Theorem 5. Let P be an ECLP with the local model property. Satisfiability dtieg
W.r.t. P is in 3-NEXPTIME.

Indeed, we have that the bouidof needed domain elements to simulate reasoning
w.r.t. an ECLPP with finite answer set programming is double exponentiahagize

of P, and thus the size of the translated progra#®) (as in Theorem 3) is double
exponential in the size aP. Since satisfiability checking w.r.t;(P) is in NEXPTIME
w.r.t. the size of the program [6, 3], we hav8-aEXPTIME bound w.r.t. the size of the
original ECLP.



36 Heymans, Van Nieuwenborgh and Vermeir

4 Nonmonotonic Ontological and Rule-based Reasoning with
Extended Conceptual Logic Programs

We consider the DLALCHOQ(LI, M) which is the basic DLALC with support for
role hierarchies%(), nominals/individuals@), qualified number restrictiong)), and
conjunction (1) and disjunction(l) of roles. ALCHOQ(L, M) is a DL related to the
ontology language OWL DL [4], extending it in certain aspesd restricting it in oth-
ers: OWL DL is a notational variant of the DEHOZN (D)[16], which adds transitive
roles (turningALC into S), inverse rolesZ), and data typed) to ALCHOQ(L, M)
while removing support for role constructors and qualifiedniber restrictions from it,
and allowing only unqualified number restrictions);

Formally, the syntax ofALCHOQ(L, M) concept and role expressions can be de-
fined as in Table 1 for concept expressidnsE, concept namesd, role expressions
R, S, role nameg), and nominal. The semantics is given by a tugle= (AZ, %)
where A is a non-empty set, representing the set of available doslaiments, and
L is an interpretation function such thaf C A7 andQ? C AT x A for concept
namesA and role names), and every nominad is mapped to some” € A”. For
complex concept expressionsis defined as in Table 1, where we additionally assume

Table 1. Syntax and SemanticdCCHOQ(U, M)

concept names AT c AT
role names QF c AT x AT
individualg {0} = {0"}

conjunction of concepts (DN E): = DT n EX
disjunction of concepts (D U E)E = DT U E*
conjunction of roles  (RM S)* = Rfn st
disjunction of roles (RU S)Z = RTu §*
existential restriction (3R.D)* = {z|3y : (=,y) € RT Ay € D}
universal restriction  (VR.D)* = {z|Vy : (z,y) € RT = y € D}
qualified number restrictiot< n R.D)* = {z|#{y|(z,y) € RF Ay € DT} < n}
(> n R.D)" = {z|#{yl(z,y) € R Ay € D*} > n}

the unique name assumptidar nominals, i.e. ifo; # os, theno? # ol. Note that
OWL does not have the unique name assumption [21], and tlffesedit individuals
can point to the same resource. However, the open answegrsansics gives an Her-
brand interpretation to constants, i.e. constants arepireted as themselves, and for
consistency we assume that also DL nominals are interpthiedvay. Thus, from a
Semantic Web point of view, we assume all individuals are’&JfRit point to a unique
resource.

A DL knowledge baseonsists oterminological axiom&’; C Cs androle axioms
R; C R, for concept expressions; andCs, and role expression?; andR,. Axioms
express a subset relation: an interpretafisatisfiesan axiomC, C C (R C R») if
Cl c ¢F (RT C RY). Aninterpretation is anodelof a knowledge basg if it satisfies



Extending Conceptual Logic Programs with Arbitrary Rules 7 3

every axiom inX. A conceptC is satisfiablew.r.t. X if there is a model of ¥ such
thatC” # 0.

The ontology layer for the Semantic Web is becoming a realith languages
such as OWL DL. Consequently, the rule layer, which providdgitional inferencing
capabilities on top of DL reasoning, is gaining intereshia $emantic Web community.
For example, in [19], integrated reasoning of DLs with-saferules was introduced.
DL-safe rules are unrestricted Horn clauses where onlydghewunication between the
DL knowledge base and the rules is restricted; they enal@a@express knowledge
inexpressible with DLs alone, e.g. triangular knowledgehsas [19]

BadChild(X) + Grandchild(X), parent(X, Y), parent(Z, Y), hates(X , Z)

saying that a grandchild that hates its sibling is a bad child

We introduce DL-safe rules as in [19]. For a DL knowledge h8det N and Ny
be the concept and role nameslihand Np is a set of predicate symbols such that
Nc U N C Np. A DL-atomis an atom of the formi(s) or R(s,t) for A € N and
R € Ng. A DL-safe ruleis a rule of the forma < b,,..., b, wherea, b; are atoms
and every variable in the rule appears in a non-DL-atom inrtite body. ADL-safe
programis a finite set of DL-safe rules. Lets(X, P) be the set of nominals i’ and
constants inP.

The semantics of the combinéd’, P) for a knowledge basé&’ and a DL-safe
programP is given by interpreting® as a first-order theory(Y), see e.g. [5], every
DL-saferulea < by, ..., b, asthe clauseVv—b, V...V —b,, and then considering the
first-order interpretation of (X') U P. The main reasoning procedure in [19]ggery
answeringi.e. checking whether a ground atamis true in every first-order model of
7(X) U P, denoted a$X, P) |= «.

We provide an alternative semantics based on DL interpoetags in [14] rather
than on first-order interpretations. However, both sencargie compatible as indicated
in [19]. For (X, P) and an interpretatiof = (AZ,.%) of X we extend” for Np
andH p such that for unary predicatesc Np, p? C AZ, for binary predicateg ¢
Np, fT C AT x AT, ando” € AT for o € Hp; such an extended interpretation is,
by definition, an interpretation df¥, P). Furthermore, we impose the unique name
assumption such thatdfi # o, theno? # oZ, for elements € cts(X, P). A binding
for an interpretatior? of (X, P) is a functiono : vars(P) U cts(X, P) — AT with
o(o) = of foro € cts(X, P); it maps constants/nominals and variables to domain
elements. A unary atom(s) is then true w.r.to andZ if o(s) € a’, and a binary
atomf (s, t) is true w.r.to andZ if (o(s),o(t)) € f£. Aruler is satisfied byZ iff for
every bindingr w.r.t. Z that makes the atoms in the body true, the head is also true. An
interpretation of X, P) is a model if it is a model of and it satisfies every rule iR.
Query answeringX', P) = « amounts then to checking whether for every (DL) model
T of (X, P), the ground atorw is true inZ.

In [13], ALCHOQ(U,N) satisfiability checking is reduced to CLP satisfiability
checking. Here we reduce query answering wA£CHOQ(L, M) extended with DL-
safe rules to query answering w.r.t. ECLPs. We first provigi®es intuition with an
example. Take a knowledge baSe= {Imanuf_in.Co N 3has_price T Product},
expressing that if something is manufactured in some cguand it has a price then



38 Heymans, Van Nieuwenborgh and Vermeir

it is a product. We have some facts in a DL-safe prograrabout the world we are
considering:

is_product_of (p, c;) < manuf _in(p, japan) <
is_product_of (p, c2) < Co(japan) +

saying thatp is a product of company; and company:, that p is manufactured
in Japan and that Japan is a country. Those facts are vagublustafe since they
do not contain variables. Additionally, we have a DL-safterin P saying that if
a product is a product of 2 companies then those companiesoanpetitors, r; :
competitors(Cy, Cg) < Product(P), is_product_of (P, C;), is_product_of (P, Cs).
Note that this is indeed a DL-safe rule since every variablucs in ais_product_of
atom, which is a non-DL-atom in the body of the rule. The only&om in the rule is
Product(P). A possible model of (¥, P) would beZ = ({japan, c;,ce,p,z},-%)®
with -Z: CoT = {japan}, Product” = {p}, manuf _in” = {(p, japan)}, has_price”
={(p,z)}, is_product_oft = {(p, c1), (p, c2)} andcompetitors™ = {(cy1, c2)}.

We translatg X', P) now to an ECLP: the DL axiom is translated to the constraint
< (Imanuf _in.Co N Ihas_price)(X), not Product(X ), where we introduce predi-
cates corresponding to the concept expressions. Furtheyme define these predicates

by the rules

(Imanuf _in.Co M Ihas_price)(X) < (Imanuf _in.Co)(X), (Ihas_price)(X)
(Imanuf _in.Co)(X) < manuf_in(X,Y), Co(Y)
(Fhas_price)(X) < has_price(X,Y)

such that if an answer set containanuf _in.Co M Jhas_price)(z), then, by mini-
mality of answer sets and the first rul@manuf _in.Co)(z) and(3has_price)(z) are

in the answer set, and, by the second and third rule, therélmeusy,; and ay, such
that manuf _in(z, y;), Co(y;), andhas_price(z, yo) are in the answer set. The op-
posite direction is also valid, i.e. ihanuf_in(z,y;), Co(y:), andhas_price(z, yz)
are in the answer set théBmanuf _in. Co M 3has_price)(x) is in the answer set since
rules need to be satisfied. This kind of behavior exactly méntihe DL semantics of
the corresponding constructs. Furthermore, we introdneecdbncept and role names
by means of free rules, indicating that a domain element f@ilof domain elements)
is of a certain type or not.

Product(X) V not Product(X)

Co(X) V not Co(X)

manuf _in(X, Y) V not manuf _in(X,Y)
has_price(X, Y) V not has_price(X,Y) <

(_
(_
e

This concludes the CLP part of the translatiorf bf P). The ground DLP part consists
of the same facts as in the DL-safe part; it also contains tbergling of the rule in

" Actually, to correspond entirely with the desired semamtice would need to indicate th@t
andC-, are different companies. This seems to be not possible hétt -safe rules in [19],
however, it is with ECLPs usingf.

8 We takeo” = o, 0 € cts(X, P), for ease of notation.



Extending Conceptual Logic Programs with Arbitrary Rules 9 3

P with constantyjapan, p, ¢;, c2 }, €.9. the rule
ro : competitors(cy, co) < Product(p), is_product_of (p, ¢ ), is_product_of (p, cz2)

Since DL-safe rules have a first-order interpretation ong freve that(c;,c2) €
competitors” for a modelZ of (X, P) without any justification inZ, i.e. the body
of 7 in P does not need to be satisfied in order to havec,) € competitors”. The
answer set semantics however only dedugespetitors(c;, c2) in an answer set if
e.g. the body of is satisfied in that answer set, since otherwise the answerossd
not be minimal (one could omitompetitors(c;, c2) and still have an answer set).

To solve this, we introduce for each headf a rule in the ground DLP part, a free
rule a V not a < , €.9.competitor(cy, ce) V not competitor(c;, cz) < such that
one has always a motivation fesmpetitor(c;, c2), mimicking the first-order seman-
tics.

We refer to [13] for the definition of the closukgos(X) of a ACCHOQ(LI, M)
knowledge base¥, but basically, for a concept expressi@hin X it includes the
subconcepts ofD. Formally, we define the CL® (X, P) for a ALCHOQ(U, M)
knowledge base’ and a DL-safe prograr® as the program containing for every con-
cept expressioD € clos(X) the rules in Table 2. Furthermore, for every concept

Table 2. CLP Translation?; (X, P)

~D(X) « not D(X) DM E(X) « D(X),E(X)

DUE(X) « D(X) DUE(X) « E(X)

AR.D(X) + R(X,Y),D(Y) VR.D(X) « not IR.~D(X)
RUS(X,Y) « R(X,Y) RMS(X,Y) « R(X,Y),5(X,Y)
RUS(X,Y) « S(X,Y) (< n R.D)(X) < not (> n+1R.D)(X)

(> n RD)(X) — R(X: Yl): trey R(X: Yn): D(Yl)z s 7D(Yn):Y1 7é YQ: s

nameA and role nam&) in X, we add the free ruled(X) V not A(X) «+ and
R(X,Y)Vnot R(X,Y) +< .Nominalso in X are handled by introducing predicates
{o} with facts{o} (o) < in &,(X, P), such that we can only have th@i}(z) is in an
answer set ift = 0. (X, P) is not a local ECLP, but due to the fact that the body of a
rule becomes structurally smaller one can transform it twallECLP while preserving
satisfiability [13].

We define®, (X, P) as the ground DLRP (= p), i.€. P grounded with all con-
stants and nominals i’ and P, together with free rules heéd Vv not headr) < for
eachr € Py (s p)-

Theorem 6. For an ALCHOQ(L, M) knowledge basé&’ and a DL-safe progranP,
we haveg( X, P) = a iff (X, P) Ud3(X, P) = .®

® Moreover, the models dfZ, P) are in a one-to-one correspondence with the open answer sets
of &, (X, P)Ud, (X, P), see the proof in http://tinf2.vub.ac.be/"sheymans/@sp-sw.ps.gz.



40 Heymans, Van Nieuwenborgh and Vermeir

In [19] the SHOZN (D) DL is considered instead ALCHOQ(LI, M), which extends
and at the same time restricts the type of allowed constrsidiil_-safe rules allow for
variables, however, this does not make them more expressweground DLP pro-
grams: [19] proves thdt”, P) = a iff (X, P9) |E « whereP? is the grounding of?
w.r.t. constants and nominals(&', P). Moreover, using ECLPs instead of a DL knowl-
edge base with DL-safe rules on top has the further advamtaigenmonotonicity by
means of negation as failure in both the CLP part and the giediDLP part, whereas
both DLs and DL-safe rules are monotonic (DL-safe rules ammnidlauses and thus do
not allow for negation as failure).

5 Related Work

We highlight some of the current research trends on the @jin of nonmonotonicity
to the Semantic Web and refer the reader for further relate#t en the combination of
(not necessarily nonmonotonic) rules and ontologies th [13

[7] combines the expressi&HOZN (D), i.e. OWL DL, with ASP reasoning by
considering the DL knowledge base as a black box that can &eegifrom the rules.
Moreover, inferences made by rules can serve as input to thenbwledge base as
well, leading to a bidirectional flow of information. A disaghtage of this approach, as
was remarked in [19], is that, since one considers only apresgces of the DL knowl-
edge base, i.e. atoms that are true in all models, some mergifained inferences will
not be made by the rules. Since reasoning with CLPs can beeddo finite ASP, it
can be trivially reduced to the approach in [7] with an empkykdbowledge base. In [8]
the approach of [7] was adapted for the well-founded semsiristead of the answer
set semantics.

[11] explains how reasoning with SWRL[15], i.e. OWL exteddeith Datalog in
RuleML, can be done by iteratively calling the DL reasoreceR [12] and the rule-
based reasondesq9], each feeding the other with the inferences it made.S8WRL
is undecidable, and such an iterative procedure is thusriptaie, it shows that in-
tractable worst-case complexity (or even undecidabiltyyuld not hold one back to
device practical and useful combined reasoners. A simidaative angle is taken in
[18] where SWRL is extended with negation as failure andgogd with an answer set
semantics, resulting in a nonmonotonic but undecidablesys

6 Conclusions and Directions for Further Research

We extended CLPs with a finite set of arbitrary ground DLP subnd showed that
reasoning with the resulting ECLPs can be reduced to finisgvanset programming.
We established an upper complexity bound and simulatedn@asin a DL equipped
with DL-safe rules.

The uppeB-NEXPTIME bound for reasoning with ECLPs is rather bad, however,
encouraged by practical algorithms for highly intractable algorithms, we believe
that, using heuristics, one can also implement practiGdaorers for ECLPs. This is
subject for further research.



Extending Conceptual Logic Programs with Arbitrary Rules 1 4

References

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, andtBl-BahneiderThe Description

Logic Handbook Cambridge University Press, 2003.

. F. Baader and U. Sattler. Number Restrictions on ComptEgrdlin Description logics. In

Proc. of KR-96 pages 328-339, 1996.

. C. Baral. Knowledge Representation, Reasoning and Declarativel@molsolving Cam-

bridge Press, 2003.

. S. Bechhofer, F. van Harmelen, J. Hendler, |. Horrocks, LD.McGuinness, P. F.

Patel-Schneider, and L. A. Stein. OWL Web Ontology Langudgeference.
http://lwww.w3.org/TR/owl-ref/, 2004.

. A. Borgida. On the Relative Expressiveness of Descriptiogics and Predicate Logics.

Artificial Intelligence 82(1-2):353-367, 1996.

. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Comptexand Expressive Power of

Logic ProgrammingACM Comput. Sury33(3):374-425, 2001.

. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tomp&ambining Answer Set Program-

ming with DLs for the Semantic Web. Froc. of KR 2004pages 141-151, 2004.

. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompit¢ell-Founded Semantics for De-

scription Logic Programs in the Semantic Web.Proc. of RuleML 2004number 3323 in
LNCS, pages 81-97. Springer, 2004.

. E.J. Friendman-Hill. Jess homepage. http://herzbaigaadia.gov/jess/.
. M. Gelfond and V. Lifschitz. The Stable Model Semantmslfogic Programming. liProc.

of ICLP’88, pages 1070-1080, Cambridge, Massachusetts, 1988. M§E.Pre

C. Golbreich. Combining Rule and Ontology Reasonerghi®iSemantic Web. IRroc. of
RuleML 2004 number 3323 in LNCS, pages 6—22. Springer, 2004.

V. Haarslev and R. Moller. Description of the RACER Systnd its Applications. liProc.
of Description Logics 20Q12001.

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Semakigb Reasoning with Con-
ceptual Logic Programs. IRroc. of RuleML 2004number 3323 in LNCS, pages 113-127.
Springer, 2004.

I. Horrocks and P. F. Patel-Schneider. A Proposal for @i ®ules Language. IRroc. of
WWW 2004ACM, 2004.

I. Horrocks, P. F. Schneider, H. Boley, S. Tabet, B. Giaswl M. Dean. SWRL: A Semantic
Web Rule language Combining OWL and RuleML, May 2004.

lan Horrocks and Peter Patel-Schneider. Reducing OWhilBrent to Description logic
Satisfiability. J. of Web Semantic4(4):345-357, 2004.

N. Leone, W. Faber, and G. Pfeifer. DLV homepage. httpnii.dbai.tuwien.ac.at/proj/div/.
J. Mei, S. Liu, A. Yue, and Z. Lin. An Extension to OWL withe@eral Rules. IfProc. of
RuleML 2004 number 3323 in LNCS, pages 6—22. Springer, 2004.

Boris Motik, Ulrike Sattler, and Rudi Studer. Query Arsimg for OWL-DL with Rules. In
Proc. of ISWC 2004number 3298 in LNCS, pages 549-563. Springer, 2004.

P. Simons. Smodels homepage. http://www.tcs.hutffil&oe/smodels/.

M. Smith, C. Welty, and D. McGuinness. OWL Web Ontologyngaage Guide.
http://www.w3.org/TR/owl-guide/, 2004.



